硅光电二极管在光电检测电路中的应用研究

硅光电二极管在光电检测电路中的应用研究
硅光电二极管在光电检测电路中的应用研究

硅光电二极管在光电检测电路中的应用研究

发表时间:2017-03-09T11:12:19.920Z 来源:《电力设备》2017年第1期作者:杨劲

[导读] 近年来,随着光电检测技术的发展及应用,该技术已经被广泛地应用于航天、医疗、环境科学、农业、工业以及军事等诸多领域。

(池州学院安徽池州 247100)

摘要:近年来,随着光电检测技术的发展及应用,该技术已经被广泛地应用于航天、医疗、环境科学、农业、工业以及军事等诸多领域。光电探测器件是光电检测技术的核心,其作用是实现光信号到光电流信号的转换,然后再转换为电信号。为此,本文就光电检测电路中的硅光电二极管的应用进行简要地研究,首先介绍了硅光电二极管的基本结构,然后分析了电路特性,最后进一步研究了光电检测电路的设计与实现,希望能够对读者有所帮助。

关键词:光电检测电路;光电探测器;硅光电二极管

引言

硅光电二极管具有噪声低、线性好、灵敏度高、响应快等优点而被作为整个光电检测电路的核心器件。然而,当所检测的光信号较为微弱的时候,往往需要外接光电放大电路,由于设计电路结构以及器件芯片选型的不同,受各种噪声叠加及电路中阻抗分流的影响,电路输出端的信噪比降低或线性响应度变差。因此,对硅光电二极管在光电检测电路中的应用进行分析研究是非常重要的。

1.硅光电二极管的基本结构

光电二极管能够将所吸收的光能转换为电能,属于一种光电转换的器件,与激光二极管的受辐射和发光二极管的自发辐射过程相逆,其中,PN型硅光电二极是目前应用最广和最基本的管子。PN型硅光电二极管的基本结构包括有效面积区、引线、P+扩散区、PN结区、N+扩散区以及金属接触层几部分,其中光可以通过透明的P+区直接到达PN结区,产生光电子,N+扩散区的主要作用在于为金属电极提供良好的电接触。此外,P—I—N型光电二极管也是当期常用的硅光电二极管,其更适用于反向偏压工作,结构与PN型硅光电二极管相类似,N层与P层间的耗尽层是由本征半导体构成的,其作用是提供一个较小的电容和较大的耗尽深度。通常情况下,质量较好的硅光电二极管的噪声是可以忽略不计的,主要原因在于其噪声电流非常小。在硅光电二极管对信号的测量中,本来能够通过调零将暗电流消除,然而,暗电流受温度的影响很大,随着温度的升高而升高,因此,由暗电流引起的噪声对硅光电二极管检测灵敏度的影响是不可被忽视的。此外,在应用硅光电二极管时,暗电流随着所加偏压的升高和面积的增大而增大。

2.电路特性分析

2.1线性响应分析

在各种光电检测应用过程中,为了尽量低损耗的将光生电流转换为输出电流,往往需要选用线性输出响应良好的光敏器件。理想状态下,在结构上可以将硅光电二极管等效成为一恒流源与其自身分流结构相互并联的形式。当微弱低频光信号经过光电探测器后,所输出的光电流为非常微弱的直流信号,因此,硅光电二极管结电容与后续检测电路等效负载电容的分流影响是可以忽略不计的。当无光照射时,所产生暗电流的值与硅光电二极管自身截面积存在较大的关系。此外,经过负载的电流主要取决于其自身阻值大小及硅光电二极管结构。因此,在实际光电检测电路设计时,应该尽可能地选用串联电阻较小、并联分流电阻较大、暗电流较小的硅光电二极管,同时要保证连接在硅光电二极管端的负载阻抗为零,从而保证硅光电二极管检测电路输出端具有良好的线性响应,

2.2硅光电二极管噪声特性分析

噪声是影响光电检测的一个重要因素,因此,对硅光电二极管噪声特性进行分析是必不可少的。硅光电二极管噪声主要包含热噪声和散粒噪声两种,其中,热噪声是由于电阻材料中的自由电子随机运动所产生的,取决于材料的噪声等效带宽、电阻及温度,而散粒噪声是由硅光电二极管PN结中的截流子随机运动而产生的,属于白噪声,与通过光电二极管的电流和噪声带宽相关,而与频率无关。

