能力提升2_3勾股定理中的八种模型与真题训练【2022中考数学三轮冲刺能力提升+真题对点练】原卷版

合集下载

2022年中考数学三轮冲刺中档解答(一)含答案

2022年中考数学三轮冲刺中档解答(一)含答案

2022年中考数学三轮冲刺中档解答(一)含答案1、[中考数学中档解答〔一〕]19.计算:-+|-2|--1+2cos60°.20.解分式方程:+2=.[来21.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O 成中心对称的△A1B1C1.(2)作出点A关于x轴的对称点A.若把点A 向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.n22.为了推动课堂教学改革,打造高效课堂,协作地区“两型课堂”的课题讨论,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计状况如图.请依据图中提供的信息,回答以下问题.(1)求本次被调查的八年级学生2、的人数,并补全条形统计图;(2)若该校八年级学生共有540人,请你计算该校八年级有多少名学生支持“分组合作学习”方式(含“特别喜爱”和“喜爱”两种状况的学生).23.如图,AB是☉O的直径,点C在AB的延长线上,AD平分∠CAE交☉O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是☉O的切线;(2)若BC=3,CD=3,求弦AD 的长.n24.某商店购进一种商品,每件商品进价为30元.试销中发觉这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,依据上表,求出y与x之间的关系式(不必写出自变量x的取值范围).(2)假如商店销售这种商品,每天要获得150元的利润3、,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大.n参考答案19.解:原式=-3+2--3+2×=-4.20.解:方程两边同乘x-2,得1+2(x-2)=x-1,解得x=2.经检验,x=2是增根,原方程无解.21.解:(1)如图,△A1B1C1就是所求作的图形.(2)A如下图.a的取值范围是4a6.22.[解析](1)依据喜爱“分组合作学习”方式的圆心角度数及对应的人数可求总人数,进而得出特别喜爱“分组合作学习”方式的人数;(2)利用扇形图得出支持“分组合作学习”方式所占的百分比,利用样本估计总体即可.解:(1)∵喜4、欢“分组合作学习”方式的圆心角度数为120°,人数为18,∴被调查的八年级学生的总人数为18÷=54(人),故特别喜爱“分组合作学习”方式的人数为54-18-6=30(人),补全条形统计图如下图.(2)∵“特别喜爱”和“喜爱”两种状况在扇形统计图中所占圆心角的度数和为120°+200°=320°,该校八年级学生共有540人,∴有540×=480(名)学生支持“分组合作学习”方式.23.解:(1)证明:连接OD,n∵OA=OD,∴∠2=∠3.∵AD平分∠CAE,∴∠1=∠2,∴∠1=∠3,∴AE∥OD,∴∠E=∠ODC.∵AE⊥EC,∴∠E=90°,∴∠ODC=90°,∴CE为☉O的切线.(2)连接BD,在Rt△ODC 中,∠ODC=90°,[则O5、D2+DC2=OC2,设OD=x,CD=3,BC=3,则(3)2+x2=(x+3)2,解得:x=.∵OD∥AE,∴△ODC∽△AEC,∴=,即=,∴AE=2.∵AB为直径,∴∠ADB=90°,∴∠ADB=∠E.∵∠1=∠2,∴△EAD∽△DAB,∴=,即=,∴AD=.24.[解析](1)依据待定系数法求出关系式即可;(2)依据题意列出方程解答即可;(3)依据题意列出函数关系式,利用函数的最值解答即可.解:(1)设该函数的关系式为y=kx+b,依据题意,得解得故该函数的关系式为y=-2x+100.(2)依据题意得,(-2x+100)(x-30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元.(36、)依据题意,得w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-20,∴抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.。

专题03 勾股定理的证明【2022春人教版八下数学压轴题突破专练】(原卷版)

专题03 勾股定理的证明【2022春人教版八下数学压轴题突破专练】(原卷版)

【2022春人教版八下数学压轴题突破专练】专题03 勾股定理的证明一.选择题1.(2021春•潮阳区期末)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于()A.8 B.6 C.4 D.22.(2021春•武昌区期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如图,设直角三角形较长直角边长为a,较短直角边长为b.若大正方形面积是9,小正方形面积是1,则ab的值是()A.4 B.6 C.8 D.103.(2021春•长沙县月考)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148 B.100 C.196 D.144 4.(2021•宁波一模)如图,是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,若知道图中阴影部分面积,且不分别求S1,S2,S3的值,一定能求出()A.S1+2S3B.S3﹣S1C.S1+S2+S3D.S1+S3﹣2S2 5.(2021春•朝阳区校级期末)如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成大正方形,若小正方形边长为1,大正方形边长为5,则一个直角三角形的周长是()A.6 B.7 C.12 D.15(2020秋•婺城区校级期末)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,6.即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD =21,则图中阴影部分的面积之和为()A.B.C.D.7.(2021春•罗湖区校级期末)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形的边LM的长为()A.10 B.11 C.110 D.121 8.(2020•永嘉县模拟)下图是英国牧师佩里加尔证明勾股定理的“水车翼轮法”,在Rt△ABC中,∠ACB=90°,互相垂直的线段MN,PQ将正方形BFHC分为面积相等的四部分,这四个部分和以AC为边的正方形恰好拼成一个以AB为边的正方形.若正方形ACDE的面积为5,△CQM的面积为1,则正方形CBFH的面积为()A.11 B.12 C.13 D.149.(2020春•海陵区期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=6,大正方形的面积为16,则小正方形的面积为()A.8 B.6 C.4 D.3二.填空题10.(2021秋•皇姑区期末)把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.11.(2020秋•南浔区期末)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,以顶点都是格点的正方形ABCD的边为斜边,向外作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的面积为52.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是(不包括52).12.(2021春•涪城区校级期中)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是.13.(2021春•海淀区校级期中)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,则GE=.14.(2020春•临海市期末)如图,把图1中边长分别为3和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中阴影部分的面积为.15.(2020春•阳西县期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长的直角边长为a,较短的直角边长为b,若ab=8,小正方形的面积为9,则大正方形的边长为.16.(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为.17.(2020春•济南期末)如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,已知S1+S2+S3=10,则S2的值是.18.(2019•莲都区模拟)如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为(用含a的代数式表示)19.(2019•奉贤区二模)在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).如果小正方形的面积是25,大正方形的面积为49,直角三角形中较小的锐角为α,那么tanα的值是.三.解答题20.(2021秋•金水区校级期中)如图,小明用4个图1中的矩形组成图2,其中四边形ABCD,EFGH,MNPQ都是正方形,证明:a2+b2=c2.21.(2021秋•和平区校级期中)如图,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD=c,DE=a,AE=b,取c=20,b﹣a=4.(1)填空:正方形EFGH的面积为,四个直角三角形的面积和为.(2)求a+b的值.22.(2021春•滑县期末)如图是用硬纸板做成的四个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.请你开动脑筋,用它们拼出正方形图案,要求拼图时直角三角形纸片不能互相重叠.(1)请你画出拼成的这个图形的示意图;(2)利用(1)中画出的图形证明勾股定理.23.(2021春•茂南区校级月考)用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两条直角边分别是a、b(a>b),斜边长为ccm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2大正方形的面积.(用含a,b,c)①S=;②S=;(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条直角边长分为是a=8,b=6,求斜边c的值.24.(2021•宜昌模拟)如图的图形取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,试求(a+b)2的值.25.(2021秋•武汉月考)2000多年来,人们对直角三角形三边之间的关系的探究颇感兴趣,古往今来,下至平民百姓,上至帝王总统都愿意探究它,研究它的证明,新的证法不断出现.下面给出几种探究方法(由若干个全等的直角三角形拼成如图图形),试用面积法选择其中一种推导直角三角形的三边a、b、c之间的数量关系(1)三边a、b、c之间的数量关系为;(2)理由:.26.(2019秋•山亭区期中)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在坐标轴上找一点C,使△ABC为等腰三角形.写出一个满足条件的在x轴上的点的坐标:;写出一个满足条件的在y轴上的点的坐标:,这样的点有个.27.(2018•保定二模)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.。

