高地应力软岩隧道大变形控制技术
高地应力隧道软岩大变形段径向收敛控制措施

在隧道工程中,软岩地层的变形和收敛一直是一个令人头疼的问题。
尤其是在高地应力地区,软岩隧道的大变形段径向收敛控制措施更加重要。
本文将从技术措施、监测手段和管理方法等方面探讨高地应力隧道软岩大变形段径向收敛的控制措施。
1. 技术措施在软岩地层的隧道施工中,为了控制大变形段径向收敛,可以采取以下技术措施:- 合理的支护结构:选择合适的支护结构对软岩地层进行支护,比如钢架加混凝土梁、喷锚网、锚喷等,以增加地层的稳定性和承载能力,减少变形和收敛。
- 合理的巷道布置:通过合理的巷道布置,使得地层受力均匀,减小高地应力对软岩地层的影响,从而减少变形和收敛的发生。
- 降低开挖面积:通过减小开挖面积和采用分段开挖的方式,减少软岩地层的受力范围,减小地层变形和收敛的情况。
2. 监测手段在施工过程中,为了及时发现软岩地层的变形和收敛情况,可以采用以下监测手段:- 地下水位监测:通过监测地下水位的变化,及时了解软岩地层的湿度情况,从而判断软岩地层的稳定性和变形状况。
- 地表位移监测:采用地表位移监测仪器,对隧道周边地表位移进行实时监测,及时发现软岩地层的变形和收敛情况。
- 支护结构变形监测:通过监测支护结构的变形情况,及时了解支护结构的承载能力和软岩地层的变形情况,为及时采取补救措施提供数据支持。
3. 管理方法在施工管理方面,要加强对软岩地层大变形段径向收敛的管理,可以采用以下管理方法:- 强化监理管理:加强监理单位对软岩地层变形和收敛的监管,及时发现问题并提出解决方案,确保隧道施工的安全和顺利进行。
- 强化施工队伍管理:加强施工队伍对软岩地层变形和收敛的认识和管理,提高施工人员的安全意识和质量管理水平,确保施工质量和隧道安全。
- 强化应急预案管理:建立完善的软岩地层大变形段径向收敛的应急预案,规范应急处理流程,确保在发生问题时能够迅速采取有效措施,保障施工安全。
高地应力隧道软岩大变形段径向收敛控制措施包括技术措施、监测手段和管理方法三个方面。
高地应力软岩大变形隧道施工技术

高地应力软岩大变形隧道施工技术介绍隧道是连接地理上两个地区的重要交通工程。
然而,由于地质条件的复杂性和多变性,隧道的施工过程也面临着许多问题。
其中一个主要挑战是位于高地应力软岩区域的大变形隧道的施工。
高地应力软岩区域的隧道工程面对着较高的岩压和地质风险。
本文将介绍高地应力软岩大变形隧道施工技术。
问题施工大变形隧道有着诸多的问题,其中最主要的是与软岩的高地应力作斗争。
高地应力使得软岩的负荷能力下降。
因此,高地应力软岩区域的隧道工程施工需要考虑如何应对高地应力、软岩变形、母岩裂隙和软岩胀缩等问题。
解决方案从长期的施工技术来看,隧道施工工艺一直在不断更新和改进。
对于高地应力软岩区域的大变形隧道施工,采取以下措施可以提高施工效率和减少风险。
1.钻孔爆破工艺在高地应力软岩区域的隧道爆破中,采用钻孔爆破工艺可以减少振动,降低噪音和对基岩的影响。
另外,钻孔爆破还有利于控制隧道标准的大小和形状,确保隧道的结构稳定性。