光电检测电路的信噪比不仅与所选用硅光电二极管的性能和偏压方式有关,而且还取决于输入电路的元件参数。在目前光电检测电路设计中常利用运算放大器接成电压电流转换器来确保负载阻抗为零间,以满足输出线性响应的要求。通常而言,预算放大器的应用既能够使硅光电二极管测量的线性得到有效提高,同时也使得硅光电二极管的工作区域状态接近于短路,整个光电检测电路可获得最小的噪声系数。影响光电检测电路信噪比的因素主要包含以下几个方面:一是运算放大器的反馈电阻及硅光电二极管的内阻,适当地提升放大器的反馈电阻以及选用适当的硅光电二极管不仅有利于改善信噪比,而且还有利于电压、电流转换的转换系数提高。二是失调的电压、电流以及放大器的等效输入噪声电压、电流,其中失调电压、电流的大小会随着温度而漂移,虽然在电路调整时能够对失调电压、电流加以补偿,然而随温度漂移的影响必然会在电路输入端产生噪声,而等效输入噪声电流中所造成的噪声电流在总噪声电流的绝大部分,因此,为了提高电路输出端的信噪比,应该尽可能地选用噪声性能更好、失调电压、电流较低的放大器。

3.检测电路的设计与实现

3.1光电检测电路的设计

通过上文的分析研究,本文以由DET36A硅光电探测器件及ICL7650运放芯片设计而成的光电检测电路进行分析。该硅光电二极管探测器件通过其内部的PIN型硅光二极管,实现光信号到电信号的转换,且二极管的受光区域能够满足不同波长滤光片的搭建,而所选用的ICL7650运放芯片具有功耗低、输入阻抗高的特点,此外,还具有价格低廉,斩波稳零的优点,一方面能够使微弱直流光电流信号得到有效地放大,另一方面还可以补偿电路温度漂移干扰,有助于电路输出信号精度的提升,因此适用于低噪声、微电流的运算放大器。

3.2光电检测电路测试

按照上文所提出的设计方法搭建了实验板线路,并且通过示波器对无光照射条件下所搭建电路的输出噪声进行了测试,测试结果表明该检测电路的灵敏度能够到达10mV。当光照条件较差时,为了对微弱光信号进行充分收集,同时尽量地将光电器件受光照不均匀消除,从而提升实验精度,实验过程中可以先利用透镜将微弱光信号进行聚焦,然后再将聚焦后的光信号以正面垂直的方式照射到硅光电二极管的感光面,然后再对的输入端光照与输出端电压之间的关系进行进一步测量,测量结果表明将硅光电二极管应用于光电检测电路中,同时在配以低噪声高增益的运放芯片,其电路具有良好的线性输出响应。

结语

总而言之,本文通过硅光电二极管的基本结构及电路特性的分析,并以此为指导设计了一种光电检测电路,同时对该电路进行了测试。测试结果表明该光电检测电路具有结构简单、线性良好、输出噪声低等优点。因此,光电二极管检测电路中硅光电二极管的选用及应

完整版二极管7种应用电路详解

极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用 第一反应是整流, 对二极管的其他特性和应用了解不多, 认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害 了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析, 许多二极管电路无法用单向导电 特性来解释其工作原理。 二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电 路的工作原理, 而需要掌握二极管更多的特性才能正确分析这些电路, 例如二极管构成的 简易直流稳压电路,二极管构成的温度补偿电路等。 941二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中, 由于电路简单,成本低,所以 应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是 0.6V 左右,对锗二极管而言是 0.2V 左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的 VD1、VD2和VD3 是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1 ?电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难 了。 关于这一电路的分析思路主要说明如下。 (1) 从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止 会同时截止。 (2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在 VD1正极通过电阻 R1接电路中 的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。由此分 析可知,3只二 极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。 (3) 从电路中还可以看出,3只二极管上没有加入交流信号电压, 因为在VD1正极即电路中的 A 点与 地之间接 有大容量电容 C1,将A 点的任何交流电压旁路到地端。 2 ?二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定 了电路中A 点的直流电压。 众所周知,二极管内部是一个 PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中 !£ mime i-yAn^Of