能力提升2_7圆中的七大定理与真题训练【2022中考数学三轮冲刺能力提升+真题对点练】原卷版

能力提升2_7圆中的七大定理与真题训练【2022中考数学三轮冲刺能力提升+真题对点练】原卷版

2022年中考数学考前30天迅速提分复习方案(全国通用)专题2.7圆中的七大定理与真题训练题型一:圆周角定理一.解答题(共9小题)1.(2022•萧山区模拟)在圆O中,弦AB与CD相交于点E,且弧AC与弧BD相等.点D在劣弧AB上,连接CO并延长交线段AB于点F,连接OA、OB.(1)求证:△OFA∽△EFC;(2)当OA=5,且tan∠OAB=时,如果△AOF是直角三角形,求线段EF的长.2.(2022•芜湖一模)如图1,BC是⊙O的直径,点A,P为其异侧的两点(点A、P均不与点B、C重合),过点A作AQ⊥AP,交PC的延长线于点Q,AQ交⊙O于点D.(1)求证:△APQ∽△ABC;(2)如图2,若AB=3,AC=4.当点C为弧PD的中点时,求CQ的长.3.(2022•南海区一模)如图,在⊙O上有位于直径AB的两侧的定点C和动点P,=2,点P 在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD,垂足为点D.(1)如图1,求证:△ABC∽△PCD;(2)类比(1)中的情况,当点P运动到什么位置时,△ABC≌△PCD?请在图2中画出△PCD,并说明理由.(3)如图3,当点P运动到某一位置时,有CP⊥AB时,求∠BCD的度数.4.(2022•石家庄模拟)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,它的完美来自对称.其中切弦(chordofcontact)亦称切点弦,是一条特殊弦,从圆外一点向圆引两条切线,连接这两个切点的弦称为切弦.此时,圆心与已知点的连线垂直平分切弦.(1)为了说明切弦性质的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图1,P是⊙O外一点,.求证:.(2)如图2,在(1)的条件下,CD是⊙O的直径,连接AD,BC,若∠ADC=50°,∠BCD=70°,OC=2,求OP的长.5.(2022•汇川区一模)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,DE⊥BC交BC延长线于点E,CD平分∠ACE.(1)求证DE是⊙O的切线;(2)若AD=6,DE=4,求AC的长.6.(2022•南山区模拟)如图,△ABC内接于⊙O(∠ACB>90°),连接OA,OC.记∠BAC =α,∠BCO=β,∠BAO=γ.(1)探究α与β之间的数量关系,并证明.(2)设OC与AB交于点D,⊙O半径为1,①若β=γ+45°,AD=2OD,求由线段BD,CD,弧BC围成的图形面积S.②若α+2γ=90°,设sinα=k,用含k的代数式表示线段OD的长.7.(2021•西湖区校级三模)如图,AB是⊙O的直径,点C在⊙O上,且=,AB=8cm,P是AB上一动点,连结CP并延长交⊙于点D.(1)若∠APC=60°,求OP的长;(2)若点P与O重合,点E在CO上,F在OA上,CE=1cm.根据题意画图,并完成以下问题:①当OE=OF时,判断BE和CF的位置关系和数量关系,并说明理由;②连结BE并延长交⊙O于M,连结DM交AB于点F,求的值.8.(2011•安庆一模)我们把1°的圆心角所对的弧叫做l°的弧.则圆心角AOB的度数等于它所对的弧AB的度数记为:∠AOB=.由此可知:命题“圆周角的度数等于其所对的弧的度数的一半.”是真命题,请结合图1给予证明(不要求写已知、求证.只需直接证明),并解决以下的问题(1)和问题(2).问题(1):如图2,⊙O的两条弦AB、CD相交于圆内一点P,求证:∠APC=(+);问题(2):如图3,⊙O的两条弦AB、CD相交于圆外一点P.问题(1)中的结论是否成立?如果成立,给予证明;如果不成立,写出一个类似的结论(不要求证明)9.(2022•南岗区模拟)如图,AB为⊙O直径,弦CD交AO于E,连接BD、BC.(1)求证:∠C+∠ABD=90°;(2)若∠ABC=2∠ABD,求证:CB=BE;(3)在(2)的条件下,连接AC,F、G在AC、BC上,且CF=CG,连接EF、EG,∠FEG =90°,连接BF,∠CFB=∠CGE,BG=2,求BD的长.题型二:垂径定理一.选择题(共1小题)1.(2022•五华区校级模拟)如图,在矩形ABCD中AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与⊙O相切于点E,则BB1的长为()A.B.2C.D.二.解答题(共3小题)2.(2021•定海区模拟)已知:如图1,在Rt△ABC中,∠C=90°,AC=8,∠A=60°,⊙O 与边AB、AC相切于点E、F.求:(1)当⊙O的半径为2时,求弧EF的长;(2)当⊙O与BC边相切时,求⊙O的半径;(3)如图2,当⊙O的半径r为2时,⊙O与BC交于M、N两点,求MN的长.3.(2020•雨花区二模)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)若DE•DA=8,求DC的长;(3)若tan∠CAD=,求cos∠CDA的值.4.(2022•罗湖区模拟)在⊙O中,弦CD平分圆周角∠ACB,连接AB,过点D作DE∥AB交CB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若tan∠CAB=,且B是CE的中点,⊙O的直径是,求DE的长.(3)P是弦AB下方圆上的一个动点,连接AP和BP,过点D作DH⊥BP于点H,请探究点P在运动的过程中,的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.题型三:切割线定理一.解答题(共3小题)1.(2021•回民区二模)如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC,∠ACB的平分线交⊙O于点D,交AB于点E,①求证:PC是⊙O的切线;②求证:△PEC是等腰三角形;③若AC+BC=2时,求CD的长.2.(2021•郑州模拟)复习巩固切线:直线和圆只有一个公共点,这时这条直线和圆相切,我们把这条直线叫做圆的切线,这个点叫做切点.割线:直线和圆有两个公共点,这时这条直线和圆相交,我们把这条直线叫做圆的割线.切线长:过圆外一点作圆的切线,这点和切点之间线段的长,叫做这点到圆的切线长.阅读材料《几何原本》是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是⊙O外一点,.求证:.证明:3.(2021•大庆模拟)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB 上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接DF.(1)求证:BC是⊙O的切线;(2)求证:AD2=AB•AF;(3)若BE=2,sin B=,求AD的长.题型四:切线长定理一.解答题(共3小题)1.(2021•滨州三模)如图,⊙O的直径AB=12,AM,BN是⊙O的两条切线,DC切⊙O于E,交BN于C,设AD=x,BC=y.(1)求证:AB2=4DE•CE;(2)求y与x的函数关系式;(3)若x,y是方程2x2﹣30x+a=0的两个根,求△OCD的面积.(已知:如果x1,x2为方程ax2+bx+c=0的两实数根,则x1+x2=﹣)2.