新陈代谢总论与生物氧化

新陈代谢总论与生物氧化
新陈代谢总论与生物氧化

新陈代谢总论与生物氧化

教学目标:

1. 掌握新陈代谢的概念与特点,了解新陈代谢研究方法。了解生物体内能量代谢的基本规律。

2. 掌握生物氧化的概念、特点、部位,主要酶类和体系。熟悉生物氧化中二氧化碳、水的生成,掌握呼吸链的组成、类型和传递体顺序。

3. 掌握氧化磷酸化的概念、类型、偶联部位和P/O比值,熟悉影响氧化磷酸化因素、胞液中NADH的氧化和偶联机制。

第一节新陈代谢总论

一、新陈代谢的概念与特点

生物体是一个与环境保持着物质、能量和信息交换的开放体系。通过物质交换建造和修复生物体(按人的一生计,交换物质的总量约为体重的1200倍,人体所含的物质平均每10天更新一半)。通过能量交换推动生命运动,通过信息交换进行调控,保持生物体和环境的适应。

新陈代谢(metabolism)是指生物与外界环境进行物质交换和能量交换的全过程。包括生物体内所发生的一切合成和分解作用(即同化作用和异化作用)。

人和动物的物质代谢分为三个阶段:食物、水、空气进入机体(摄取营养物的消化和吸收)、中间代谢和代谢产物的排泄。中间代谢是指物质在细胞中的合成与分解过程,合成是吸能反应,分解是放能反应。它们是矛盾对立和统一的。所以,新陈代谢的功能是:从周围环境中获得营养物质;将营养物质转变为自身需要的结构元件;将结构元件装配成自身的大分子;形成或分解生物体特殊功能所需的生物分子;提供机体生命活动所需的一切能量。

各种生物具有各自特异的新陈代谢类型,这决定于遗传和环境条件。绿色植物及某些细菌有光合作用,若干种细菌有固氮作用,是自养型的;动物与人是异养生物,同化作用必须从外界摄取营养物质,通过消化吸收进入中间代谢。同一生物体的各个器官或不同组织还具有不同的代谢方式。

各种生物的新陈代谢过程虽然复杂,却有共同的特点:

1.生物体内的绝大多数代谢反应是在温和条件下,由酶催化进行的。

2.物质代谢通过代谢途径,在一定的部位,严格有序地进行。各种代谢途径彼此协调组成有规律的反应体系(网络)。

3.生物体对内外环境条件有高度的适应性和灵敏的自动调节。

二、新陈代谢的研究方法

代谢途径的研究比较复杂,可从不同水平,主要对中间代谢进行研究。新陈代谢途径的阐明凝集了许多科学家的智慧与实验成果。如1904年德国化学家Knoop提出的脂肪酸的β氧化学说,1937年Krebs提出的柠檬酸循环。

1.活体内(in vivo)和活体外(in vitro)实验

2.同位素示踪法和核磁共振波谱法(NMR)

3.代谢途径阻断法

三、生物体内能量代谢的基本规律

1.服从热力学原理。热力学第一定律是能量守恒定律,热力学第二定律指出,热的传导自高温流向低温。机体内的化学反应朝着达到其平衡点的方向进行。

2.生化反应最重要的热力学函数是吉布斯自由能G 。自由能是在恒温、恒压下,一个体系作有用功的能力的度量。用于判断反应可否自发进行,是放能或耗能反应。

ΔG<0,表示体系自由能减少,反应可以自发进行,但是不等于说该反应一定发生或以能觉察的速率进行,是放能反应。

ΔG>0,反应不能自发进行,吸收能量才推动反应进行。

ΔG=0,体系处在平衡状态。

自由能与另外两个函数有关,ΔG=ΔH - TΔS(ΔH是总热量的变化,ΔS是总熵的改变,T 是体系的绝对温度)。

标准自由能变化用ΔGO'表示(25OC,1个大气压,pH为7,反应物和产物浓度为1mol/L 时所测得,单位是kJ/mol)。

3.ΔGO'和化学平衡的关系

ΔG = ΔGO'+ RT ln[C][D]/[A][B]

ΔG=0时,ΔGO'= - RTln[C][D]/[A][B]= -RTlnK= -2.303RTlgK

(R为气体常数,lnK为平衡常数的自然对数。K>1,ΔGO'为负值,反应趋于生成物的方向进行;K<1,ΔGO'为正值。)

注意:ΔG只取决于产物与反应物的自由能之差,与反应历程无关。总自由能变化等于各步反应自由能变化的代数和。热力学上不利的吸能反应可以偶联放能反应来推动以保持代谢途径一连串反应的进行。

四、高能化合物与ATP的作用

高能化合物(high-energy compound)指化合物含有的自由能特多,且随水解反应或基团转移反应释放。最重要的有高能磷酸化合物,还有硫酯类和甲硫类高能化合物。高能磷酸化合物的酸酐键常用~P表示,水解时释放的自由能大于20kJ,称为高能磷酸键。生化中“高能键”的含义与化学中的“键能”完全不同。“键能”指断裂一个化学键需提供的能量。

ATP是细胞内特殊的自由能载体。在标准状况,ATP水解为ADP和Pi的ΔGO'=-30kJ/mol,水解为AMP和PPi的ΔGO'=-32kJ/mol。ATP的ΔGO'在所有的含磷酸基团的化合物中处于中间位置,这使ATP在机体起作中间传递能量的作用,称之能量的共同中间体。机体内一些在热力学上不可能发生的反应,只需与ATP分子的水解相偶联,就可使其进行。所以说,ATP又是生物细胞能量代谢的偶联剂。

从低等的单细胞生物到高等的人类,能量的释放、储存和利用都是以ATP为中心。ATP 是整个生命世界能量交换的通用货币。ATP是能量的携带者或传递者,而不是储存者。在脊椎动物中起能量储存的是磷酸肌酸(phosphoccreatine,PC),在无脊椎动物中是磷酸精氨酸。

ATP和其他的核苷三磷酸——GTP、UTP、CTP常称作富含能量的代谢物。它们几乎有相同的水解(或形成)的标准自由能,核苷酸之间的磷酰基团的转移的平衡常数接近1.0,所以计算物质代谢能量时,消耗的其他核苷三磷酸用等价的ATP表示。

第二节生物氧化

一、生物氧化的概念、特点和部位

1.概念:有机物质在生物体细胞内氧化分解产生二氧化碳、水,并释放出大量能量的过程称为生物氧化(biological oxidation)。又称细胞呼吸或组织呼吸。

2.特点:生物氧化和有机物质体外燃烧在化学本质上是相同的,遵循氧化还原反应的一般规律,所耗的氧量、最终产物和释放的能量均相同。

(1)在细胞内,温和的环境中经酶催化逐步进行。

(2)能量逐步释放。一部分以热能形式散发,以维持体温,一部分以化学能形式储存供生命活动能量之需(约40%)。

(3)生物氧化生成的H2O是代谢物脱下的氢与氧结合产生,H2O也直接参与生物氧化反应;CO2由有机酸脱羧产生。

(4)生物氧化的速度由细胞自动调控。

3.部位:在真核生物细胞内,生物氧化都是在线粒体内进行,原核生物则在细胞膜上进行。

二、生物氧化的酶类和体系

1.酶类:重要的为氧化酶和脱氢酶两类,脱氢酶尤为重要。

氧化酶为含铜或铁的蛋白质,能激活分子氧,促进氧对代谢物的直接氧化,只能以氧为受氢体,生成水。重要的有细胞色素氧化酶,可使还原型氧化成氧化型,亦可将氢放出的电子传递给分子氧使其活化。心肌中含量甚多。此外还有过氧化物酶、过氧化氢酶等。

脱氢酶分需氧脱氢酶和不需氧脱氢酶。前者可激活代谢物分子中的氢,与分子氧结合,产生过氧化氢。在无分子氧时,可利用亚甲蓝为受氢体。需氧脱氢酶皆以FMA或FAD为辅酶。不需氧脱氢酶可激活代谢物分子中的氢,使脱出的氢转移给递氢体或非分子氧。一般在无氧或缺氧环境下促进代谢物氧化。大部分以NAD或NADP为辅酶。

2.体系:有不需传递体和需传递体的两种体系。

不需传递体的最简单,在微粒体、过氧化酶体及胞液中代谢物经氧化酶或需氧脱氢酶作用后脱出的氢给分子氧生成水或过氧化氢。其特点是不伴磷酸化,不生成ATP,主要与体内代谢物、药物和毒物的生物转化有关。

需传递体的最典型的是呼吸链。是在线粒体经多酶体系催化,即通过电子传递链完成,与ATP的生成相关。

三、生物氧化中二氧化碳的生成

生物氧化中CO2的生成是代谢中有机酸的脱羧反应所致。有直接脱羧和氧化脱羧两种类型。按脱羧基的位置又有α-脱羧和β-脱羧之分。请判断以下脱羧反应的类型?