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

光电对管 长脚

TCRT5000(L) Document Number 83760Rev. 1.6, 04-Sep-06 Vishay Semiconductors https://www.360docs.net/doc/b110350416.html, 1 Reflective Optical Sensor with Transistor Output Description The TCRT5000 and TCRT500L are reflective sensors which include an infrared emitter and phototransistor in a leaded package which blocks visible light. The package includes two mounting clips. TCRT5000L is the long lead version. Features ?Package type: Leaded ?Detector type: Phototransistor ?Dimensions:L 10.2 mm x W 5.8 mm x H 7.0 mm ?Peak operating distance: 2.5 mm ?Operating range: 0.2 mm to 15 mm ?Typical output current under test: I C = 1 mA ?Daylight blocking filter ?Emitter wavelength 950 nm ?Lead (Pb)-free soldering released ?Lead (Pb)-free component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC Applications ?Position sensor for shaft encoder ?Detection of reflective material such as paper, IBM cards, magnetic tapes etc. ?Limit switch for mechanical motions in VCR ?General purpose - wherever the space is limited Order Instructions Absolute Maximum Ratings T amb = 25°C, unless otherwise specified Input (Emitter) Part Number Remarks Minimum Order Quantity TCRT5000 3.5 mm lead length 4500 pcs, 50 pcs/tube TCRT5000L 15 mm lead length 2400 pcs, 48 pcs/tube Parameter T est condition Symbol Value Unit Reverse voltage V R 5V Forward current I F 60mA Forward surge current t p ≤ 10 μs I FSM 3A Power dissipation T amb ≤ 25 °C P V 100mW Junction temperature T j 100 °C