(2021•涟源市三模)如图,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F过圆心O作OG ∥BD,交过点A所作⊙O的切线于点G,连接GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)试判断△DEF的形状,并说明理由;(3)若OF=2且⊙O的半径为6,求AG的长.3.(2021•定海区模拟)已知:如图1,在Rt△ABC中,∠C=90°,AC=8,∠A=60°,⊙O 与边AB、AC相切于点E、F.求:(1)当⊙O的半径为2时,求弧EF的长;(2)当⊙O与BC边相切时,求⊙O的半径;(3)如图2,当⊙O的半径r为2时,⊙O与BC交于M、N两点,求MN的长.题型五:弦切角定理一.选择题(共1小题)1.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.A.1个B.2个C.3个D.4个二.解答题(共3小题)2.如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.(1)求证:AE是∠BAC的平分线;(2)若∠ABD=60°,则AB与EF是否平行?请说明理由.3.如图,四边形ABCD内接于⊙O,AD=CD,⊙O的切线DE与BA的延长线相交于点E,求证:AD2=AE•BC.4.如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC 为∠BAD的平分线.求证:(1)AB为⊙O的直径;(2)AC2=AB•AD.题型六:相交弦定理一.解答题(共3小题)1.请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作﹣弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.2.如图,已知⊙O中,弦BC=8,A是的中点,弦AD与BC交于点E,AE=5,ED=,M为上的动点,(不与B、C重合),AM交BC于N.(1)求证:AB2=AE•AD;(2)当M在上运动时,问AN•AM、AN•NM中有没有值保持不变的?若有的话,试求出此定值;若不是定值,请求出其最大值;(3)若F是CB延长线上一点,FA交⊙O于G,当AG=8时,求sin∠AFB的值.3.(附加题)如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M,N两点,大圆的弦AB切小圆于点C,过点C作直线CE⊥AD,垂足为E,交大圆于F,H两点.(1)试判断线段AC与BC的大小关系,并说明理由;(2)求证:FC•CH=AE•AO;(3)若FC,CH是方程x2﹣2x+4=0的两根(CH>CF),求图中阴影部分图形的周长.题型七:阿基米德折弦定理一.解答题(共5小题)1.(2020•青羊区校级三模)如图所示,在⊙O中,BC=2,AB=AC,点D为劣弧AC上的动点,且cos ABC=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.2.(2021•方城县模拟)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.3.(2019•六合区模拟)我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.4.(2021•金堂县模拟)在⊙O中=,顺次连接A、B、C.(1)如图1,若点M是的中点,且MN∥AC交BC延长线于点N,求证:MN为⊙O的切线;(2)如图2,在(1)的条件下,连接MC,过点A作AP⊥BM于点P,若BP=a,MP=b,CM=c,则a、b、c有何数量关系?(3)如图3,当∠BAC=60°时,E是BC延长线上一点,D是线段AB上一点,且BD=CE,若BE=5,△AEF的周长为9,请求出S△AEF的值?5.(2014•江西模拟)先阅读命题及证明思路,再解答下列问题.命题:如图1,在正方形ABCD中,已知:∠EAF=45°,角的两边AE、AF分别与BC、CD 相交于点E、F,连接EF.求证:EF=BE+DF.证明思路:如图2,将△ABE绕点A逆时针旋转90°至△ADE′.∵AB=AD,∠BAD=90°,∴AB与AD重合.∵∠ADC=∠B=90°,∴∠FDE′=180°,点F、D、E′是一条直线.根据SAS,得证△AEF≌△AE′F,得EF=E′F=E′D+DF=BE+DF.(1)特例应用如图1,命题中,如果BE=2,DF=3,求正方形ABCD的边长.(2)类比变式如图3,在正方形ABCD中,已知∠EAF=45°,角的两边AE、AF分别与BC、CD的延长线相交于点E、F,连接EF.写出EF、BE、DF之间的关系式,并证明你的结论.(3)拓展深入如图4,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的两点,∠MAN=∠BAD.①如图5,连接MB、MD,MD与AN交于点H,求证:MH=BM+DH,DM⊥AN;②若点C在(点C不与点A、D、N、M重合)上,连接CB、CD分别交线段AM、AN或其延长线于点E、F,直接写出EF、BE、DF之间的等式关系.【真题训练】一.选择题(共1小题)1.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm二.填空题(共1小题)2.(2017•徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=°.三.解答题(共6小题)3.(2005•恩施州)在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图1所示:∵∠AOC是△ABO的外角∴∠AOC=∠ABO+∠BAO又∵OA=OB∴∠OAB=∠OBA∴∠AOC=2∠ABO即∠ABC=∠AOC如果∠ABC的两边都不经过圆心,如图2、3,那么结论会怎样?请你说明理由.4.(2018•深圳)如图,△ABC内接于⊙O,BC=2,AB=AC,点D为上的动点,且cos∠ABC=.(1)求AB的长度;(2)在点D的运动过程中,弦AD的延长线交BC延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由;(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.5.(2009•鄂州)如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.6.(2007•潍坊)如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.(1)写出图1中所有相等的角(直角除外),并给出证明;(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);(3)在图2中,证明:AD•AB=AC•AE.7.(2008•佛山)我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n (m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;(3)如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.8.(2007•襄阳)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.。