2.预应力支护技术在高地应力软岩区域的大变形隧道施工中,预应力施工技术可以可靠地支撑隧道。
预应力施工技术通过钢缆、锚杆和桩体等材料,使支护结构承受预设的拉应力和压力。
预应力支护技术的应用可以避免因阻力降低、松动积土或地下水位变化引起的隧道变形等问题。
3.岩土混掘技术岩土混掘技术是一种将土与岩石混合起来,挖掘的同时稳定周围的土体。
这种技术可以有效地减少振动和噪音,并可以运用于软岩变形、母岩裂隙和软岩胀缩等的隧道施工。
同时,岩土混掘技术的应用可以改善施工现场的高地应力环境。
结论高地应力软岩大变形隧道施工是一项复杂的技术。
有效地解决高地应力、软岩变形、母岩裂隙和软岩胀缩等难题是成功的关键。
本文提到的钻孔爆破工艺、预应力支护技术和岩土混掘技术是现代大变形隧道施工的重要技术。
这些技术的有效应用可以保障隧道施工的安全、高效和稳定。
高地应力软岩隧道大变形发生机理及控制技术研究

高地应力软岩隧道大变形发生机理及控制技
术研究
高地应力软岩隧道指的是处于高地应力环境下的软岩地层中开挖
的隧道。
由于所处的高地应力环境导致了软岩地层的高地应力状态,
因此开挖隧道时会导致地层变形和破坏,特别是隧道大变形。
因此,
对于这种隧道,需要研究其发生机理和控制技术。
隧道大变形的发生机理主要包括以下几个方面:
1. 地层原有结构的破坏:隧道开挖会破坏地层原有的结构,导致
地层松动和变形。
2. 地层的应力状态改变:隧道开挖会导致地层应力状态的改变,
特别是高应力地区的地层应力状态,从而引起地层的变形和破坏。
3. 近似于松散垫层的软岩:这种软岩原本就具有不易承受应力的
特点,因此在高应力环境下更加容易发生变形和破坏。
4. 地层水文特征:地下水会影响地层的应力状态和稳定性,因此
隧道开挖时需要考虑地下水的影响。
针对以上机理,可以采取以下控制技术:
1. 实施一定的支护措施:在隧道开挖时需要实施适当的支护措施,如喷锚、加固网等,以保证隧道的安全稳定。
2. 降低地层应力状态:采用降水、减载等措施来降低地层应力状态,从而减小隧道的变形和破坏。
3. 优化隧道设计方案:通过优化隧道设计方案,如采用浅埋式隧道、采用适当的半圆形、梯形等断面形式等,来减小隧道变形和破坏。
4. 做好隧道施工管理:严格控制隧道施工期间的工程质量和安全
管理,确保隧道的安全稳定。
综上所述,高地应力软岩隧道大变形的发生机理和控制技术是一
个综合性问题,需要对各种因素进行综合考虑,以保证隧道的安全稳定。
高地应力软岩隧道大变形控制技术

(b)高地应力作用下的软岩隧道挤压变形
研究表明,当强度应力比小于0.3~0.5时,即 能产生比正常隧道开挖大一倍以上的变形。此时 洞周将出现大范围的塑性区,随着开挖引起围岩 质点的移动,加上塑性区的“剪胀”作用,洞周 将产生很大位移。圆形隧道弹塑性解析解也表明, 当强度应力比小于2时洞周将产生塑性区,强度 应力比越小则塑性区越大。高地应力是大变形的 一个重要原因。这又称为高地应力的挤压作用。
位移/mm
1600 1400 1200 1000
800 600 400 200
0
0