基于光电二极管反偏的光电检测电路的噪声分析

基于光电二极管反偏的光电检测电路的噪声分析 发表时间:2017-03-09T11:18:47.780Z 来源:《电力设备》2017年第1期作者:王风敏 [导读] 在光电检测电路设计时,应该尽可能地减小噪声,从而提升系统的检测分辨率和信噪比。 (池州学院安徽池州 247100) 摘要:噪声是目前影响光电检测电路检测性能的重要因素,在光电检测电路设计时,应该尽可能地减小噪声,从而提升系统的检测分辨率和信噪比。为此,本文就对基于光电二极管反偏的光电检测电路的噪声进行了分析,首先简单介绍了光电二极管检测电路,然后对基于光电二极管反偏的光电检测电路设计进行了分析,随后探讨了光电检测电路的噪声,最后提出了光电检测电路的总噪声及低噪声的设计原则,旨在为低噪声光电检测电路的设计提供帮助。 关键字:噪声;光电检测电路;光电二极管;反偏 引言 现如今,光电检测技术已经被广泛地应用于诸多领域,从理论的角度分析而言,利用光电检测电路能够将任何存在光辐射信号地方的信号检测出来。然而,在实际检测过程中,经光电二极管转换的光电信号是非常微弱的,经常出现被检测信号被噪声淹没的情况,严重影响的光电检测电路的检测能力。因此,对光电检测电路的噪声进行分析具有非常重要的意义。 1.光电二极管检测电路 1.1光电二极管工作原理 光电二极管主要是利用半导体通过光电效应实现光信号到电信号的转换。受热运动的影响,耗尽层两侧没有电场的中性区域内有一些以扩散运动方式的空穴与光生电子进入到耗尽层,然后受电场的作用形成扩散电流,且方向与漂移电流相一致。光生电流为扩散电流分量与漂移电流分量的总和。所以,当N层和P层的连接电路打开时,在它们的两端会产生一定的电动势,而该效应则被称之为光电效应。当P 层与N层的连接电路出现闭合时,N区的过剩电子与P区的空穴电流会相互流动,从而形成一种光生电流。光生电流会随着入射光的变化而进行线性改变,从而实现光信号到电信号的转变。 1.2低噪声光电检测线路设计的意义 通常情况下,通过光电二极管转换而得到的光电信号是较为微弱的,且在光电信号的检测极易受到噪声的干扰。实际情况表明,当通过光电来检测相关线路时,其中光电转换器件的前置放大电路噪声往往会对整个系统产生较为严重的影响,因此,要想提升系统的检测分辨率和信噪比,在设计光电检测电路时,必须尽量地降低噪声。 1.3噪声的实用性分析 通过分析光电检测电路中噪声产生的原因,并对其噪声特点进行分析,并针对电路设计过程中有可能出现的所有问题,尽可能地降低电路噪声,从而确保西戎检测分辨率与信噪比的提高。现如今,诸多领域中都涉及到了微弱光信号的检测,当然检测方法也是各式各样的,但就实际应用效果来看,一部分常用检测方法的灵敏度不是很高,在工作中往往无法满足相关要求,而利用光电技术对微弱信号进行检测,具有较高的精度和稳定性。 2.基于光电二极管反偏的光电检测电路设计 光电二极管的工作状态在光电检测电路中存在反偏、无偏、正偏三种。当光电二极管处于反偏状态时,在反偏偏压的作用下,光生截流子的运动会加快,与其它两种状态相比较而言,所产生的光电流更大,更有利于弱光条件下的检测。本文所研究的基于光电二极管反偏的光电检测电路的设计思路为:首先采用光电二极管连接反向高压,对微弱光信号进行探测,实现光信号到电流信号的转换;然后,再利用三极管实现电信号的流压转换;最后,再通过运算放大器来放大电压,从而完成对弱光信号检测。光电检测电路中的所有期器件都不可避免会产生相应的噪声,从而对整个电路的噪声输出产生不良的影响,下面本文就电路的噪声进行进一步分析。 3.光电检测电路的噪声 3.1光电二极管的噪声 (1)热噪声。热噪声指的是导电材料两端因其中截流子的不规则热运动而产生涨落的电流或电压,并且电流或电压的涨落是随机的。材料的噪声等效带宽、电阻及温度是决定材料热噪声电压的主要因素,其中电阻是主要的热噪声源,在电阻不变的情况下,减少温度及噪声等效带宽能够使热噪声得到有效地减少。 (2)散粒噪声。散粒噪声是指导电材料中由于光生截流子流动与形成密度的涨落而产生的噪声,散粒噪声电流和电压均方值取决于通过光电二极管的电流和噪声带宽,并且散粒噪声电压与电流的均方值与电流及噪声带宽呈正比例关系,减少电流和噪声带宽能够使散粒噪声得到有效地降低。在光电检测电路中,散粒噪声电流与热噪声电流是相互独立的,总电流的均方值为散粒噪声电流均方值与热噪声电流均方值之和。 3.2三极管的噪声 三极管的噪声主要取决于工作电流、发射结阻抗以及基区电阻等参数,光电检测电路设计时,应该选用噪声系数较小的三极管,同时,在对负载电阻的阻值进行确定时,需要对噪声与三极管静态放大倍数之间的关系进行充分地考虑,从而实现电路设计优化。 3.3运算放大器的噪声 光电检测电路中的运算放大器是由电容、电阻、晶体管等集成的,其中电阻和晶体管分别会产生相应的热噪声和散粒噪声。运算放大器的输出噪声电压与其自身的增益、带宽、模型以及反馈电阻等因素有关。在光电检测电路设计时,其它需求条件都满足的情况下,运算放大器应尽可能地选用小的,同时放大倍数确定后,对电路阻值进行调整时,应尽可能地减少反馈电阻的阻值,从而实现电路噪声的减少。 4.光电检测电路的总噪声及低噪声的设计 通过上文分析,我们不难得出光电检测电路主要包括光电二极管、三极管流压转换以及运算放大器三个模块,在对整个电路的噪声进行分析时,必须对这三部分进行级联。除与电路器件自身相关之外,光电检测电路的输出噪声电压还与其它众多因素相关联。(1)从理论的角度来看,三极管的负载电阻与其静态增益的并联值越小,电路噪声越小,越有利于检测,然而随着负载电阻与静态增益的减小,输出信号也在随之变小。因此,在实际条件过程中,应该首先尽可能地满足负载电阻的值,然后再结合负载电阻对静态增益进行调节。(2)从