2022年中考数学九年级三轮冲刺《三角形综合》

2022年中考数学九年级三轮冲刺《三角形综合》

三轮冲刺(chōngcì):《三角形综合》1.已知:在△ABC中,BA=BC,点D在BC边上(biān shànɡ),△ADE中,DA =DE,∠ADE=∠B.(1)如图1,当∠B=60°时,请直接(zhíjiē)写出线段BD,CE的数量(sh ùliàng)关系;(2)如图2,当∠B=90°时,(1)中的结论是否成立;如果成立,请说明理由,如果不成立,请写出它们(tā men)的数量关系,并说明理由;(3)如图3,当∠B=α(0°<α<180°)时,请直接写出线段BD,CE 的数量关系.2.已知点I为△ABC的内心.(1)如图1,若AB=AC=6,BC=4,求AI的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,∠BAC=90°,AB=8,BC=10,若△AMN与△ABC相似,则MN的值为.3.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发(chūfā),以每秒lcm的速度(sùdù)沿折线A﹣C﹣B﹣A运动(yùndòng),设运动时间为t秒(t>0).(1)当点P在AC上,且满足(mǎnzú)PA=PB时,求出此时(cǐ shí)t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.4.如图1,在平面直角坐标系中,已知A(a,0),B(0,a),C(b,3),且a,b满足b=6﹣+.(1)试判断△ABC的形状并说明理由;(2)如图2,若点P为AC上一动点,AE⊥BP于E,CD⊥BP交BP的延长线于D,求证:AE=DE;(3)如图3,在(2)的条件下若BP平分∠ABC,且BP=2+2,求PD的长.5.已知:如图,在Rt△ABC和Rt△ABD中,∠ACB=90°,∠ABD=90°,AB =BD,BC=4,(点A、D分别(fēnbié)在直线BC的上下(shàngxià)两侧),点G是Rt△ABD的重心(zhòngxīn),射线BG交边AD于点E,射线(shèxiàn)BC交边AD于点F.(1)求证(qiúzhèng):∠CAF=∠CBE;(2)当点F在边BC上,AC=1时,求BF的长;(3)若△BGC是以BG为腰的等腰三角形,试求AC的长.6.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线(zhíxiàn)DE上时(shànɡ shí),请直接写出sin∠ABD的值.7.已知:如图1,△ABC中,AB=AC,BC=6,BE为中线(zhōngxiàn),点D为BC边上(biān shànɡ)一点,BD=2CD,DF⊥BE于点F,EH⊥BC于点H.(1)CH的长为;(2)求BF•BE的值;(3)如图2,连接(liánjiē)FC,求证:∠EFC=∠ABC.8.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.填空:①则的值为;②∠EAD的度数为.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段(xiànduàn)AC上一动(yīdòng)点,连接DE.请求(qǐngqiú)出的值及∠EAD的度数(dù shu);(3)拓展(tuò zhǎn)延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.9.如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E,F,且∠EDF与∠A互补.(1)如图1,若AB=AC,且∠A=90°,请直接写出:线段DE与DF的数量关系;(2)如图2,若AB=AC,请直接写出:线段DE与DF的数量关系;(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.10.如图,点A、B分别(fēnbié)是x、y轴正半轴上的点,OA=OB,点C在第一(dìyī)象限,C到点O、A和B的距离(jùlí)分别为1、2、,以OC 为腰作等腰直角(zhíjiǎo)△OCD,∠COD=90°,连接(liánjiē)AD.过A 作AP⊥OA交直线OC于P点.(1)求证:BC=AD;(2)求∠ACP的大小;(3)求P点的坐标.参考答案1.解:(1)线段BD,CE的数量关系为:BD=CE;理由如下:∵BA=BC,DA=DE,∠ADE=∠B=60°,∴△ABC与△ADE都是等边三角形,∴AB=AC,∠BAC=∠DAE=60°,AD=AE,∴∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)不成立,CE=BD;理由如下:∵∠ABC=∠ADE=90°,BA=BC,DA=DE,∴△ABC与△ADE都是等腰直角三角形,∴∠BCA=∠DEA=∠BAC=∠DAE=45°,∴△ABC∽△ADE,∴=,∵∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠BCA=∠DEA,∴A、B、C、D四点共圆,∴∠ACE=∠ADE,∴∠ABD=∠ACE,∴△BAD∽△CAE,∴=,∵△ADE是等腰直角三角形,∴AE=AD,∴=,∴=,∴CE=BD;(3)CE=BD•2sin,理由(lǐyóu)如下:过点D作DF⊥AE于F,如图3所示:∵∠ABC=∠ADE=α,BA=BC,DA=DE,∴△ABC与△ADE都是等腰三角形,∴∠BCA=∠DEA=∠BAC=∠DAE,∴△ABC∽△ADE,∴=,∵∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠BCA=∠DEA,∴A、B、C、D四点共圆,∴∠ACE=∠ADE,∴∠ABD=∠ACE,∴△BAD∽△CAE,∴=,∵△ADE是等腰三角形,∴AF=AE,∠ADF=∠ADE=,∴sin∠ADF==,∴AE=2AD•sin,∴=,∴=,∴CE=BD•2sin.2.解:(1)设AI与BC交于点D,过点I作IE⊥AB于E,∵点I为△ABC的内心(nèixīn).∴AI平分(píngfēn)∠BAC,BI平分(píngfēn)∠ABC,∵AB=AC=6,BC=4,∴BD=CD=2,∴AD==4,∵BI平分(píngfēn)∠ABC,∴∠ABI=∠CBI,且BI=BI,∠IEB=∠IDB=90°,∴△IBE≌△IBD(AAS)∴IE=ID,BD=BE=2,∴AE=4,∵AI2=IE2+AE2,∴AI2=(4﹣AI)2+16,∴AI=3;(2)如图2中,连接(liánjiē)BI、CI.