四、生物氧化中水的生成

(一)呼吸链的概念和类型

代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后与激活的氧结合生成水的全部体系,此过程与细胞呼吸有关,所以将此传递链称为呼吸链(respiratory chain)或电子传递链(electron transfer chain)。

在呼吸链中,酶和辅酶按一定顺序排列在线粒体内膜上。其中传递氢的酶或辅酶称为递氢体,传递电子的酶或辅酶称为电子传递体。递氢体和电子传递体都起着传递电子的作用(2H→2H++2e)。

生物体内的呼吸链有多种型式。人体细胞线粒体内最重要的有两条,即NADH氧化呼吸链和琥珀酸氧化呼吸链。它们的初始受氢体、生成ATP的数量及应用有差别。NADH氧化呼吸链应用最广,糖、脂、蛋白质三大物质分解代谢中的脱氢氧化反应,绝大多数是通过该呼吸链来完成的。琥珀酸氧化呼吸链在Q处与上述NADH氧化呼吸链途径交汇。其脱氢黄酶只能催化某些代谢物脱氢,不能催化NADH或NADPH脱氢。

(二)呼吸链的组成

组成呼吸链的成分已发现20余种,分为5大类。

1.辅酶Ⅰ和辅酶Ⅱ

辅酶Ⅰ(NAD+或CoⅠ)为烟酰胺腺嘌呤二核苷酸。辅酶Ⅱ(NADP+或CoⅡ)为烟酰胺腺嘌呤二核苷酸磷酸。它们是不需氧脱氢酶的辅酶,分子中的烟酰胺部分,即维生素PP能可逆地加氢还原或脱氢氧化,是递氢体。以NAD+作为辅酶的脱氢酶占多数。

2.黄素酶

黄素酶的种类很多,辅基有2种,即FMN和FAD。FMN是NADH脱氢酶的辅基,FAD 是琥珀酸脱氢酶的辅基,都是以核黄素为中心构成的,其异咯嗪环上的第1位及第5位两个氮原子能可逆地进行加氢和脱氢反应,为递氢体。

3.铁硫蛋白

分子中含有非血红素铁和对酸不稳定的硫,因而常简写为FeS形式。在线粒体内膜上,常与其他递氢体或递电子体构成复合物,复合物中的铁硫蛋白是传递电子的反应中心,亦称铁硫中心,与蛋白质的结合是通过Fe与4个半胱氨酸的S相连接。

4.泛醌(又名辅酶Q)

一类广泛分布于生物界的脂溶性醌类化合物。分子中的苯醌为接受和传递氢的核心,其C-6上带有异戊二烯为单位构成的侧链,在哺乳动物,这个长链为10个单位,故常以Q10表示。

5.细胞色素类

细胞色素(cytochrome, Cyt)是一类以铁卟啉为辅基的结合蛋白质,存在于生物细胞内,因有颜色而得名。已发现的有30多种,按吸收光谱分a、b、c三类,每类又有好多种。

Cyta和a3 结合紧,迄今尚未分开,故写成aa3,位于呼吸链的终末部位,其辅基为血红素A,传递电子的机制是以辅基中铁价的变化Fe3+ →Fe2+,a3还含有铜离子,把电子直接交给分子氧Cu+ →Cu2+,所以a3又称细胞色素氧化酶。a3中的铁原子可以与氧结合,也可以与氰化物离子(CN—)、CO等结合,这种结合一旦发生,a3便失去使氧还原的能力,电子传递中止,呼吸链阻断,导致机体不能利用氧而窒息死亡。

(三)呼吸链中传递体的顺序

呼吸链中氢和电子的传递有着严格的顺序和方向。根据氧化还原原理,氧化-还原电势E是物质对电子亲和力的量度,电极电位的高低反映电子得失的倾向,E O'值愈低的氧还对

(A/AH2)释放电子的倾向愈大,愈容易成为还原剂而排在呼吸链的前面。所以NADH还原能力最强,氧分子的氧化能力最强。电子的自发流向是从电极电位低的物质(还原态)到电位高的氧化态,目前一致认可的是按标准氧还电位递增值依次排列。

电子由NADH的传递到氧分子通过3个大的蛋白质复合体,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶到氧(又称复合体Ⅰ、Ⅲ、Ⅳ)。电子从FADH2的传递是通过琥珀酸-辅酶Q还原酶(复合体Ⅱ)经Q、复合体Ⅲ、Ⅳ到氧(琥珀酸-辅酶Q还原酶催化的反应的自由能变化太小)。

第三节氧化磷酸化

一、氧化磷酸化的概念和偶联部位

1.概念:氧化磷酸化(oxidative phosphorylation)是指在生物氧化中伴随着ATP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。

2.偶联部位:根据实验测定氧的消耗量与ATP的生成数之间的关系以及计算氧化还原反应中ΔGO'和电极电位差ΔE的关系可以证明。

P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成ATP的摩尔数。实验表明,NADH在呼吸链被氧化为水时的P/O值约等于3,即生成3分子ATP;FADH2氧化的P/O值约等于2,即生成2分子ATP。

氧-还电势沿呼吸链的变化是每一步自由能变化的量度。根据ΔGO'= - nFΔE O'(n是电子传递数,F是法拉第常数),从NADH到Q段电位差约0.36V,从Q到Cytc为0.21V,从aa3到分子氧为0.53V,计算出相应的ΔGO'分别为69.5、40.5、102.3kJ/mol。于是普遍认为下述3个部位就是电子传递链中产生ATP的部位。

NADH→NADH脱氢酶→‖Q → 细胞色素bc1复合体→‖Cytc →aa3→‖O2

二、胞液中NADH的氧化

糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。

(一)α-磷酸甘油穿梭作用

这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。

胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP 比其他组织要少,1摩尔G→36摩尔ATP。

(二)苹果酸-天冬氨酸穿梭作用

主要存在肝和心肌中。1摩尔G→38摩尔ATP

胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。

三、氧化磷酸化偶联机制

(一)化学渗透假说(chemiosmotic hypothesis)

1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP 的合成。这一过程概括如下:

1.NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。

2.H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH 梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。

3.H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。

(二)ATP合酶

ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。

四、影响氧化磷酸化的因素

(一)抑制剂

能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。

鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。

抗霉素A抑制电子在细胞色素bc1复合体处的传递。

氰化物、CO、叠氮化物(N3-)抑制细胞色素氧化酶。

对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。

(二)解偶联剂

2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成ATP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。

(三)ADP的调节作用

正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成ATP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,ATP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要ATP合成时发生。