光电二极管教程

光电二极管教程 工作原理 结光电二极管是一种基本器件,其功能类似于一个普通的信号二极管,但在结半导体的耗尽区吸收光时,它会产生光电流。光电二极管是一种快速,高线性度的器件,在应用中具有高量子效率,可应用于各种不同的场合。 根据入射光确定期望的输出电流水平和响应度是有必要的。图1描绘了一个结光电二极管模型,它由基本的独立元件组成,这样便于直观了解光电二极管的主要性质,更好地了解Thorlabs光电二极管工作过程。 图1: 光电二极管模型 光电二极管术语 响应度 光电二极管的响应度可以定义为给定波长下,产生的光电流(I PD)和入射光功率(P)之比: 工作模式(光导模式和光伏模式) 光电二极管可以工作在这两个模式中的一个: 光导模式(反向偏置)或光伏模式(零偏置)。工作模式的选择根据应用中速度和可接受暗电流大小(漏电流)而定。 光导模式 处于光导模式时,有一个外加的偏压,这是我们DET系列探测器的基础。电路中测得的电流代表器件接受到的光照; 测量的输出电流与输入光功率成正比。外加偏压使得耗尽区的宽度增大,响应度增大,结电容变小,响应度趋向直线。工作在这些条件下容易产生很大的暗电流,但可以选择光电二极管的材料以限制其大小。(注: 我们的DET器件都是反向偏置的,不能工作在正向偏压下。)

光伏模式 光伏模式下,光电二极管是零偏置的。器件的电流流动被限制,形成一个电压。这种工作模式利用了光伏效应,它是太阳能电池的基础。当工作在光伏模式时,暗电流最小。 暗电流 暗电流是光电二极管有偏压时的漏电流. 工作在光导模式时, 容易出现更高的暗电流, 并与温度直接相关. 温度每增加 10 °C, 暗电流几乎增加一倍, 温度每增加 6 °C, 分流电阻增大一倍. 显然, 应用更大的偏压会降低结电容, 但也会增加当前暗电流的大小. 当前的暗电流也受光电二极管材料和有源区尺寸的影响. 锗器件暗电流很大, 硅器件通常比锗器件暗电流小.下表给出了几种光电二极管 材料及它们相关的暗电流, 速度, 响应波段和价格. 结电容 结电容(C j)是光电二极管的一个重要性质,对光电二极管的带宽和响应有很大影响。需要注意的是,结区面积大的二极管结体积也越大,也拥有较大的充电电容。在反向偏压应用中,结的耗尽区宽度增加,会有效地减小结电容,增大响应速度。 带宽和响应 负载电阻和光电二极管的电容共同限制带宽。要得到最佳的频率响应,一个50欧姆的终端需要使用一条50欧姆的同轴电缆。带宽(f BW)和上升时间响应(t r)可以近似用结电容(C j)和负载电阻(R load)表示: 终端电阻 使用负载电阻将光电流转换为电压(V OUT)以便在示波器上显示: 根据光电二极管的类型,负载电阻影响其响应速度。为达到最大带宽,我们建议在同轴电缆的另一端使用50欧姆的终端电阻。其与电缆的本征阻抗相匹配,将会最小化谐振。如果带宽不重要,您可以增大负载电阻(R load),从而增大给定光功率下的光电压。终端不匹配时,电缆的长度对响应影响很大,所以我们建议使电缆越短越好。 分流电阻