∵I是内心(nèixīn),∴∠MAI=∠NAI,∵AI⊥MN,∴∠AIM=∠AIN=90°,∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°﹣α﹣β,∵∠ABC=180°﹣2α﹣2β,∴∠MBI=90°﹣α﹣β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴,∴NI2=BM•CN,∵NI=MI,∴MI2=BM•CN.(3)∵∠BAC=90°,AB=8,BC=10,∴AC===6,如图3,连接(liánjiē)BG,CG,作IG⊥BC于G,IE⊥AC于E,ID⊥AB于D,延长(yáncháng)AI交BC于H,作HF⊥AB于F,∵I是△ABC的内心(nèixīn),∴AI平分(píngfēn)∠BAC,BI平分(píngfēn)∠ABC,CI平分∠ACB,又∵IG⊥BC,IE⊥AC,ID⊥AB,∴ID=IG=IE,∵S△ABC=S△ABI+S△ACI+S△BCI,∴×AB×AC=×AB×DI+×AC×EI+×BC×IG,∴6×8=(6+8+10)×DI,∴DI=2=IE=IG,∵∠BAC=90°,AI平分∠BAC,∴∠BAI=45°,且HF⊥AB,∴∠BAH=∠AHF=45°,∴AF=FH,∵tan∠ABC==,∴∴FH=∵△AMN与△ABC相似(xiānɡ sì),∴△AMN∽△ACB或△AMN∽△ABC,若△AMN∽△ACB,∴,∠ANM=∠ABC,且∠BAH=∠NAI,∴△ANI∽△ABH,∴,∴,∴∴MN=,若△AMN∽△ABC,∴,∠AMN=∠ABC,且∠BAH=∠BAH,∴△AMI∽△ABH,∴,∴∴∴MN=,综上所述:MN=,故答案(dáàn)为:.3.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理(ɡōu ɡǔ dìnɡ lǐ)得AC==8,连接(liánjiē)BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好(qiàhǎo)在∠BAC的角平分线上,且∠C=90°,AB=10,BC =6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线(zhéxiàn)A﹣C﹣B﹣A运动(yùndòng)到点A时,点P也在∠BAC的角平分线上,此时(cǐ shí),t=10+8+6=24;综上,若点P恰好(qiàhǎo)在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据(gēnjù)面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时(cǐ shí)t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点(zhōnɡ diǎn),∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在(cúnzài)M、N使得(shǐ de)BM+MN的值最小,理由(lǐyóu)如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在(cúnzài)M、N使得(shǐ de)BM+MN的值最小,BM+MN的最小值为9.6.4.(1)解:△ABC是等腰直角三角形,理由(lǐyóu)如下:作CM⊥OA于M,如图1所示:则CM∥OB,∵b=6﹣+.∴,∴,∴a=3,b=6,∴A(3,0),B(0,3),C(6,3),∴OA=OB=CM=3,∴OM=BC=6,AM=OM﹣OA=3,∴AB2=32+32=18,AC=32+32=18,∴AB=AC=3,AB2+AC2=36=BC2,∴∠BAC=90°,∴△ABC是等腰直角三角形;(2)证明(zhèngmíng):连接AD,作AH⊥AD交BD于H,如图2所示:则∠DAH=90°,∴∠DAH=∠BAC=90°,∴∠DAC=∠HAB,∵CD⊥BP,∴∠CDP=90°,∴∠DCA+∠CPD=90°,∵∠BAC=90°,∴∠ABH+∠APB=90°,∵∠CPD=∠APB,∴∠DCP=∠ABH,在△ABH和△ACD中,,∴△ABH≌△ACD(ASA),∴AH=AD,∵AE⊥BD,∴EH=DE=DH,∵∠DAH=90°,∴AE=DH,∴AE=DE;(3)解:∵BP平分(píngfēn)∠ABC,∴∠ABP=∠CBP,∵AE⊥BD,CD⊥BP,∴∠AEB=∠D=90°,∴△ABE∽△CBD,∴===,∴CD=AE,∵∠BAC=90°,∴△ABC的面积(miàn jī)=×3×3=9,∵△ABC的面积(miàn jī)=△ABP的面积(miàn jī)+△BCP的面积(miàn jī) =×BP×AE+×BP×CD=(2+2)(AE+CD)=(+1)(AE+CD)=9,∴AE+CD==9(﹣1),∴AE+AE=9(﹣1),解得:AE=27﹣18,∴DE=AE=27﹣18,∵AE⊥BD,CD⊥BP,∴AE∥CD,∴△AEP∽△CDP,∴=,∴=,解得:PD=90﹣63.5.证明(zhèngmíng):(1)(1)∵点G是Rt△ABD的重心(zhòngxīn),∴BE是Rt△ABD的中线(zhōngxiàn),又∵在Rt△ABC中,∠ABD=90°,AB=BD,∴BE⊥AD,即∠AEB=90°,∵∠AFB=∠ACF+∠FAC=∠FBE+∠BEF,且∠ACF=∠BEF=90°,∴∠CAF=∠CBE;(2)过点D作DH⊥BC于H,∵∠ABD=90°,∴∠ABC+∠DBC=90°,且∠ABC+∠BAC=90°,∴∠BAC=∠DBC,且AB=BD,∠ACB=∠BHD,∴△ABC≌△BDH(AAS)∴AC=BH=1,HD=BC=4,∴HC=3,∵∠ACB=∠DHC=90°,∠AFC=∠DFH,∴△AFC∽△DFH,∴=∴CF=HF,∴HF==,∴BF=BH+HF=1+=;(3)当GC=GB时,如图,连接(liánjiē)DG并延长(yáncháng)交BC于H,交AB于N,连接(liánjiē)NC,∵点G是Rt△ABD的重心(zhòngxīn),∴AN=BN,∵∠ACB=90°,∴BN=NC=AN,∴点N在BC的垂直平分线上,∵BG=GC,∴点G在BC的垂直平分线上,∴DN垂直平分BC,∴BH=HC=2,DH⊥BC,∵∠ABD=90°,∴∠ABC+∠DBC=90°,且∠ABC+∠BAC=90°,∴∠BAC=∠DBC,且AB=BD,∠ACB=∠BHD,∴△ABC≌△BDH(AAS)∴AC=BH=2;若BG=BC=4,如图,∵点G是Rt△ABD的重心(zhòngxīn),∴BG=2GE,∴GE=2,∴BE=6,∵∠ABD=90°,AB=BD,BE⊥AD∴BE=AE=6,∴AB=AE=6,∴AC===2,综上所述:AC=2或2.6.