第六章 新陈代谢总论与生物氧化

第六章新陈代谢总论与生物氧化 一、解释名词 1.生物氧化: 2.有氧呼吸与无氧呼吸: 3.呼吸链 4.氧化磷酸化 5. P/O比 6.末端氧化酶 二、是非题: 1.物质在空气中燃烧和在体内的生物氧化的化学本质是完全相同的。 2.生物界NADH呼吸链应用最广。 3.当一个体系的熵值减少到最小时该体系处于热力学平衡状态。 4.在生物氧化体系内,电子受体不一定是氧,只要它具有比电子供体较正的E0′时呼吸作用就能进行。 5.各种细胞色素组分,在电子传递体系中都有相同的功能。 6.呼吸链中氧化还原电位跨度最大的一步是在细胞色素aa3-O2之间。 7.呼吸链细胞色素氧化酶的血红素辅基Fe原子只形成5个配位键,另一个配位键的功能是与O2结合。 8.解偶联剂的作用是解开电子传递和磷酸化的偶联关系,并不影响ATP的形成。 9.鱼藤酮不阻止苹果酸氧化过程中形成的NADH+H+通过呼吸链生成ATP 10.寡霉素对氧消耗的抑制作用可被2,4-二硝基苯酚解除。 11.6—磷酸葡萄糖含有高能磷酸基团,所以它是高能化合物。 12.从低等单细胞生物到最高等的人类,能量的释放、贮存和利用都以ATP为中心。 13.ATP虽然含有大量的自由能,但它并不是能量的贮存形式。 14.ATP在高能化合物中占有特殊地位,它起着共同的中间体的作用。 15.有机物的自由能决定于其本身所含基团的能量,一般是越稳定越不活泼的化学键常具有较高的自由能。 16.磷酸肌酸是ATP高能磷酸基的贮存库,因为磷酸肌酸只能通过这唯一的形式转移其磷酸基团。 三、填空题 1.生物体内形成ATP的方式有:⑴__________________、⑵___________________和⑶________________________。 2.代谢物在细胞内的生物氧化与在体外燃烧的主要区别是、 和。 3.生物氧化主要通过代谢物的反应实现的,H2O是通过 形成的。 4.化学反应过程中,自由能的变化与平衡常数有密切的关系,ΔG0′=。 6.在氧化还原反应中,自由能的变化与氧化还原势有密切的关系,ΔG0=。 7.典型的生物界普遍存在的生物氧化体系是由、和三部分组成的。 8.典型的呼吸链包括和两种,这是根据接受代谢物脱下的氢的 不同而区别的。 9.化学渗透学说主要论点认为:呼吸链组分定位于内膜上,其递氢体起 作用,因而造成内膜两侧的差,同时被膜上合成酶所利用、促使ADP磷酸化形成ATP。 10.NADH通常转移和给O2,释放能量生成;而NADPH通常转移 和给某些氧化态前体物质,参与代谢。 11.线粒体内膜外侧的α-磷酸甘油脱氢酶的辅酶是;而线粒体内膜内侧的α-磷酸甘油脱氢酶的辅酶是。 12.NADH脱氢酶是一种蛋白,该酶的辅基是。 13.线粒体ATPase是由和两部分组成。 14.唯有细胞色素和辅基中的铁原子有个结合配位键,它还保留一个游离配位键,所以能和结合,还能和、结合而受到抑制。 15.绿色植物生成ATP的三种方式是、和。 16.在NADH呼吸链中有三个部位可以形成ATP,这三个部位分别是、 和部位之间。 17.NADH呼吸链有三个部位氢或电子的传递可以受到某些化学物质的抑制,这三个部位依次是:、和,其中具有致死性的部位是。

人体十二经络运行时间表

人体十二经络运行时间表 子时上床睡觉去 时辰时间对应经络 子时 23:00-1:00 胆经 人体状况:胆法需要新陈代谢,人在子时入眠,胆方能完成代谢。但这个时候心脏功能最弱,心脏病患者绝大多数在夜间(心脏功能差发病和死亡) 养生之道:临床证明,心脏病患者大多数在夜间发病和死亡。家里如果有心脏病人,要加可观察,备好救心丸。这时要上床睡觉,有利于骨髓造血。凡在子时前入睡者,晨醒后头脑清新,气色红润。 丑时熟睡保肝 时辰时间 ,悠悠完美私服; 对应经络 丑时 1:00-3:00 肝经 人体状况:此时是肝脏修复的最佳时段。人的思维和行动要靠肝血的支持,废理的血液需要淘汰,新鲜血液需要产生,这种代谢通常在肝经最旺的丑时完成。 养生之道:必须进入熟睡状态,让肝脏得到充足能量。如果丑时不入睡,肝还在输出能量支持人的思维和行动,就无法完成新陈代谢。黄帝内经讲“卧则血归于肝”。所以丑时未入睡者,面色黄灰,情志倦怠而躁,易生肝病。 寅时梦里深呼吸 时辰时间对应经络 寅时 3:00-5:00 肺经 人体状况:大地阴阳从此刻转化,由阴转阳。人体此时也进入阳盛阴衰之时。此刻肺经最旺。肝脏在头两个小时把血液推陈出新之后,将新鲜血液提供给肺,通过肺送往全身。所以人在清晨面色红润,精神充沛。 养生之道:此刻人体需要大量呼吸氧气,进行深呼吸,所以要求较深的睡眠。如果家里有肺衰竭病人,一定要特别注意观察他此时的反应和症状。很多肺癌病人都在寅时去世。哮喘病人在寅时服药比白天常规服药效果好。 卯时便便吧 时辰时间对应经络 卯时 5:00-7:00 大肠经 人体状况:这是大肠经活跃的最佳时期。肺将充足的新鲜血液布满全身,紧接着促进大肠经进入兴奋状态,完成吸收食物中水分与营养,排出渣滓的过程。 养生之道:赶紧起床,起床后喝杯温开水,然后奔进卫生间把一天积攒下来的废物,都排出体外吧! 辰时勿忘吃早餐 时辰时间对应经络 辰时 7:00-9:00 胃经 人体状况:你的胃已经等了整整一个晚上,早就饿得不行,此刻它睡醒了过来,所以,这个时候吃上饭它会尽全力消化。如果胃火过盛,嘴唇干,重则唇裂或生疮。 养生之道:此时要吃早餐。如果你不给它东西填饱,它就一直分泌胃酸。饿久了,就会有胃溃疡、胃炎、十二指肠炎、胆囔炎等危险!另外,这时敲胃经最好,启动人体的发电系统。饭后一个小时后按揉胃经可调节胃肠功能。 巳时喝水6杯 时辰时间对应经络 巳时 9:00-11:00 脾经 人体状况:脾经最旺。脾是消化、吸收、排泄的总调度,又是人体血液的统领。脾的功能好,消化吸收好,血的质量好,所以嘴唇是红润的。否则唇白或唇暗,唇紫。 养生之道:这个时辰要喝至少6杯水,慢慢饮,让脾脏处于最活跃的程度。如此,身体会开

期末复习(七)人体的新陈代谢

期末复习(七)人体的新陈代谢 1、人体的消化系统由消化道和消化腺组成。 ①消化道由口腔、咽、食道、胃、小肠、大肠和肛门组成。 口腔:牙齿咀嚼,舌搅拌(物理性消化)淀粉在口腔初步消化。 咽:进食和呼吸的共同通道。 胃:消化管中最膨大的部分。胃壁的平滑肌十分发达,从而使胃的收缩强而有力。胃的 主要功能是暂时储存食物和初步消化蛋白质。能吸收少量的酒精和水。 小肠:是消化道中最长的部分,小肠是消化和吸收营养物质的主要场所。十二指肠内侧壁 有总胆管和胰管的开口。小肠内表面的粘膜上有成千上万个小褶皱,褶皱上的突起叫绒毛, 绒毛的存在可以使小肠粘膜的表面积约增加30倍,从而使小肠大幅度的增加了消化和吸收 的面积。 大肠:盲肠一端有一蚯蚓状的小盲管,这就是阑尾。如果食物残渣或寄生虫落入其中,容 易引起阑尾炎。 ②消化腺包括唾液腺、肝脏、胰腺,以及分布于胃壁上的胃腺和肠壁上肠腺,均可以分泌消 化液,除肝脏分泌的胆汁外,其他消化液中含有消化酶。 唾液腺:唾液中含有淀粉酶,能使淀粉分解成为麦芽糖。 胃腺:分泌胃液,主要由盐酸何胃蛋白酶构成,胃酸就是盐酸,胃液可以初步消化蛋白 质。 肠腺:肠液,呈碱性,含有消化淀粉、蛋白质和脂肪的酶。 胰腺:分泌胰液,含消化蛋白质、淀粉和脂肪的酶。 肝脏:人体最大的消化腺,分泌胆汁,虽然不含消化酶,但是可以帮助脂肪的乳化,使 脂肪变成脂肪微粒。并能解毒等。 2食物的消化过程: ①物理性消化:牙齿咀嚼,胃肠蠕动 ②化学性消化:淀粉 麦芽糖 葡萄糖 蛋白质 氨基酸 脂肪 脂肪微粒 甘油 + 脂肪酸 3、 人体通过呼吸系统与外界进行气体交换的过程称为呼吸。 (1)呼吸系统包括传送气体的呼吸道,进行气体交换的肺以及呼吸肌组成。 ①呼吸道是由鼻、咽、喉、气管和各级支气管所组成。 鼻是呼吸系统的门户,鼻毛能滤去空气中的灰尘; 鼻腔内表面的粘膜中有丰富的毛细血管和粘液腺,毛细血管能调节吸入的空气温度;粘 液腺能分泌粘液,是鼻腔保持湿润,可粘住吸入空气中的灰尘和细菌,并可湿润吸入的空气 咽是呼吸系统和消化系统的共同通路; ②肺是呼吸系统的主要器官,由细支气管及其最小分支末端膨大的肺泡组成,肺泡是人体 与外界不断进行气体交换的场所。 ③呼吸肌主要包括肋间肌和膈肌。 (2)肺通气(肺泡内的气体和大气的交换)依靠呼吸运动来完成, 吸气时,肋间外肌和膈肌收缩,胸腔体积变大,肺随之扩张,外界气体进入肺; 呼气时,肋间外肌和膈肌舒张,胸腔体积变小,肺随之缩小,肺内已经交换的含较多 二氧化碳的气体被排出体外。 (3)人体内的气体交换是通过气体的扩散作用来完成的。 4、吸烟的危害:(1)长期吸烟,可引起动脉硬化,并诱发冠心病 酶 酶 胆汁 酶 酶