硅光电二极管在光电检测电路中的应用研究_付文羽

第20卷 第5期 许昌师专学报 Vol.20.No.5 2001年9月 JOURNAL OF XUCHANG TE AC HERS C OLLE GE Sep.,2001 文章编号:1000-9949-(2001)05-0019-04 硅光电二极管在光电检测电路中的应用研究 付文羽,彭世林 (庆阳师范高等专科学校物理系,甘肃西峰745000) 摘 要:分析了光电检测时硅光电二极管线性响应及噪声特性,给出了硅光电二极管的线性 度及信噪比公式,并结合噪声E n—I n模型[1],对光电二极管用于光电检测时影响电路信噪比的 因素进行了探讨. 关键词:光电检测;信噪比;噪声模型 中图分类号:TN710.2 文献标识码:A 0 引言 硅光电二极管由于响应快、灵敏度高、性能稳定、测量线性好、噪声低而被广泛用于光电检测电路中,尤其在激光通讯测量中,通常要测量微瓦以下的光信号,就更离不开硅光电二极管.质量好的硅光二极管用于激光功率测量时,测量下限可达10-8W,分辨率可达10-12W.在许多场合,光电检测电路接收到的是随时间变化的光信号,其特点是:单一频率或包含着丰富的频率分量的交变信号,当信号很微弱时,由于背景噪声和电路热噪声的影响,还需要对信号进行低噪声处理、放大.因此,在交变光电信号作用下,怎样正确选择硅光电二极管的参数,以获得最小非线性失真信号及信号检测的灵敏度就成为人们所关心的问题. 1 硅光电二极管的基本结构及等效电路 光电二极管是一种光电转换器件,其基本原理是当光照射在P—N结上时,被吸收的光能转变为电能,这是一个吸收过程,与发光二极管的自发辐射和激光二极管的受激幅射过程相逆.P—N型硅光电二极管是最基本和应用最广的管子.基本结构如图1所示,它是在N型硅单晶片的上表面扩散一薄层P型杂质,形成P+型扩散层.由于扩散,在P+区和N型区形成一个P+N结.P+区是透明的,光子可以通过P+区到达PN结区产生光电子.在N型硅单晶下表面扩散N型杂质以形成高浓度的N+扩散区,以便给金属电极提供良好的电接触.另一种常用的硅光电二极管是P—I—N型硅光电二极管,其结构同P—N型类似.位于P层和N层之间的耗尽层由本征半导体构成,可以提供一个较大的耗尽深度和较小的电容,适合于反向偏压工作.硅光电二极管的等效电路如图2所示,图中I s为电流源,它是硅光电二极管接收辐射后所产生的光电流I p和暗电流I d以及噪声电流I n之和,即: 图1 平面扩散型PN结光电二极管结构图图2 硅光电二极管等效电路 收稿日期:2001-03-19 作者简介:付文羽(1963-),男,甘肃宁县人,庆阳师专物理系讲师,工程硕士,主要从事光电检测与传感技术应用研究.

光电二极管的应用电路

1. Low noise light-sensitive preamplifier Used in receivers for spatial light transmission and optical remote control. A reverse bias is applied to the photodiode to improve frequency response. This circuit outputs an amplified signal from the FET drain, but signals can also be extracted from the source side for interface to the next stage circuit with low input resistance. KPDC0014ED 2. Low-level-light sensor head The whole circuit is housed in a metallic shield box to eliminate external EMI (electromagnetic interference). The photodiode window size should be as small as possible. Use of an optical fiber to guide the signal light into the shield box is also effective in collecting light. If dry batteries are used and housed in the same shield box to supply power to the operational amplifier, noise originating from the AC source can be eliminated and the S/N ratio will be further improved. KPDC0016ED 3. Light balance detection circuit The output voltage Vo of this circuit is zero if the amount of light entering the two photodiodes PD 1 and PD 2 is equal. The photoelectric sensitivity is determined by the feedback resistance. By placing two diodes D in reverse parallel with each other, Vo will be limited to about ±0.5 V (maximum) in an unbalanced state, so that the region around a balanced state can be detected with high sensitivity. Use of a quadrant photodiode allows two-dimensional optical axis alignment. KPDC0017EB 4. Luxmeter This is an illuminometer using a visual-compensated photodiode S7686 and an operational amplifier. A maximum of 5000 lx can be measured with a voltmeter having a 5 V range. It is necessary to use an operational amplifier which can operate from a single voltage supply with a low bias current. A standard lamp should be used to calibrate the illuminometer. If no standard lamp is available, an incandescent lamp of 100 W can be used for approximate calibrations. To make calibrations, first select the 1 mV/lx range in the figure at the right and short the wiper terminal of the 500 9 variable resistor VR and the output terminal of the operational amplifier. Adjust the distance between the photodiode and the incandescent lamp so that the voltmeter reads 0.38 V . At this point, illuminance on the S7686 photodiode surface is about 100 lx . Then open the shorted terminals and adjust VR so that the voltmeter reads 1.0 V . Calibration has now been completed. KPDC0018EC Vo R PD : High-speed PIN photodiodes (S5052, S2506-02, S5971, S5972, S5973, etc.) R L : Determined by sensitivity and time constant of Ct of photodiode R S : Determined by operation point of FET FET: 2SK152, 2SK192A, 2SK362, etc. Bold lines should be within guarded layout or on teflon terminals. A 1:AD549, etc. Rf : 10 G 9 Max. A 2 :OP07, etc. S : Low-leakage reed relay Cf :10 to 100 pF, polystyrene capacitor PD: S1226/S1336/S2386 series, etc. PD: S1226/S1336/S2386 series, etc.A : LF356, etc.D : ISS270A, etc. Vo=Rf × (Isc 2 - Isc 1) (V) (Vo < ±0.5 V) When the amount of light entering the two photodiodes is equal, the output voltage Vo will be zero. In unbalanced state, Vo will be ±0.3 to 0.5 V. This circuit can be used for light balance detection between two specific wavelengths using optical filters. IC : ICL7611, TLC271, etc.PD: S7686 (3.8 μA/100 lx) * Meter calibration potentiometer 1