拱顶竖向位移 墙腰水平位移
200 400 600 800 1000 1200
R
2 p
图2-5 洞壁位移与塑性区半径关系
2.4.4 洞壁位移的影响因素
(1)埋深 当仅考虑自重应力场时,隧道埋深与地应力成正比。
图2-6为各区段洞壁位 1.8
图2-2为乌鞘岭隧道分区段塑性区半径与围岩抗 压强度及强度应力比的关系,塑性区半径随围岩强 度及强度应力比的增加而减小。
3300 2255
2200
Rp/ m
R p/m
1155
1100
55
00
0
0
0
5
0.5
0.5
10
15
1
强度1应.0 力比
20
1.5
1.5
25 Rb/MPa
2
2.0 强度应力比
F7断层区段 图2-2 塑性区半径与抗压强度及强度应力比的关系
图1-3 F7断层圆形断面
其他地段根据围岩性质隧道采用椭圆形(图1-4)。
图1-4 椭圆形断面
第二章 大变形机理
2.1 高地应力、软岩的概念
高地应力软岩大变形隧道施工技术

高地应力软岩大变形隧道施工技术摘要:根据国内外隧道施工的实践总结,在一定高地应力条件下的软弱围岩,在施工过程中发生大变形现象,是必然的。
目前对于围岩大变形的控制研究主要集中于地质情况较差地段的施工工艺和支护方法上。
对于围岩大变形比较轻微的情况,可以在一定程度上增大支护体的刚度或者强度,增大隧道预留的变形位移,同时及时地施工二衬以承担荷载,这样可以达到预防和控制围岩大变形的发生与发展。
因此,本文对高地应力软岩大变形隧道施工技术进行简要的分析,希望可以为相关人提供参考。
关键词:高地应力;软岩大变形;隧道施工技术1木寨岭隧道工程概况木寨岭隧道位于甘肃省定西市漳县和岷县交界处,为双洞单线分离式特长隧道,全长19.02km,洞身地质条件非常复杂,隧道洞身共发育11个断裂带,穿过3个背斜及2个向斜构造,属高地应力区,极易变形。
隧道洞身穿越的板岩及炭质板岩区,占全隧的46.53%,总计各类软岩段长约16.1km,占隧道长度84.47%,极易发生围岩滑坍,施工难度很高。
2木寨岭隧道围岩及变形情况2.1开挖揭示围岩情况大部分围岩开挖揭示地层岩性为二叠系板岩夹炭质板岩,围岩受地质构造影响严重,节理极发育,岩体极破碎,层间结合差,整体稳定性差。
2.2变形情况受围岩地质的影响,自隧道施工至F14-1断层带时围岩极其破碎,现场每循环开挖进尺不大于0.7m,采用人工进行开挖,1d只能施作1循环;当初期支护完成后经常出现喷射混凝土开裂、掉块、拱架扭曲变形等情况,量测数据显示拱顶下沉速率平均能达到90mm/d,累计平均能达到800mm,收敛速率平均能达到160mm/d,单侧收敛累计值能达到1800mm;当二次衬砌施作后,部分地方还出现开裂、甚至出现砼脱落、钢筋扭曲等现象。
3高地应力释放设计理念根据“先柔后刚、先放后抗”的指导思想,我们必须要将围岩本身蕴藏的高地应力进行释放,可怎么释放,释放到何种程度,是关键所在。