每七年,人体的新陈代谢,就等于再换了一个我

每七年,人体的新陈代谢,就等于再换了一个我 在《文学回忆录》里看到木心说,养生后来堕落成“活命哲学”。很欣慰,人生常有快乐才是对生命的最好安慰。于是,本来不打算吃夜宵的,但率性而为,给自己下了碗面,煎两片培根做浇头。吃完由衷的觉得,值得。买了一个很便宜的啤酒杯,做茶杯。好处在于够重。一杯茶倒好,该有斤把,估计是不会轻易的摔掉了。我喝茶便是属于饮牛那种,要的是不麻烦就好。晚上泡正山小种,泡好一杯,下一杯蓄水的时候,可以顺便再上一次厕所。一举两得。给长大的绿萝换来一个大瓶子,继续水培。原来这个瓶子水培的是滴水观音,不知道怎么,在有一年澎湃的生长以后,每况愈下,最近只留下一片叶子。水瓶里还有几个螺蛳,春天祭祖的时候从乡下的河里巢来的,直接养到现在。繁殖了许多小螺丝,无声无息的活着。无声无息的。书房小床上有一堆书,每本确保都看了几页,这几页的长度,往往取决于电脑重启的时间。每天什么事情都没有做,就是忽然觉得怎么就到了要睡觉的时候,这两天还睡得迟了,导致早上起不来,今早一个同学打电话给我。被我痛斥。我说你节日加班的幸福职业男,怎么这么没有眼头见识打扰我难得的一个懒觉。话说的时候,已经早上九点,骂完以后,顿觉神清气爽,倒头再睡,直接睡到午饭时间。午饭的内容不够充实,主要是吃鱼类过于麻

烦。我忽然忘记我在吃饭的时候看了什么电影。我的记性糟糕透了,还是那个电影糟糕透了。于是我记得还看了一个还不错的电影。现在寻找可看的东西,必须是非常脑残的那种。注意力也不够集中,所以必须一心几用,填充时间的方式很多,等你打算想去回忆一下究竟填充了什么的时候,想来想去,还是空白。即便这刻我想起来了,中午看的不是电影,看的是过期的《康熙来了》。有一天我做了一个奇怪的艳梦,主要那个梦中的某个瞬间丝丝入扣,栩栩如生。后来回想,居然自己都觉得害羞。因为我把它当真了,成了记忆中的一部分。梦中的人生其实是很漫长的,如果每每不同也就算了。恐惧的是,这些梦会延续。当然,也不全是艳梦。似乎过着两种生活。然后梦与现实纠缠混乱。很难清醒的抽离出来。中午的时候,朋友发来几个初中女同学的照片问我认识不认识,我怎么能不记得呢。就是,有点失落。认识又如何?记得年轻时候记住的一句日剧台词,男猪脚对女猪脚讲,一直想得到你在哪里的消息,哪怕洗澡洗到一半光着身子也要跑出去找你。现在呢,心里一定会有想着的人,但洗澡肯定会洗完。然后对着镜子,冷静的想上一会。最后的结果,很有可能不去了。再前段时间,和几个同学吃饭叙旧。癫狂到深夜三点。但如果真心想找个人安静的说会话,恐怕大家都觉得尴尬。人生一个段落一个段落的,每个段落其实都不是很平滑对接的。有时候,只是一小段时间,就不再来往的那个

第七章 脂类代谢

第七章脂类代谢 一、名词解释 1.β-氧化: 2.脂肪酸从头合成途径: 3.柠檬酸穿梭: 二、是非题: 1.脂肪酸合成是脂肪酸β-氧化的逆转。 2.ω-氧化是指发生在脂肪酸第ω位碳原子上的氧化作用。 3.饱和脂肪酸的全过程发生在线粒体内。 4.用乙酰CoA合成一分子软脂肪酸需要消耗8分子ATP。 5.在脂肪酸的合成过程中,脂酰基的载体是ACP而不是CoA。 6.脂肪酸合成的每一步都需要CO2参加,所以脂肪酸分子中的碳都是来自CO2。 7.β-氧化是指脂肪酸的降解,每次都在β和α碳原子之间发生断裂,产生一个二碳化合物的过程。 8.只有偶数碳原子脂肪酸氧化分解产生乙酰CoA。 9.甘油在生物体内可以转变为丙酮酸。 10.不饱和脂肪酸和奇数碳脂肪酸的氧化分解与β-氧化无关。 11.CTP参加磷脂生物合成,UTP参加糖原生物合成,GTP参加蛋白质生物合成。 12.在动、植物体内所有脂肪酸的降解都是从羧基端开始。 13.在动物体内脂肪酸降解产生的乙酰CoA能转变为各种氨基酸的碳骨架。 三、填空题 1.在所有细胞中乙酰基的主要载体是,ACP是,它在体内的作用是。 2.脂肪酸在线粒体内降解的第一步反应是脱氢,该反应的载氢体是。 3.脂酰CoA由线粒体外进入线粒体内需要和转移酶I和II参加。 4.脂肪酸发生β-氧化的四个步骤是_______ 、 ___ _____、 和。 5.脂肪酸β-氧化过程中,使底物氧化产生能量的两个反应由和 催化,1摩尔软脂肪酸彻底氧化可生成摩尔ATP。 6.B族维生素 ACP的组成成分,ACP通过磷酸基团与蛋白质分子中的以共价键结合。 7.羧基载体蛋白(BCCP)是乙酰辅酶A羧化酶复合物的成分之一,BCCF含有的维生素成分是, BCCP通过与蛋白质分子中的以共价键连接。 8.磷脂酰乙醇胺转变为磷脂酰胆碱过程中的甲基供体是种活性衍生物。 9.脂肪酸合成酶合成脂肪酸的反应程序是:_____________、______________、____________、_____________、 ______________、_______________如此反复进行。 10.人类营养必需的脂肪酸是_______ ____和_________ ____。 四、选择题 1.由3-磷酸甘油和脂酰基CoA合成甘油三脂过程中,生成的第一个中间物是下列哪一种? A 2-甘油-酯; B.1,2-甘油二脂; C 溶血磷脂酸; D.磷酸脂; E.酰基肉毒碱。 2.下列关于脂肪酸生物合成的叙述哪项是正确的? A 不能利用乙酰CoA; B 仅生成少于十碳的脂肪酸 C 需要生成丙二酸单酰COA; D 合成部位在线粒体内 3.软脂酰CoA在β-氧化第一次“循环”中以及生成的二碳代谢物彻底氧化时,产生ATP的总量是: A 3ATP; B 13ATP; C 14ATP; D 17ATP 4.人类营养必需的脂肪酸包括: A 软脂酸 B 硬脂酸;