解:(1)如图1,延长(yáncháng)AD,BE交于点H,∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF,∴AO=BO,DO=EO,∠AOB=∠DOE=90°,∴∠BOE=∠AOD,∴△BOE≌△AOD(SAS),∴AD=BE,∠OBE=∠OAD,∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB,∴∠OAB+∠OAD+∠ABE=90°,∴∠AHB=90°,∴AD⊥BE,故答案(dáàn)为:AD=BE,AD⊥BE;(2)AD=BE不成立(chénglì),AD⊥BE仍然(réngrán)成立,理由(lǐyóu)如下:如图2,连接(liánjiē)AO,DO,∵AB=AC,DE=DF,∠BAC=∠EDF=60°,∴△ABC和△DEF是等边三角形,∵OB=OC,OE=OF,∴∠DOE=90°=∠AOB,DO=EO,AO=BO,∴∠AOD=∠BOE,,∴△AOD∽△BOE,∴=,∠OAD=∠OBE,∴AD=BE,∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB,∴∠OAB+∠OAD+∠ABE=90°,∴∠AHB=90°,∴AD⊥BE,(3)如图3,当点E在线段(xiànduàn)BD上时(shànɡ shí),连接AO,DO,∵AC=3=AB,OB=OC,BC=6,∴AO⊥BC,BO=3,∴AO===6,由(2)可知(kě zhī):△BEO∽△ADO,AD⊥BE,∴==2,∴AD=2BE,∵AB2=AD2+BD2,∴45=4BE2+(5+BE)2,∴BE=﹣1,∴AD=2﹣2,∴sin∠ABD==;如图,当点B在线段(xiànduàn)DE上时(shànɡ shí),连接AD,AO,DO,同理可求:AD=2BE,AD⊥BE,∵AB2=AD2+BD2,∴45=4BE2+(5﹣BE)2,∴BE=+1,∴AD=2+2,∴sin∠ABD===,综上所述:sin∠ABD的值为或.7.解:(1)如图1,作AG⊥BC于点G,∵AB=AC,BC=6,∴CG=3,∵AE=EC,EH⊥BC,∴EH∥AG,∴CH=CG=;故答案(dáàn)为:.(2)∵BD=2CD,∴CD=BC==2,∴BD=4,∴DH=CD﹣CH=2﹣1.5=0.5,∴BH=4+0.5=4.5,∵DF⊥BE,EH⊥BC,∴∠DFB=∠EHB,∵∠DBF=∠EBH,∴△DFB∽△EHB,∴,∴BF•BE=BH•BD==18.(3)如图2,过点A作AM∥BC交BE延长线于点M,∴∠M=∠EBC,∠AEM=∠CEB,又∵AE=EC,∴△AEM≌△CEB(AAS),∴AM=BC=6,BM=2BE,∴BF•BM=BF•2BE=2×18=36,∵AM•BC=6×6=36,∴BF•BM=AM•BC,∴,∵∠FBC=∠M,∴△FBC∽△AMB,∴∠ABM=∠BCF,∵∠EFC=∠FBC+∠BCF,∴∠EFC=∠FBC+∠ABM,∴∠EFC=∠ABC.8.解:(1)∵∠ABC=∠DBE=90°,∴∠ABC﹣∠ABE=∠DBE﹣∠ABE即∠CBE=∠ABD,∵∠ACB=∠BED=45°,∴∠ABC=∠CAB=45°,∠BED=∠BDE=45°,∴AB=BC,DB=BE,∴△ABD≌△CBE(SAS),∴AD=CE,∠DAB=∠ECB=45°,∴=1,∠EAD=45°+45°=90°.故答案(dáàn)为:1,90°.(2),∠EAD=90°.理由(lǐyóu)如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°,∴∠ABD=∠EBC,∠BAC=∠BDE=30°,∴在Rt△ABC中,tan∠ACB==tan60°=,在Rt△DBE中,tan∠BED==tan60°=,∴=,又∵∠ABD=∠EBC,∴△ABD∽△∠CBE,∴==,∠BAD=∠ACB=60°.∵∠BAC=30°,∴∠EAD=∠BAD+∠BAC=60°+30°=90°.(3)如图,由(2)知:==,∠EAD=90°,∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且点M是DE的中点(zhōnɡ diǎn),∴AM=BM=DE,∵△ABM为直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,设EC=x,则AD=x,AE=8﹣x,Rt△ADE中,AE2+AD2=DE2,∴(8﹣x)2+(x)2=(4)2,解之得:x=2+2(负值(fù zhí)舍去).∴EC=2+2.∴AD=CE=2+6.∴线段(xiànduàn)AD的长为(2+6).9.解:(1)DE=DF,理由(lǐyóu)如下:连接(liánjiē) AD.如图1所示:∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BC=BD,∠B=∠DAF=45°,∵∠EDF+∠BAC=180°,∴∠AED+∠AFD=180°,∴∠BED=∠AFD,在△BED和△AFD中,,∴△BED≌△AFD(AAS),∴DE=DF.故答案(dáàn)为:DE=DF,(2)DE=DF,理由(lǐyóu)如下:过点D作DM⊥AB于M,作DN⊥AC于N,连接(liánjiē) AD.如图2所示:则∠EMD=∠FND=90°.∵AB=AC,点D为BC中点,∴AD平分(píngfēn)∠BAC,∴DM=DN.∵在四边形AMDN中,∠DMA=∠DNA=90°,∴∠MAN+∠MDN=180°.∵∠EDF+∠MAN=180°,∴∠MDN=∠EDF,∴∠MDE=∠NDF,在△DEM和△DFN中,,∴△DEM≌△DFN(ASA),∴DE=DF.故答案(dáàn)为:DE=DF;(3)结论DE:DF=n:m,理由如下:过点D作DM⊥AB于M,作DN⊥AC于N,连接AD,如图3所示:由(2)得∠MDE=∠NDF,∵∠EMD=∠FND=90°,∴△DEM∽△DFN.∴.∵点D为BC的中点,∴S△ABD=S△ADC.∴,∴,∵,∴,即DE:DF=n:m.10.解:(1)∵∠AOC+∠BOC=∠AOB=90°,∠AOC+∠AOD=∠COD=90°∴∠BOC=∠AOD,且AO=BO,CO=DO,∴△BOC≌△AOD(SAS)∴BC=AD=;(2)∵OC=OD=1,∠COD=90°,∴CD=,∠OCD=∠ODC=45°,∵CD2+CA2=2+8=10,AD2=10,∴CD2+CA2=AD2,∴∠ACD=90°,且∠OCD=45°,∴∠ACP=45°;(3)如图,过点A作AH⊥OP,∵AH⊥OP,∠ACP=45°,∴∠HAC=∠ACP=45°,∴CH=AH,∵AH2+CH2=AC2=8,∴AH=CH=2,∴OH=OC+CH=3,∴OA===,∵∠AOP=∠AOH,∠AHO=∠PAO=90°,∴△AOH∽△POA,∴∴AP=,∴点P坐标(zuòbiāo)(,)内容、最困难的事就是认识自己。