红外对管电路

红外对管 特性简介: 直径:3mm波长:940nm 工作电压:1.2V,工作电流:20mA测量距离: <20cm波段为红外光,受可见光干扰小。 红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数) 1、AD采样实现避障功能 针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。可以考虑采用上面的电路。100- 100k欧姆,是红外接收管在不同光线条件下(室内一阳光直射)的阻值的大小。在正常的光线下通过IOA0 口A/D采集到一个电压值作为一个参考电压。 当随着光线变化时,IOA0 口读进来的电压值也就发生变化。这个使用通过IOA4、I0A5 I0A6 IOA7依次选通,选择最接近参考值的电压作为判断电压。 该电路可以避免可见光带来的干扰,检测障碍物的距离在0- 15cm。效 果不错。缺点是引用占用IO 口较多,操作较为复杂。 2、直流驱动避障电路 直流驱动红外探测器电路的设计与参数计算电路如图所示。W1和R1及 V1构成简单直流发光二极管驱动电路,调节W1可以改变发光管的发光光强,从而调节探测距离,NE555及其外围元件构成施密特触发器,其触发电平可通过W2 控制,接收管V2和电阻R2构成光电检测电路。通过NE555第3脚输出的TTL 电平可以直接驱动单片机I/O 口。

由于555输出信号为TTL电平,单片机检测方便。缺点同样是容易受可见光干扰。 3、交流调制驱动避障电路 4 ---------- ----- Ju LM567及其外围芯片构成音频检频器,其检频频率fO由R4 C5决定:。其中fO 为检频频率,当R4=10K C5=222时,fO = 41KHz这一振荡信号经过V3扩流后,驱动发光管,这样处理后可以保证发光频率与检频频率严格一致使LM567 的输出仅与光强有关。为进一步提升探测距离,我们还设立了一级交流放大器,其增益约为240倍,虽然这样大的放大倍数放大器的线性和稳定性会较差,但对于频率检测不会造成太大的影响。 4、检测液滴电路 无液滴落下时,接收管与发射管正对,接收管接收到的光强较强,有液滴滴下时,下落中的水滴对红外光有较强的漫反射、吸收及一定的散射作用,导致接收光强的较大改变,接收管接收到的信号经一级施密特触发器,送单片机的中断口,据此就可以正确的探测出液滴的滴落。解决了因液体透明而使得发射不明显的问题。 5、检测液面电路一