人体的新陈代谢-知识点

第二节人体的新陈代谢 1.食物的消化和吸收 (1).消化系统的组成 (2).食物的消化和吸收 ①消化有物理性消化和化学性消化。物理性消化主要通过牙齿的咀嚼和胃肠的蠕动;化学性消化主要是利用消化酶,使食物中的营养成分通过化学变化变成可吸收的物质。 ②食物中各种成分的消化。食物中的水、无机盐、维生素不经消化能直接被吸收;食物纤维不能被消化;淀粉、蛋白质和脂肪最终分别被消化分解成葡萄糖、氨基酸、甘油和脂肪酸。 ③小肠是食物消化吸收的主要场所,与其相适应的结构特点有:(1)小肠长,有皱襞,内壁形成小肠绒毛,可扩大小肠内表面积;(2)小肠绒毛内含丰富的毛细血管和毛细淋巴管,有利于营养物质的吸收;(3)小肠内含有多种消化腺分泌的消化酶,能对食物中的各种成分进行彻底的消化。 ④吸收是指营养物质进入循环系统的过程。 2.酶在生命活动中的重要作用 (1)酶的概念:酶是生物活细胞所产生的具有催化作用的蛋白质,是一种生物催化剂。酶能使生物体内的化学反应迅速地进行,而本身并不发生变化,这一点与无机催化剂相似。 (2)酶的特点: ①高效性:酶的催化效率一般是无机催化剂的107~1013倍。 ②专一性:一种酶只能催化一种或一类化合物的化学反应。 ③不稳定性:高温、低温以及过酸、过碱,都会影响酶的活性。也就是说,酶的催化作用需要适宜的条件。温度、pH都会影响酶的活性。 (3)酶的作用:酶具有多样性,高效性及专一性等作用特点.对于生物体内的新陈代谢的正常进行是必不可少的。 3.消化酶在人体消化过程中的作用 (1)食物中各种营养成分的消化过程 食物中的各种营养成分,除了水、无机盐、维生素等可以直接被消化道吸收外,其他如糖类、蛋白质、脂肪等结构复杂、不溶于水的大分子有机物,必须在消化道内经过消化,分解成溶于水的有机物小分子,才能被消化道壁吸收。糖类、蛋白质、脂肪这三大有机物的消化过程必须在各种消化酶的催化作用下才能完成,它们的具体途径为: (2)消化酶在人体消化过程中的作用 ①口腔中的唾液含有唾液淀粉酶,口腔可以使食物中的部分淀粉分解成麦芽糖。 ②酸性的胃液中有胃蛋白酶,它能将蛋白质分解成多肽。 ③小肠中的消化液包括肠液、胰液和胆汁,肠液和胰液中含有分别能消化糖类、蛋白质和脂肪的消化酶;胆汁虽然不含消化酶,但它可以对脂肪起乳化作用,

人体经络运行时间表

经络(五脏六腑)运行时间表 人体有12条经络,一天有12个时辰(一个时辰相当于现在2个小时)。12个时辰与12条经络相对应的意义是什么呢?“气血迎时而至为盛,气血过时而去为衰,满天飞时乘其盛,补则随其去,逢时为开,过时为阖”,原来这12条经络是按时间的顺序的,就如潮汐一样,流动到哪儿,哪条经络就“涨潮了”,这时这条经络里的气血最为旺盛。所以很多医家喜欢在特定的时辰,去疏通在这个时辰气血最旺盛的经络,或在此时辰服下调理该脏器的药物,这样能收到事半功倍的效果。这就是经络、脏腑与时辰的关系。 23:00-1:00 子时:胆经

子时胆经当令:子时一阳生,就是这个时辰人体的阳气开始生发,人睡觉的时候不可超过晚上11点,子时一定要睡觉,经常熬夜会造成失眠的症状!胆经最旺。胆汁需要新陈代谢,人在子时入眠,胆方能完成代谢。“胆有多清,脑有多清。”凡在子时前入睡者,晨醒后头脑清新、气色红润。反之,日久子时不入睡者面色青白,易生肝炎、胆囊炎、结石一类病症,其中一部分人还会因此“胆怯”。此时辰应睡觉。 1:00-3:00 丑时:肝经 丑时肝经当令:此时肝血生发,肝藏血,肝主筋!所谓筋,就是具有弹性的东西,人体的筋都与肝有关,如果筋的弹性没有了,是由血出的问题,血供给筋,筋才付有弹性!丑时一定要熟睡,要不然就养不起肝血,不能达到血润筋的目的!“肝藏血。”人的思维和行动要靠肝血的支持,废旧的血液需要淘汰,新鲜血液需要产生,这种代谢通常在肝经最旺的丑时完成。如果丑时不入睡,肝还在输出能量支持人的思维和行动,就无法完成新陈代谢。黄帝内经讲:“卧则血归于肝”。所以丑时未入睡者,面色青灰,情志倦怠而躁,易生肝病。此时辰应睡觉。 3:00-5:00 寅时:肺经 寅时肺经当令:肺主气,寅时肺的工作是分配气血给其它脏器,心肝脾肺肾各需多少气血都由肺来分配,这个时辰人要进入深度睡眠才可完成分配,也就是人睡得特死的时候,在这段时间中如果醒过来是最不好的。举例说明:如果家中有心脏病的老人,要劝他(她)尽量不做早锻炼,心脏功能不好的人,心的气血分配不足的话,容易造成心梗,那是非常危险的!肺经最旺。“肺朝百脉。”肝在丑时把血液推陈出新之后,将新鲜血液提供给肺,通过肺送往全身。所以人在清晨面色红润,精神充沛。寅时,有肺病的人反映尤为强烈,剧咳或哮喘或发烧。此即为何咳嗽的人在这段时间咳得最剧烈,因排毒动作已走到肺;不应用止咳药,以免抑制废积物的排除。此时辰应深度睡眠 5:00-7:00 卯时:大肠经 卯时大肠经当令:卯时大肠开始排毒,这个时辰人要大便,一天当中此时是最顺其自然的时候,人要大解不需要你去刻意去控制,它自然而然的就在这个时辰当中进行。还有一点肺与大肠相表里,如果说大肠出了问题,也就是大解出了问题,要医治从肺找原因!大肠经最旺。“肺与大肠相表里。”肺将充足的新鲜血液布满全身,紧接着促进大肠经进入兴奋状态,完成吸收食物中水份与营养、排出渣滓的过程。此时是大肠的排毒,应上厕所排便。此时辰应排便。 7:00-9:00

人体各器官代谢时间表

人体各器官代谢时间表 7:00~9:00小肠活跃时期 应吃早餐,这是小肠大量吸收营养的时段。疗病者最好是在7点进餐;养生者最好是在7点半前吃早餐;不吃早餐者应改变饮食习惯;为保护肝脏,此时最好不要饮酒。 10:00~12:00心脏运作的黄金时段 心脏开始加大马力投入工作,人的精力被积极调动起来,人体精神活动最强,身体的痛感降低,此时几乎感觉不到紧张的工作压力。如果谁在此时喝茶聊天,那他将虚度一天中最清醒的时刻。 12:00~13:00全身器官总动员 12点基本上是上午工作的最后冲刺阶段,此时在人体生物钟的作用下全身器官进入总动员,这个时候最好不要马上吃午餐,最好将用餐时间推迟到下午1点左右。 13:00~14:00人体的第二个低潮阶段 血压及荷尔蒙分泌降低,身体逐渐产生倦怠感,精力消退,血液中溶入一些糖原,反应迟缓。我们感觉有些疲劳,最好适当休息一下。 14:00~16:00感觉器官很敏锐 人体在生物钟的控制下开始逐渐恢复工作能力,人体重新步入正轨,下午3点人体感觉器官尤其敏感,特别是嗅觉和味觉。下午4点血液中的糖分含量达到最高。 17:00~18:00运动的最佳时段 人体疼痛感觉减弱,神经的活动能力降低,想多运动的渴望上升,此时最好离开工作岗位,进行一些户外活动,使精神重新振作起来。运动员此时应加倍努力训练。 18:00~20:00情绪极不稳定 晚上7点左右是一天中情绪最不稳定的时刻,此时人的心理稳定性降到最低点,很容易激动,常会因一点小事而争吵。吃完了晚餐到晚上8点,身体反应又得以恢复。