2025年安徽省中考数学复习提分专训(专训+勾股定理)

2025年安徽省中考数学复习提分专训(专训+勾股定理)
= , = ,动点从点出发沿射线运动,当
10,2 或16
△ 为等腰三角形时,其底边的长为______________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
15.[数形结合思想]在 × 的正方形网格中,点和直
线的位置如图所示:
1
2
3
4
5
6
7
2
均在格点上,则边上的高为___.
(第7题)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
勾股定理及其逆定理的应用
8.如图,一棵树在离地面6米处断裂,树的顶
部落在离底部8米处,树折断之前的高度是
16
____米.
(第8题)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
9.如图,淇淇由地沿北偏东∘ 方向骑行
由上图我们根据梯形的面积公式可知,梯形


的面积= ( + )( + ),从上图我们还发




+







+ ,化简

11
15
现梯形的面积=三个三角形的面积和,即 + + ,

两者列成等式为 ( + )(

2024中考数学全国真题分类卷 模型三 一线三等角模型 强化训练(含答案)

2024中考数学全国真题分类卷 模型三 一线三等角模型 强化训练(含答案)

2024中考数学全国真题分类卷模型三一线三等角模型强化训练类型一非直角型一线三等角1.如图①,在△ABC中,AB=AC=20,tan B=34,点D为BC边上的动点(点D不与点B,C重合),以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图②),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.第1题图类型二直角型一线三等角2.在正方形ABCD 中,点M 是边AB 的中点,点E 在线段AM 上(不与点A 重合),点F 在边BC 上,且AE =2BF ,连接EF ,以EF 为边在正方形ABCD 内作正方形EFGH .(1)如图①,若AB =4,当点E 与点M 重合时,求正方形EFGH 的面积;(2)如图②,已知直线HG 分别与边AD ,BC 交于点I ,J ,射线EH 与射线AD 交于点K .①求证:EK =2EH ;②设∠AEK =α,△FGJ 和四边形AEHI 的面积分别为S 1,S 2.求证:S 2S 1=4sin 2α-1.第2题图3.在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=2,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE 的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探究线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BF C.参考答案与解析1.(1)证明:∵AB =AC ,∴∠B =∠ACB .∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠CDE =∠BAD ,∴△ABD ∽△DCE ;(2)解:如解图①,过点A 作AM ⊥BC 于点M .第1题解图①在Rt △ABM 中,设BM =4k ,则AM =BM ·tan B =4k ·34=3k ,由勾股定理,得AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4.∵AB =AC ,AM ⊥BC ,∴BC =2BM =2·4k =32.∵DE ∥AB ,∴∠BAD =∠ADE .又∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB .∵∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴AB CB =DB AB,∴DB =AB 2CB =20232=252.∵DE ∥AB ,∴AE AC =BD BC,∴AE =AC ·BD BC =20×25232=12516;(3)解:存在.如解图②,过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM =∠AMH =∠ANH =90°,第1题解图②∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN .∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16.在Rt △ABM 中,由勾股定理,得AM =AB 2-BM 2=202-162=12.∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD .∵∠DAF =90°=∠MAN ,∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9,∴CH =CM -MH =CM -AN =16-9=7.当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,又∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18.∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.2.(1)解:∵AB =4,M 为AB 的中点,∴AE =BE =12AB =2,∵AE =2BF ,∴BF =1,由勾股定理,得EF 2=BE 2+BF 2=5,∴正方形EFGH 的面积为5;(2)证明:①由题意,知∠KAE =∠B =90°,∴∠EFB +∠FEB =90°,∵四边形EFGH 是正方形,∴∠HEF =90°,EF =EH =FG ,∴∠KEA +∠FEB =90°,∴∠KEA =∠EFB ,∴△KEA ∽△EFB ,∴KE EF =AE BF=2.∴EK =2EF =2EH ;②由①得HK =EH =GF ,∵∠KHI =∠FGJ =90°,∠KIH =∠FJG ,∴△KHI ≌△FGJ ,∴S △FGJ =S △KHI =S 1.由题意,知△KHI ∽△KAE ,∴S 1+S 2S 1=(KA KH )2=(KA 12EK )2=4KA 2KE 2=4(KA KE )2=4sin 2α,∴S 2S 1=4sin 2α-1.3.解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵DE ∥BC ,∴∠DAB =∠ABC =∠ACB =∠EAC =45°,∵BD ⊥DE ,CE ⊥DE ,∴AD =BD =22AB =1,AE =CE =22AC =1,∴DE=AD+AE=2;(2)(I)DE=BD+CE.理由如下:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∵∠BAC=90°,∴∠BAD+∠CAE=∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,ADB=∠CEA,ABD=∠CAE=CA∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE;(II)DE=BD-CE.理由如下:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∵∠BAC=90°,∴∠BAD+∠CAE=∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,ADB=∠CEA,ABD=∠CAE=CA∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE-AD=BD-CE;(3)由(2)(II)知,AD=CE=3,∴BD=AE=DE+AD=1+3=4,∴AC=AB=AD2+BD2=5,∵∠ABD =∠CAE ,∠ADB =∠ADF =90°,∴△ABD ∽△FAD ,∴AD FD =BD AD ,即3FD =43,∴FD =94,∴BF =BD +DF =254,∴S △ABF =12BF ·AD =758,∵S △ABC =12AB ·AC =252,∴S △BFC =S △ABC -S △ABF =258.。