目前有2种理论的施工,国内外都获得了比较成功的案例,一种是先行释放理论,意思就是采用先行导坑法释放部分围岩应力,释放稳定后扩挖成型,进行抵抗;另外一种就是边放边抗理论,意思就是预留适当预留变形量,让围岩应力得到相应释放,但在释放一定程度时,即预留变形量可控范围之内,开始加强支护,抵抗剩余围岩应力,使支护结构趋于平衡。
高地应力软岩大变形隧道施工技术

高地应力软岩大变形隧道施工技术中铁十四局集团第四工程有限公司石贞峰摘要:堡镇隧道为宜万铁路第二长隧、七大控制工程之一,也是全线施工难度最大的隧道之一。
堡镇隧道围岩属于高地应力软岩,在施工中发生高地应力软岩大变形。
结合软岩的岩性分析情况,采用科研引导、稳扎稳打的方针,制定了详细的施工方案,在施工过程中探索、研究出了控制软岩大变形的施工技术。
关键词:堡镇隧道高地应力软岩大变形施工技术1 工程概况堡镇隧道左线全长11565m,右线全长11599m,线间距30m, 右线初期设计为平导,作为左线辅助施工通道,后期再将平导扩挖形成右线隧道。
是宜万铁路第二长隧、七大控制工程之一,也是全线唯一的高地应力软岩长隧。
十四局承担左线进口段5641m、右线进口段5622m的施工任务。
隧道穿越岩层主要为粉砂质页岩、泥质页岩,呈灰黑色,多软弱泥质夹层带,白色云母夹层,强度极低。
大部分页岩呈薄层状,层厚3~10cm,分层清晰,产状扭曲,挤压现象明显,岩体破碎,强度很低,手捏呈粉末状,遇水膨胀;顺层发育,有光滑顺层面,层间多夹软泥质夹层,节理、层理发育、切割严重,围岩整体性很差,隧道左边拱存在顺层软弱面,右侧边墙有楔形掉块,爆破后滑坍、掉块严重。
根据国标《工程岩体分级标准》,该区属高应力区,产生大的位移和变形。
洞内初期支护局部开裂,顺层坍塌,节理发育,软岩变形等,凡专家预测的复杂地质均已出现。
在施工中发生多次高地应力作用下较大变形中,仅8#横通道处拱顶沉降最大就达15cm,收敛32.5cm,超过预留变形量,并侵入二次衬砌。
2 施工方案针对高地应力软岩大变形的特点,我们制定了“超前支护、初支加强、合理变形、先放后抗、先柔后刚、刚柔并济、及时封闭、底部加强、改善结构、地质预报”的整治原则和总体方案,配合平导超前等辅助方案较好的解决了此项难题。
2.1 总体方案介绍(1)采用超前小导管支护,开挖后及时封闭围岩;加强初期支护的刚度,采用型钢拱架封闭成环;为达到稳固围岩的目的,系统锚杆采用中空注浆锚杆加固地层,锚杆长度应稍大于塑性区的厚度。
王明年教授-高地应力隧道大变形机理及控制措施

5-10
0.25-0.5 15-35
3-6
较大
洞周位移明显, 喷混凝土层严 弯曲型、软岩 中等 洞底局部有隆 重开裂,掉块, 塑流型、膨胀 10-15 (Ⅱ级) 起现象,变形 局部钢架变形, 型 持续时间长 锚杆垫板凹陷
0.150.25
35-50
6-10
大
现象同上,但 洞周变形强烈, 大面积发生, 强烈 洞底有明显隆 且产生锚杆拉 (Ⅲ级) 起现象,流变 断及钢架变形 特征很明显 扭曲现象
大变形是相对正常变形而言,正常支护位移上限取为预留变形量的0.8倍,即单线 隧道13cm、双线隧道25cm,高地应力隧道位移上限取为正常支护位移上限的2倍, 即单线隧道25cm、双线隧道50cm。
…………..