20:00~21:00反应很敏捷 晚上8点是人体体重最重、反应最敏捷的时间,司机此时处于最佳状态,几乎不会出事故。晚上9点时人的记忆力会特别好,是学习的好时间。 21:00~23:00免疫系统(淋巴)排毒时间 血液中充满白血球,白血球的数量增加一倍,体温开始下降。此段时间应安静或听音乐。23:00~1:00肝排毒时间 除肝脏外,大部分人体器官运作缓慢。肝脏利用这段空闲时间紧张地工作,为人体排除毒素,但这一排毒过程必须在熟睡中进行。 24:00~4:00脊椎造血时段 必须熟睡,不宜熬夜,否则影响脊椎的造血过程。凌晨4点左右血压降到了一天中最低点,但此时听觉变的异常灵敏,极易被微小的动静所惊醒。 1:00~3:00胆的排毒 凌晨1点,人进入了易醒的浅睡阶段。到了凌晨2点,胆的排毒有条不紊的进行。凌晨3点左右整个人都会得到休息。 3:00~5:00肺的排毒 此时咳嗽的人在这段时间咳得最剧烈,因为排毒运作已走到肺,有咳嗽症的人此时不宜用止咳药,以免 抑制废积物的排除。 5:00~7:00大肠的排毒 血压上升,心跳加快,即使我们想睡觉,但此时肌体已经苏醒,大肠排毒活跃,此时最好上厕所排便。 一、晚上9-11点为免疫系统(淋巴)排毒时间,此段时间应安静或听音乐。 二、晚间11-凌晨1点,肝的排毒,需在熟睡中进行。 三、凌晨1-3点,胆的排毒,亦同。 四、凌晨3-5点,肺的排毒。此即为何咳嗽的人在这段时间咳得最剧烈,因排毒动作已走到肺; 不应用止咳药,以免抑制废积物的排除。 五、凌晨5-7点,大肠的排毒,应上厕所排便。 六、凌晨7-9点,小肠大量吸收营养的时段,应吃早餐。疗病者最好早吃,在6点半前,养生者 在7点半前,不吃早餐者应改变习惯,即使拖到9、10点吃都比不吃好。 七、半夜至凌晨4点为脊椎造血时段,必须熟睡,不宜熬夜。

人体新陈代谢的重要意义.补充.消耗

人体新陈代谢的重要意义.补充.消耗 研究人员发现,4个基因似乎能决定人们消化食物的速度,这项发现将来也许能帮助医生给病人提供更个性化的护理。 据柏林媒体11月28日报道,新陈代谢情况的不同会导致一些人更易患上糖尿病之类的疾病,这也解释了饮食、锻炼、药物对不同病人产生的结果各不相同的原因。 研究人员共扫描了284个人的基因,发现FADS1、LIPC、SCAD和MCAD这4个基因能决定人体的新陈代谢速度。 德国慕尼黑的黑尔姆霍尔茨中心研究人员卡斯滕·祖雷说:“这些基因似乎与新陈代谢有关,或者能对新陈代谢起重要作用。” 祖雷说,这方面的可能为更个性化的护理开辟了道路,医生可以根据病人的基因构成来研究他们的新陈代谢情况,再根据这些情况决定如何进行治疗。这对于治疗与新陈代谢有关的疾病,如冠状动脉疾病和肥胖可能尤其有效。 祖雷和同事在《公共科学图书馆·遗传学》(PLoS Genetics)月刊上撰文说:“这些发现使我们可以根据基因和新陈代谢两方面的特点来作出判断,从而带领我们向个性化护理和营养供给迈进。” 新陈代谢 是指人体与外界环境物质和能量的交换以及自身物质和能量的转换。生物体的这种不断的自我更新,是新陈代谢的实质。 新陈代谢的意义:新陈代谢是人和生物维持生命活动的基本条件,是生命的基本特征。人和生物表现出来的生长、发育、生育、遗传和变异等特征都是以新陈代谢为基础的。新陈代谢一旦停止,生命也将终结。 新陈代谢包括同化作用和异同作用。同化作用是指生物体不断地从外界吸收营养物质,合成身体新的组成成分并贮藏能量。异同作用是指生物体不断地氧化分解身体内原有的部分物质,释放能量,并排出废物。 由各个器官按照一定的顺序排列在一起,完成一项或多项生理活动的结构叫系统。 水对人体新陈代谢的重要意义 当在一定时间内喝下17盎司(约两杯)水后,人体内的新陈代谢会加快30%。按照这一研究结果,每天喝下1.5公升的水,每年能多燃烧掉17400卡路里热量,减掉5磅体重。 人体新陈代谢率 人体新陈代谢率是指单位时间内人体表面积产生的热量。代谢是一种化学产热过程,即人体活细胞中所有化学变化的总称。食物与氧经化学变化产生人体所需能量。人体活动量越大,新陈代谢率越高。正常人体耗氧1L可产热20.6KJ.新陈代谢率单位为Met,1Met等于58.2W/m2或50kcal/(m2·h)。人体新陈代谢率静坐时为基准1Met,平躺时为0.7Met,步行时(速度为0.89m/s)为2.0Met,打篮球时为7.6Met。 新陈代谢(metabolism)的概念

人体的新陈代谢教案

课题人体的新陈代谢 教学目标食物和摄食:说出人体七大营养素的作用; 呼吸与气体交换; 食物的消化和吸收: 1.说出食物中蛋白质、糖类、脂肪的消化和吸收; 2.举例说明消化酶在人体消化过程中的作用; 3.通过对比实验,说明唾液淀粉酶作用的条件; 体内物质的运输: 1.说出人体血液的组成; 2.学会阅读“血常规”化验单; 3.通过观察,描述人体心脏、血管的结构以及血液循环; 4.实验:观察小鱼尾鳍血液流动的现象,并知道判断三种血管的依据; 能量的获得: 1.了解氧化供能的过程; 2.了解无氧呼吸的概念; 体内物质的动态平衡: 1.根据植物和人体的新陈代谢过程,归纳、概括生物新陈代谢中物质和能量变化的特点; 重点 难点 血液循环;呼吸循环;体内物质转换; 环节教师活动 基础知识 知识梳理 1.动物的食物和摄食 营养素作用吸收情况 无 机 物 水构成细胞的主要成分,参与各种生理活动 直接吸收 无机盐维持正常生理活动 有 机 物 维生素参与人体内许多重要的生理活动 蛋白质 细胞生长及修补组织的主要原料,也能为 生命活动提供能量先消化 再吸收 糖类人体所需能量的主要来源 脂肪贮藏能量 食物纤维 刺激消化腺分泌消化液,促进肠道蠕动, 利于排便 不吸收 2、消化系统: 1.组成: 其中肝脏是最大的消化腺,分泌的胆汁中没有消化酶,对脂肪起乳化作用。 2.消化系统的主要功能: (1)将食物分解成能被身体利用的小分子化合物; (2)将这些小分子化合物吸收到血液中; (3)将消化后产生的食物残渣排出体外。 3.消化类型:物理消化和化学消化 4.营养物质的消化与吸收及代谢产物: 3.人体呼吸系统的结构和气体交换 肌肉膈肋骨移动胸腔体积胸腔内压力气流 吸气 膈肌、肋 间肌活动 变得扁平 向上 向外 增大减小进入肺部 呼气恢复拱形 向下 向内 减小增大离开肺部 4、人体呼吸系统的结构和气体交换。 (1)呼吸系统的组成。(主要由呼吸道和肺两大部分组成) 鼻腔鼻毛:阻挡空气中的灰尘和细菌 黏膜:分泌黏液,有丰富的血管,有嗅细胞 咽:通道 呼吸道喉: 气管、支气管 部分支气管 肺肺泡管(有很多肺泡) 肺泡:由一层上皮细胞构成,外有毛细血管和弹性纤(2)、呼吸运动 吸气:肋间外肌、膈肌收缩肋骨向上向外移动(膈机顶部下降)胸腔容积扩大肺 扩张,导致肺内气压减小外界气体进入肺泡 呼气:肋间外肌、膈肌舒张肋骨下降,膈机顶部回升胸腔容积缩小肺借弹性 缩回,导致肺内气压增大肺内气体排出肺泡 物质消化产物代谢终产物 糖类葡萄糖二氧化碳和水 蛋白质氨基酸二氧化碳和水 脂肪甘油脂肪酸二氧化碳和水 消化道:口咽食道胃小肠大肠肛门 消化腺:唾液腺胃腺肝脏肠腺胰腺 消化液:唾液胃液胆汁肠液胰液 流入部位:口腔胃胆囊小肠小肠 第 1 页共1 页