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是()A.3、4、5B.5、12 、13C.7、24、25D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB 的长为().A.B.C.10D.【答案】A设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )A.B.5C.D.【答案】D把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c 三个正方形的面积之和为()A.11B.15C.10D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c 为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A.B.C.D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为( )A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC 中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A.B.C.D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD 即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A.B.C.D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD 交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6, 一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=12-2-x=10-x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=12-2-x=10-x,∴AE2+BC2=(10-x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10-x)2+62,解得x=【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b) 2=a2+(a+b) 2,化简得a2-2ab-3b2=0 ,所以(a+b)(a-3b)=0 ,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3 ;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b) 2+(a+2b) 2,化简得a2+6ab+5b2=0 ,即(a+b)(a+5b)=0 ,同上a+b>0,所以a=-5b,即=-5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=BC =10,又∵CF⊥AB,∴EF=BF,设EF=BF=x.∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=102-x2,∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm 和4cm,高为6cm.如果用一根细线从点A 开始经过4 个侧面缠绕n 圈到达点B,那么所用细线最短需要_______________cm.(结果用含n 的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GC-FC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GC-FC=3-2=1,设AD=AF=x,则AG=x-1,由勾股定理得32+(x-1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE= ,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BM M '和Rt△BAM '中表示,列出方程求解即可求得MM ',由此可求得和AM '即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM '⊥AC,AM=BM=250,AB=400,∴∠BM 'M=90°,设MM '=x,则AM '=x+250,在Rt△BM M ' 中,∠BM 'M=90°,,在Rt△BAM ' 中,∠BM 'M=90°,,∴,∴,∴,∴,∴供水点M ' 到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD-DE=240-30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界上第一次给出勾股数通解公式的是《九章算术》,其勾股数公式为,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数) 5.国外最先给出勾股数通解公式的是希腊的丢番图,其公式为,其中是互质且为一奇一偶的任意正整数.问题解答:通过观察柏拉图提出的勾股数公式特点,可知_;直接写出一组勾股数,且这组数不能由柏拉图提出的勾股数公式得出;通过阅读可知,一组勾股数中至少有一个数是偶数,请写出一组勾股数,使其中含有数字.【答案】(1)-2;(2)答案不唯一,例如;(3)答案不唯一,例如【解析】(1)直接令b-c即可求解;(2)根据题意即可写出勾股数;(3)根据题意即可写出勾股数.解:(1)∵∴b-c=故答案为:-2.答案不唯一,例如答案不唯一,例如.【点睛】本题考查的是勾股定理的逆定理,掌握完全平方公式、满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.31.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为___;位置关系为.拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE与BD 之间的关系是否仍然成立请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB 绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.【答案】(1),;(2)成立,理由见解析;(3).【解析】(1)问题发现,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠BDC=∠EAC,可证AE⊥BD;(2)拓展探究,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠AEC=∠DBC,可证AE⊥BD;(3)解决问题,由由“SAS”可证△ACE≌△DCB,可得AE=BD,由三角形的三边关系可求解.解:(1)问题发现如图①,延长BD交AE于H,∵CB=CE,∠ACD=∠BCD=90°,CA=CD,∴△ACE≌△DCB(SAS),∴AE=BD,∠BDC=∠EAC,∵∠CBD+∠CDB=90°,∴∠CBD+∠EAC=90°,∴∠AHB=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:(2)成立.理由:如图2,设与BD相交于点G.∵,∴.又∵,,∴,∴,.∵,,∴,∴,∴.拓展延伸:(3)AE的最大值为.如图3,连接BD.∵,∴,又∵,,∴,∴,∵,,∴,,∴,当点在线段DA的延长线时等号成立,故AE的最大值为.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,勾股定理,三角形的三边关系,证明△ACE≌△DCB是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题2.3勾股定理中的八种模型与真题训练题型一:直角三角形中的锐角平分线模型一.选择题(共3小题)1.(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE∥AB交AC于点E,已知CE=3,CD=4,则AD长为()A.7B.8C.4D.42.(2021•云浮模拟)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ACD沿直线AD折叠,使点C落在斜边AB上的点E处,则CD的长为()cm.A.B.C.3D.3.(2018•岐山县三模)如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为()A.2.4B.2.5C.2.8D.3二.解答题(共1小题)4.(2018•巨野县一模)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.题型二:勾股定理之图形的折叠模型一.选择题(共5小题)1.(2019•肥城市二模)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.4cm B.5cm C.cm D.cm 2.(2022•武安市一模)如图1,矩形纸片ABCD中,AB=5,AD=12,要在矩形纸片内折出一个菱形.现有两种方案:甲:如图2,取两组对边中点的方法折出菱形EFGH.乙:如图3,沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF.下列说法正确的是()A.甲、乙折出的菱形面积一样大B.乙折出的四边形不是菱形C.甲折出的菱形面积大D.乙折出的菱形面积大3.(2020•霞山区一模)如图,将矩形ABCD沿直线BD折叠,使点C落在点C'处,BC'交AD于点E,AD=16,AB=8,则BE的长是()A.14B.12C.10D.84.(2020•乐东县一模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BE的长为()A.1B.2C.D.5.(2020•饶平县校级模拟)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm二.填空题(共3小题)6.(2021•斗门区一模)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为.7.(2020•黄石模拟)在△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于点E,交斜边于点F,则DE的长为.8.(2016•朝阳)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.题型三:勾股定理之赵爽弦图模型一.选择题(共3小题)1.(2021春•连江县期中)如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,其中A,B,C,D四个小正方形的面积之和等于12,则最大的正方形的边长为()A.2B.C.3D.42.(2021春•曾都区校级月考)我国古代数学家赵爽的弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形如图,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么sinθ的值为()A.B.C.D.3.(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以AC,BC,AB为一边在△ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S1=4,则S3为()A.8B.16C.4D.4+4二.填空题(共1小题)4.(2021秋•鹿城区校级月考)图1是一个勾股定理演示教具的正面示意图,当它倒过来时,大正方形中的全部墨水恰能注满两个小正方形.王老师有一个内长为11寸,内宽为9寸的木质盒子(如图2).现要自制一个这样的教具(由三个正方形和一个直角三角形组成),使得教具恰好摆入这个盒子中,以便保护和携带(如图3所示,A,B,C,D,E五点均紧贴盒子边缘,教具的厚度等于木盒的内高).此时盒子的空间利用率为.题型四:勾股定理之大树折断模型一.选择题(共1小题)1.(2021春•饶平县校级期末)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米二.填空题(共2小题)2.(2021秋•朝阳区校级月考)折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)3.(2021秋•靖江市校级期中)《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为尺.三.解答题(共2小题)4.(2022春•东莞市月考)求下列图形中阴影部分的面积.5.(2021春•安徽月考)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长.题型五:勾股定理之风吹荷花模型一.填空题(共2小题)1.(2021秋•晋州市期末)如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动m.2.(2021秋•宽城区期末)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇AB,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处.问水的深度是多少?则水深DE为尺.二.解答题(共2小题)3.(2021秋•邓州市期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.4.(2019秋•姜堰区期中)在平静的湖面上,有一朵荷花高出水面1尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.此时,捕鱼的人发现,花在水平方向上离开原来的位置5尺远,求湖水的深度.题型六:等边三角形中的378和578模型一.选择题(共2小题)1.在△ABC中,AB=16,AC=14,BC=6,则△ABC的面积为()A.24B.56C.48D.1122.已知在△ABC中,AB=7,AC=8,BC=5,则∠C=()A.45°B.37°C.60°D.90°二.填空题(共4小题)3.(2021秋•青岛期中)若一个等腰三角形的周长为16cm,一边长为6cm,则该等腰三角形的面积为cm2.4.(2012秋•乐清市校级月考)如图,在△ABC中,已知AB=5,BC=8,AC=7,动点P、Q 分别在边AB、AC上,使△APQ的外接圆与BC相切,则线段PQ的最小值等于.5.(2022春•仙桃校级月考)已知在△ABC中,AB=7,AC=8,BC=5,则sin C=.6.△ABC如图所示,已知AC=8,AB=7,BC=5,则tan C=,tan A=,tan B =.三.解答题(共1小题)7.(2021春•北镇市期中)如图,△ABC为等边三角形,AB=6,D是AC的中点,E是BC延长线上的一点,且CE=CD,过点D作DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.题型七:勾股定理之蚂蚁行程模型一.填空题(共4小题)1.(2019•景泰县校级二模)如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)2.(2018•石家庄模拟)如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B 点,最少要用秒钟.3.(2008•大庆)如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是cm.4.(2007•金昌)如图,圆锥的母线长OA为8,底面圆的半径为4.若一只蚂蚁在底面上点A处,在相对母线OC的中点B处有一只小虫,蚂蚁要捉到小虫,需要爬行的最短距离为.题型八:勾股定理之垂美四边形模型一.解答题(共6小题)1.(2021•姑苏区校级二模)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中肯定是垂美四边形的是.(2)性质探究:如图1,已知四边形ABCD是垂美四边形,直接写出其两组对边AB、CD与BC、AD之间的数量关系.(3)问题解决:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,已知AC=4,AB=5,求GE的长.2.(2021•南明区模拟)如图,我把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.①如图2,当∠ACB=90°,连接PQ,求PQ;②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=2,则S△ABC=.3.(2020•科尔沁区模拟)定义:我们把对角线互相垂直的四边形称为“垂美四边形”.(1)概念理解:如:图1,四边形ABCD中,BA=BC,DA=DC,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图2,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.若AC=4,AB=5,求GE的长.4.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.已知AC=4,AB=5,求GE的长.5.(2019•兰州模拟)阅读理解:如图1,我们把对角线互相垂直的四边形叫做垂美四边形.垂美四边形有如下性质:垂美四边形的两组对边的平方和相等.已知:如图1,四边形ABCD是垂美四边形,对角线AC、BD相交于点E.求证:AD2+BC2=AB2+CD2证明:∵四边形ABCD是垂美四边形∴AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.拓展探究:(1)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;问题解决:如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.求GE长.6.(2021•新北区一模)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中是垂美四边形的是.(2)性质探究:如图2,已知四边形ABCD是垂美四边形,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,CE交AB于点M,已知AC=4,AB=5,求GE的长.【真题训练】一.选择题(共3小题)1.(2017•安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm 2.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米3.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35二.填空题(共2小题)4.(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.5.(2009•安顺)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.三.解答题(共2小题)6.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.已知AC=4,AB=5,求GE的长.7.(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.。

相关文档
最新文档