主要包括3种类型:
①高地应力作用下的挤压变形;②膨胀性围岩的膨胀变形;③断层破碎带的松弛变形
隧道塑性区、洞壁位移的3个影响因素 围岩强度应力比、围岩强度
塑性区半径与强度应力比、围岩强度的关系(朱永全)
强度应力比与隧道洞壁变形的关系(朱永全)
兰渝铁路毛羽山隧道
双线铁路隧道 薄层状碳质板岩地层,区域原岩应力较 大且以水平构造应力为主 最大水平主应力近22MPa
(李廷春,毛羽山隧道高地应力软岩大变形施工控制技术)
最大收敛值1200 mm 成因4点: ① 区域原岩应力较大,且与隧道线路走向大 角度相交 ② 围岩岩质软弱 ③ 支护强度不足 ④ 施工方法不当
西南交通大学 Southwest Jiaotong University
高地应力隧道大变形机理及 控制措施
主讲人:王明年 教授、博导 电 话:13808029798 E-mail:1653325765@
成兰铁路高地应力软岩隧道大变形发生机理及控制技术

成兰铁路高地应力软岩隧道大变形发生机理
及控制技术
成兰铁路是中国重要的铁路干线之一,其中高地应力软岩隧道是
该线路的关键难点。
为了研究这些隧道的大变形发生机理及控制技术,需要对其内部高地应力长期变形特征进行深入的研究。
根据相关研究表明,高地应力软岩隧道的大变形主要是由以下几
个因素引起的:第一,围岩的特性(包括岩层倾角、岩性、强度等);第二,隧道周围地应力的大小及分布;第三,隧道建设中的支护工程。
在控制这些隧道的大变形方面,可以采用多种技术手段,包括分
区部分前锋法、钢筋混凝土衬砌、突出顶板法等。
这些方法可以降低
隧道周围地应力的大小、改善支护结构的稳定性和强度等,从而控制
隧道的大变形。
总之,成兰铁路高地应力软岩隧道的大变形机理及控制技术研究
对该铁路干线的建设和运营具有重要意义,可以为其他类似隧道的建
设提供有益的技术参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/7
10
(1)大变形的成因
(a)膨胀岩的作用
具有膨胀岩的围岩在一定条件下体积膨胀, 如粘土类矿物、蒙脱石、高岭土、伊利石、绿泥 石等吸水后体积可膨胀10%~20%。硬石膏遇水 体积可增大60%,芒硝遇水体积增加135%。有 的膨胀力可达25~45kPa。围岩膨胀使隧道周边产 生大变形。
强度应力比0.1~0.2)
都属于高地应力挤压性大变形。
2021/3/7
13
(c)局部水压及气压力的作用
当支护和衬砌封闭较好,周边局部地下水升 高或有地下气体(瓦斯等)作用时,支护也会前半 生大变形。但随着支护开裂,水或气溢出,压力 减小,变形也就停止,这种现象并不多见。
2021/3/7
14
(2)围岩破坏形式
2021/3/7
8
(2)高地应力
高地应力是一个相对的概念,它是相对于围岩强
度(Rb)而言的。也就是说,当围岩内部的最大地 应力σmax与围岩强度的比值Rb/σmax达到某一水平 时,才能称为高地应力或极高应力,即:
围岩强度应力比= Rb /max
表 2-1 围岩强度应力比的分级基准
标准类别
极高地应力
①纯剪切破坏 ②弯曲破坏 ③剪切或滑动破坏
2021/3/7
(a)纯剪切破坏
(b)弯曲破坏
(c)剪切或滑动破坏
图2-1 挤出岩体中隧道破坏类型
15
2.3 大变形的基本特征
(1)变形量大
最 大 变 形 可 达 数 10cm 至 100cm 以 上 。 家 竹 箐 隧 道初期支护周边位移曾达210cm,一般80~100cm, 拱顶下沉60~80cm,隧道隆起80cm。堡子梁隧道排 架下沉120cm,边墙向下挤进30~40cm。关角隧道底 鼓约100cm,边墙向内挤很大。乌鞘岭隧道岭脊段最 大水平收敛达1209mm,最大拱顶下沉367mm。平均 累计变形按F4、志留系板岩夹千枚岩、F7几区段分 别为90~120mm、200~400mm、150~550mm。
2021/3/7
12
国外几座典型的大变形隧道如:
➢ 奥地利的陶恩隧道(长6400m,强度应力比