生物化学

第二章蛋白质 1.蛋白质组成:氨基酸{广义上是指分子中既有氨基又有羧基的化合物} 2.氨基酸结构通式分为左旋和右旋. ?天然氨基酸为 每种氨基酸都有D型和L型(组成蛋白质氨基酸,除甘氨酸外)两种异构体. 按R基极性分:非极性氨基酸和极性氨基酸(非解离的极性氨基酸,酸性氨基酸,碱性氨基酸) 3.氨基酸的理化性质:等电点PI{在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为两性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。} 应用:若PI=5,放入PH=6的溶液,向哪极移动? 4.肽键: 是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的共价键。 5.蛋白质结构 (1)一级结构是指多肽链中氨基酸序列。 形成一级结构的化学键:肽键(主要化学键),二硫键. (2)二级结构是指组成蛋白质的肽链的主链的空间结构,也就是肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。维系二级结构的主要化学键:氢键主要形式: β-折叠 , β-转角 ,无规卷曲 ,α-螺旋 (连续排列的肽平面旋转形成面螺旋.右手螺旋.酰胺平面与螺旋的长轴平行,一个AA0.15nm,每3.6个为一圈(0.54nm).在同一肽链内相邻的螺圈之间形成氢键,氢键的取向几乎与中心轴平行.AA的侧链伸向螺旋外侧.AA 的R基可以影响螺旋的形成) (3)蛋白质的三级结构是指在二级结构、超二级结构、结构域的基础上,多肽链再进一步折叠盘绕成更复杂的空间结构。包括主链和侧链上所有原子在三维空间的分布。 蛋白质三级结构的形成和稳定主要靠弱的相互作用力或称非共价键、次级键,主要有氢键、范德华力、疏水作用和盐键(又称离子键)等。 (4) 蛋白质的亚基聚合成大分子蛋白质的方式称为蛋白质的四级结构。 各亚基间的结合力主要是氢键和离子键等非共价键。 6.蛋白质的变性: 在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。 变性的本质:破坏非共价键,不改变蛋白质的一级结构。 第三章核酸 1.核酸的组成:部分水解成核苷酸.核苷酸部分水解成核苷和磷酸.核苷可以水解称戊糖和含 氮碱基.是生物体的基本组成,携带和传递遗传信息。

初一生物:人体新陈代谢

人体的新陈代谢

【备战中考】: 1.(7分)(2013?泰安)人体的呼吸、消化、排泄等代谢活动都与循环系统密切相关,它们之间的联系如图(A、B、C表示相关结构,①②③表示相关生理过程),请分析回答: (1)完成过程①的主要器官与其功能项适应的特点是:长度达5~6米,内表面有大量的皱襞和.(2)若B表示肺泡,则②表示肺与的气体交换.如图是人体在平静呼吸时肺内气体容量的变化曲线,当肺容量如bc段变化时,肋间肌和膈肌的状态是,肺完成过程. (3)若甲和乙代表含有尿素的代谢废物,则乙为,它的形成主要经历 和两个生理过程. 2、(2013济南中考)英国医生赛达尼任格在对离体蛙心进行灌注实验时发现:用不含钙和钾的生理盐水灌注,蛙心收缩不能维持;用少量钙和钾的生理盐水灌注,蛙心可持续跳动数小时。该实验说明钙盐和钾盐() A.是心肌组织细胞的重要组成成分 B.为蛙心的持续跳动提供足够的能量 C.对维持生物体的生命活动有重要作用 D.对维持心肌细胞的形态有着重要作用 3、下图中甲、乙、丙三条曲线分别表示食物中三种营养成分在消化道中的变化情况,下列叙述正确的是 4题图 A.甲代表蛋白质 B.乙代表脂肪 C.丙代表淀粉 D.乙能在胃中消化 4、如图II-3所示是小肠绒毛的结构模式图,据图分析作答: (1)小肠绒毛是小肠内表面皱襞上的绒毛状突起,这种突起大大地增加了和吸收的面积。 (2)图中数字6所示结构是,它的主要功能是。 (3)小肠绒毛壁、毛细血管壁、毛细淋巴管壁都很薄,它们都仅由一层细胞构成。 (4)营养物质中的葡萄糖、氨基酸成分由图中数字所示结构吸收。 5、(2014东营)2012黄河口国际马拉松赛暨全国马拉松积分赛于5月13日在我市举行,来自55个国家(地区)的20000余名选手参加了比赛。比赛中,运动员奋力拼搏,个个满脸通红、大汗淋漓。这体现了皮肤的哪些功能?() A.保护和调节体温 B.排泄和感受外界刺激 C.调节体温和排泄 D.排泄和保护 6、(2014惠安)某人尿检时发现尿液成分中出现大分子蛋白质,其可能的原因是() A.肾小球滤过异常 B.胰岛素分泌异常 C.肾小管重吸收异常 D.营养过剩 7、(2012梅州)人体排出下列物质时,只有一条途径的是() A.CO2 B.尿素 C.水 D.无机盐

生物化学课后答案8新陈代谢总论与生物氧化

8 新陈代谢总论与生物氧化 1.已知NADH+H +经呼吸链传递遇O 2生成水的过程可以用下式表示: NADH + H + + 1/2O 2 H 2O + NAD + 试计算反应的'E θ?、'G θ?。 解答:在呼吸链中各电子对标准氧化还原电位'E θ的不同,实质上也就是能级的不同。自由能的变化可以由反应物与反应产物的氧化还原电位计算。氧化还原电位和自由能的关系可由以下公式计算: ''G nF E θθ?=-? 'G θ?代表反应的自由能,n 为电子转移数 ,F 为Farady 常数,值为96.49kJ/V, 'E θ?为 电位差值。'G θ ?以kJ/mol 计。 NADH+H + + 1/2O 2 → NAD + + H 2O G 'θ=-2×96.49×[+0.82 -(-0.32)] =-220 kJ/mol 2.在呼吸链传递电子的系列氧化还原反应中,请指出下列反应中哪些是电子供体,哪些是电子受体,哪些是氧化剂,哪些是还原剂(E-FMN 为NADH 脱氢酶复合物含铁硫蛋白,辅基为FMN )? (1)NADH+H ++E-FMN NAD ++E-FMNH 2 (2)E-FMNH 2+2Fe 3+E-FMN+2Fe 2++2H + (3) 2Fe 2++2H ++Q 2Fe 3++QH 2 解答:在氧化―还原反应中,如果反应物失去电子,则该物质称为还原剂;如果反应物得到电子, 则该反应物称为氧化剂。所以得出如下结论: 的甘油醛–3–磷酸,而另外的一个半电池B 含有1mol/L NAD +和1mol/L NADH 。回答下列问题: (1)哪个半电池中发生的是氧化反应? (2)在半电池B 中,哪种物质的浓度逐渐减少? (3)电子流动的方向如何? (4)总反应(半电池A+半电池B )的ΔE 是多少?

人体各器官排毒时间表

各器官排毒时间表 胃部排毒--腹式按摩 最佳时间:7点~9点 此时胃经正在工作的黄金时间,在用早餐前进行内脏按摩就可以促进胃部咀嚼功能,为肠道的消化做好准备工作,减少身体垃圾量--全身放松地平躺于床上,以手心处按压肚脐,先做顺时针360°的旋转按压按摩15次。 然后在逆时针按压15次,每日坚持不但促进血液循环,疏通理气,而且对于强健胃的排毒动力的效果很明显。或者以轻揉的方式对肚脐处进行有效刺

激,不仅可以防止胃寒,更能促进消化,防止便秘,为身体排毒开出“绿灯”。 图2 脾脏排毒--“点”到为止 最佳时间:9点~11点 在你上午进入工作状态之时,脾经也开始走向“旺季”。脾脏主管食物的吸收、输送,如果其功能不良,则是毒素生长的最佳环境。为此,在上午9点到11点时,请按压位于经过脾经的大横穴就可以促进脾经的畅通,从而增加脾脏钝感力,增强营养吸收,加速毒素排泄。这个穴位很好找,以肚脐为起点绕腹部画圈,再以乳头为起点向下延伸,两条线的交叉点就为大横穴。请你在上午十分,不要忘记“照顾”它哦!

图3 小肠排毒--饮品催化剂 最佳时间:13点~15点 午餐后的两个小时,是小肠经在“值班”,此时喝一杯酸奶,多摄取益生菌,促进小肠蠕动。不但防止午餐后缺乏运动而出现的小肚腩,更可促进肠道消化,代谢掉与健康无关的毒素物质。另外,还有一些保健饮品在在高丽参浓缩液中添加了寡果糖,补神益气,维持肠道健康“环境”,欢迎品尝!