0.05~0.06);
➢ 奥地利的阿尔贝格隧道(长3980m,强度应
力比0.1~0.2);
➢ 日本的惠那山隧道II号线(长8635m,强度
应力比0.1~0.33);
➢
我国南昆线著名的家竹箐隧道(长4990m,
高地应力
法国隧道协会
<2
2~4
我国工程岩体分级基准
<4
4~7
日本新奥法指南(1996)
<2
4~6
日本仲野分级
<2
2~4
(2-1)
一般地应力 >4 >7 >6 >4ຫໍສະໝຸດ 2021/3/79
2.2 隧道大变形的概念
各级围岩在正常施工条件下都会产生一定的变 形,隧道施工规范、新奥法指南及衬砌标准设计等 对各级围岩及各种支护结构都规定有不同的预留变 形量以容纳这些变形 。
2021/3/7
3
隧道辅助坑道设计按工期为2.5年考虑,设置 有13座斜井和1座竖井的施工方案,在施工中又结 合施组安排,又增加一座竖井(主要用于通风)和 一座横洞,在2004年4月F7断层,又增设左、右 线迂回导坑。
2021/3/7
4
隧道施工进入F7工程活动性断层以后,发现 初期支护变形速率加剧,初期支护出现掉块、开 裂和挤压破坏等现象,隧道最大拱顶下沉和水平
2021/3/7
17
(3)变形持续时间长
由于软弱围岩具有较高的流变性质和低强度, 开挖后应力重分布的持续时间长。变形的收敛持 续时间也较长。短者数十天,长者数百天,一般 也需百多天。家竹箐隧道收敛时间在百天以上。 日本惠那山隧道时间大于300天,阿尔贝格隧道 收敛时间为100~150d。乌鞘岭隧道大变形区段变 形持续时间达120d,一般要40~50d。
2021/3/7
图1-3 F7断层圆形断面
6
其他地段根据围岩性质隧道采用椭圆形(图1-4)。
图1-4 椭圆形断面
2021/3/7
7
第二章 大变形机理
2.1 高地应力、软岩的概念
(1)软岩
软岩指强度低、孔隙度大、胶结程度差、受构造 面切割及风化影响显著的裂隙岩体或含有大量膨 胀性粘土矿物的松、散、软、弱岩层,单轴抗压 强度小于25MPa的岩石。
2021/3/7
11
(b)高地应力作用下的软岩隧道挤压变形
研究表明,当强度应力比小于0.3~0.5时,即 能产生比正常隧道开挖大一倍以上的变形。此时 洞周将出现大范围的塑性区,随着开挖引起围岩 质点的移动,加上塑性区的“剪胀”作用,洞周 将产生很大位移。圆形隧道弹塑性解析解也表明, 当强度应力比小于2时洞周将产生塑性区,强度 应力比越小则塑性区越大。高地应力是大变形的 一个重要原因。这又称为高地应力的挤压作用。
高地应力软岩隧道大变形控制技术
乌鞘岭隧道岭脊地段变形控制技术
石家庄铁道学院
2021/3/7
1
第一章 乌鞘岭隧道简况
2021/3/7
2
乌鞘岭隧道设计为两座平行的单线隧道,两 线间距40m,隧道长20.05km,基本为直线隧道; 隧道洞身最大埋深1100m左右。右线隧道总工期 2.5年。
隧道最大埋深约1100m,在岭脊约7km范围 分布由四条区域性大断层组成的宽大“挤压构造 带”,地应力情况十分复杂。在F4和F7断层及影 响带、志留系板岩夹千枚岩地层,围岩破碎,洞 室自稳能力极差。
收敛分别达1209mm和1053mm,一般在300~ 700mm左右,初期变形速率一般在30~35mm/d。
2021/3/7
图1-2 F7断层支护变形情况 5
隧道衬砌结构 采用复合式衬 砌,在本隧道 最 大 的 F7活 动 性断层地段(宽 度 800m) , 考 虑断层活动性 及岩体十分破 碎,按圆形结 构断面(图1-3) 进行设计
2021/3/7
16
(2)变形速度高
家 竹 箐 隧 道 初 期 支 护 变 形 速 度 达 3~4cm/d 。 奥地利的陶恩隧道最大变形速度高达20cm/d,一 般也达5~10cm/d。乌鞘岭隧道岭脊段变形量测开 始阶段变形速率最高达167mm/d,最大变形速率 按F4、F5、志留系板岩夹千枚岩、F7几区段分 别 可 达 73mm/d 、 143mm/d 、 165mm/d 、 167mm/d。