图4 肾脏排毒--双脚抓地 最佳时间:17点~19点 当时钟转向17点时,你偷偷伸个懒腰,进入收工倒计时。而此时,肾经开始正是工作。采取点行动激发肾脏功能,消除肾脏疲倦才是为肾脏排毒的首选。在办公桌下铺一大张报纸,偷偷脱下鞋子,让脚面全部舒展与地面,然后向中间集中,呈双脚抓地状,持续5分钟,就可以刺激到肾经的穴位,加快其排毒的进程。

(高考生物)生物化学复习资料

(生物科技行业)生物化学 复习资料

生物化学复习资料 第一章蛋白质 1,蛋白质含量=(总氮含量—无机氮含量)乘以6.25 2,氨基酸按含特殊基团的分类:a含羟基的氨基酸丝氨酸(Ser)酪氨酸(Tyr)b含巯基的氨基酸半胱氨酸(Cys) 3,氨基酸的分类:a非极性氨基酸丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)甲硫氨酸(Met)脯氨酸(Pro)色氨酸(Trp)b极性不带电荷甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)天冬酰胺(Asn)谷氨酰胺(Gln)酪氨酸(Tyr)半胱氨酸(Cys)c带负电荷天冬氨酸(Asp)谷氨酸(Glu)d带正电荷组氨酸(His)赖氨酸(Lys)精氨酸(Arg) 4,等电点调节氨基酸溶液的pH,使氨基酸分子上的氨基正离子和羧酸跟负离子解离度完全相同,即氨基酸所带净电荷为零。主要以两性离子存在时,在电场中不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 氨基酸在pH大于等电点的溶液中以阴离子存在,在pH小于等电点的溶液中主要以阳离子存在。 5,蛋白质的化学性质脯氨酸,羟脯氨酸和茚三酮反应生成黄色物质,其余а-氨基酸与茚三酮反应生成蓝紫色物质。 6,2,4—二硝基氟苯或丹磺酰氯测定蛋白质N端氨基酸。 7,一个氨基酸的а—羧基与一个氨基酸的а—氨基脱水缩合形成的共价键叫肽键由此形成的化合物称肽。 8,蛋白质的一级结构指蛋白质中氨基酸的序列,氨基酸的序列多样性决定了蛋白质空间结构和功能的多样性。 9,稳定蛋白质空间结构的作用力主要是次级键,即氢键和盐键等非共价键,以及疏水

作用和范德华力。 10,蛋白质的二级结构指多肽主链有一定周期性的,由氢键维持的局部空间结构。肽链形成螺旋,折叠,转角等有一定规则的结构。 11,蛋白质的三级结构指球状蛋白的多肽链在二级结构,超二级结构,和结构域等结构层次的基础上,组装而成的完整的结构单元。 12,蛋白质的四级结构许多蛋白质有两个或两个以上的相互关联的具有三级结构的亚单位组成,其中每一个亚单位称为亚基,亚基间通过非共价键聚合而形成特定的构象。蛋白质四级结构指分子中亚基的种类,数量以及相互关系。 13,蛋白质的变性指天然蛋白质因受理化性质的影响起分子内部原有的高度规律性结构发生变化,知识蛋白质的理化性质和生物学性质都有所改变但蛋白质的一级结构不被破坏。变性的实质是肽链从卷曲变伸展的过程。 14,蛋白质变性的因素化学因素:强酸,强碱,尿素,胍,去污剂,重金属盐,三氯醋酸,磷钨酸,苦味酸,浓乙醇。物理因素:剧烈震荡或搅拌,紫外线及X射线照射,超声波等。蛋白质变性后的表现:①?生物学活性消失;②?理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。15,蛋白质的沉淀可以分为两类:(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。

新陈代谢总论与生物氧化

新陈代谢总论与生物氧化 教学目标: 1. 掌握新陈代谢的概念与特点,了解新陈代谢研究方法。了解生物体内能量代谢的基本规律。 2. 掌握生物氧化的概念、特点、部位,主要酶类和体系。熟悉生物氧化中二氧化碳、水的生成,掌握呼吸链的组成、类型和传递体顺序。 3. 掌握氧化磷酸化的概念、类型、偶联部位和P/O比值,熟悉影响氧化磷酸化因素、胞液中NADH的氧化和偶联机制。 第一节新陈代谢总论 一、新陈代谢的概念与特点 生物体是一个与环境保持着物质、能量和信息交换的开放体系。通过物质交换建造和修复生物体(按人的一生计,交换物质的总量约为体重的1200倍,人体所含的物质平均每10天更新一半)。通过能量交换推动生命运动,通过信息交换进行调控,保持生物体和环境的适应。 新陈代谢(metabolism)是指生物与外界环境进行物质交换和能量交换的全过程。包括生物体内所发生的一切合成和分解作用(即同化作用和异化作用)。 人和动物的物质代谢分为三个阶段:食物、水、空气进入机体(摄取营养物的消化和吸收)、中间代谢和代谢产物的排泄。中间代谢是指物质在细胞中的合成与分解过程,合成是吸能反应,分解是放能反应。它们是矛盾对立和统一的。所以,新陈代谢的功能是:从周围环境中获得营养物质;将营养物质转变为自身需要的结构元件;将结构元件装配成自身的大分子;形成或分解生物体特殊功能所需的生物分子;提供机体生命活动所需的一切能量。 各种生物具有各自特异的新陈代谢类型,这决定于遗传和环境条件。绿色植物及某些细菌有光合作用,若干种细菌有固氮作用,是自养型的;动物与人是异养生物,同化作用必须从外界摄取营养物质,通过消化吸收进入中间代谢。同一生物体的各个器官或不同组织还具有不同的代谢方式。 各种生物的新陈代谢过程虽然复杂,却有共同的特点: 1.生物体内的绝大多数代谢反应是在温和条件下,由酶催化进行的。 2.物质代谢通过代谢途径,在一定的部位,严格有序地进行。各种代谢途径彼此协调组成有规律的反应体系(网络)。 3.生物体对内外环境条件有高度的适应性和灵敏的自动调节。 二、新陈代谢的研究方法 代谢途径的研究比较复杂,可从不同水平,主要对中间代谢进行研究。新陈代谢途径的阐明凝集了许多科学家的智慧与实验成果。如1904年德国化学家Knoop提出的脂肪酸的β氧化学说,1937年Krebs提出的柠檬酸循环。 1.活体内(in vivo)和活体外(in vitro)实验 2.同位素示踪法和核磁共振波谱法(NMR) 3.代谢途径阻断法 三、生物体内能量代谢的基本规律

人体新陈代谢的时间规律有哪些

人体新陈代谢的时间规律有哪些 在生活中,新陈代谢是人体身上一种正常的生理反应,一般情况下,人体的新陈代谢是存在有一定的时间规律的,而了解并把握好人体新陈代谢的时间规律,可以帮助人们拥有更加健康的身体,那么,人体新陈代谢的时间规律有哪些呢?下面就让给大 家介绍一下,希望大家都能有一个了解。 新陈代谢规律一:早上6-9点,新陈代谢最活跃,享用健康早餐燃脂加速 早上起来到九点的这个时段,是基础代谢最旺盛的时期,也是小肠大量吸收营养的好时段,因此这个时间,吃什么都不怕胖!这个时候,绝对不要浪费时间,抓紧吃一顿丰盛的早餐吧,这顿吃得好,可以让身体代谢加快,提早启动身体一天的脂肪燃烧机制! 此时,享用高纤维素+优质蛋白+碳水化合物的早餐最有帮助。 经典的早餐搭配有豆浆+鸡蛋+高粱馒头+苹果;或者是牛奶+

三明治+香蕉,都是可以选择的营养减肥早餐。 新陈代谢规律二:上午9点-12点,瘦大腿佳期 在这个时候,新陈代谢会保持相当高的活跃度。尤其是心脏,开始加大马力投入工作,心脏工作有力,回流就越好,腿部的细胞就会更加活跃。 所以想瘦大腿的你,就要趁这个时候赶紧做些瘦腿的按摩或者动作练习,来帮你实现事半功倍的减肥效果。 你可以沿着大腿内侧一路敲击,痛的地方就多敲几下,两边各敲五分钟,坚持下去,裤子就会告诉你变瘦了没有。 新陈代谢规律三:上午12点-中午3点,过度期配合呼吸瘦腰腹 在经过一个上午的活跃后,人体的新陈代谢在中午的时候,进入了平缓的休整期。此时,血压及荷尔蒙分泌降低,身体逐渐产生倦怠感,精力消退,血液中溶入一些糖原,反应迟缓。此时不适合剧烈运动,更不可能通过节食去减肥。但是你完全可以做些轻缓的动作,通过配合深呼吸来瘦腰腹。

相关文档
最新文档