光电二极管的工作原理与应用

光电二极管的工作原理与应用 学生:李阳洋王煦何雪瑞黄艺格指导老师:陈永强 摘要:光电二极管是结型器件。当光照射在P-N结时,光子被吸收,产生电子-空穴对,电子和空穴在结区被结电场所收集,在外电路形成光电流。为了保证绝大部分响应波长的入射光能在结区吸收,这就要求空间电荷区有足够宽度,所以外电路加有足够的反偏电压。 关键词:光电二极管;光电流;暗电流;反偏电压;光功率 1、引言 随着科学技术的发展,在信号传输和存储等环节中,越来越多地应用光信号。采用光电子系统的突出优点是,抗干扰能力较强、传送信息量大、传输耗损小且工作可靠。光电二极管是光电子系统的电子器件。光电二极管(photodiode)是一种能够将光根据使用方式转换成电流或者电压信号的光探测器。常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 2、工作原理 光电二极管是将光信号转换成电流或电压信号的特殊二极管,它与常规二极管结构上基本相似,都具有一个PN结,但光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。其基本原理是当光照在二极管上时,被吸收的光能转换成电能。光电二极管工作在反向电压作用下,只通过微弱的电流(一般小于0.1微安),称为暗电流,有光照时,携带能量的光子进入PN结后,把能量传给共价键上的电子,使有些电子挣脱共价键,而产生电子-空穴对,称为光生载流子,因为光生载流子的数目是有限的,而光照前多子的数目远大于光生载流子的数目,所以光生载流子对多子的影响是很小的,但少子的数目少有比较大的影响,这就是为什么光电二极管是工作在反向电压下而不是正向电压下,于是在反向电压作用下被光生载流子影响而增加的少子参加漂流运动,在P区,光生电子扩散到PN结,如果P区厚度小于电子扩散长度,那么大部分光生电子将能穿过P区到达PN结,在N区也是相同的道理,也因此光电二极管在制作时,PN结的结深很浅,以促使少子的漂移。综上若光的强度越大,反向电流也就越大,这种特性称为光导电,而这种现象引起的电流称为光电流。总的来说光电二极管的工作是一个吸收的过程,它将光的变化转换成反向电流的变化,光照产生电流和暗电流的综合就是光电流,因此光电二极管的暗电流因尽量最小化来提器件对光的灵敏度,光的强度与光电流成正比,因而就可以把光信号转换成电信号。 图1基本工作原理

RPR220光电对管

硬件设计 系统总设计电路图如下图,PDF格式,Rrotel99格式。 各部分电路图及说明: 稳压电路:(上部分稳压至12V,下部分稳压至5V)

L298电机控制驱动:可以参考https://www.360docs.net/doc/b110350416.html,/read.php?tid=252&page=1&toread=1

电压比较器电路(光电对管检测电路): 可调电阻R3可以调节比较器的门限电压,经示波器观察,输出波形相当规则,可以直接够单片机查询使用。而且经试验验证给此电路供电的电池的压降较小。因此我们选择此电路作为我们的传感器检测与调理电路。

实物与分析 电源电路: 由于本系统需要电池供电,我们考虑了如下几种方案为系统供电。 方案1:采用10节1.5V干电池供电,电压达到15V,经7812稳压后给支流电机供电,然后将12V电压再次降压、稳压后给单片机系统和其他芯片供电。但干电池电量有限,使用大量的干电池给系统调试带来很大的不便,因此,我们放弃了这种方案。 方案2:采用3节4.2V可充电式锂电池串联共12.6V给直流电机供电,经过7812的电压变换后给支流电机供电,然后将12V电压再次降压、稳压后给单片机系统和其他芯片供电。锂电池的电量比较足,并且可以充电,重复利用,因此,这种方案比较可行。但锂电池的价格过于昂贵,使用锂电池会大大超出我们的预算,因此,我们放弃了这种方案。 方案3:采用12V蓄电池为直流电机供电,将12V电压降压、稳压后给单片机系统和其他芯片供电。蓄电池具有较强的电流驱动能力以及稳定的电压输出性能。虽然蓄电池的体积过于庞大,在小型电动车上使用极为不方便,但由于我们的车体设计时留出了足够的 空间,并且蓄电池的价格比较低。因此我们选择了此方案。 综上考虑,我们选择了方案3。这个黑呼呼的东西,让我们可爱的小车变得很难看。

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中

光电传感器电路

光电传感器电路设计 1、设计要求 利用光电传感器(光电对管)将机械旋转转化为电脉冲,光电对管实物如图1所示。 图1 光电对管实物图 2、电路设计 电路原理图如图2所示。 图2 光电传感器电路原理图 电路由四部分组成。 光电对管U1、电阻R1、电阻R2构成发射接收电路;比较器U2A、电阻R3、电阻R4、电阻R5、电阻R6构成反相输入的滞回比较器;比较器U2B、电阻R7、电阻R8构成反相器;发光二极管D1、电阻R9构成输出电路。 3、电路测试 测试电路如图3所示。 由变频器带动电机工作,将光电对管对准旋转的电机(电机上贴有反光带),处理电路由12V直流电源供电。

图3 测试电路 测试波形如图4所示(测试距离为4cm)。 (a)发射接收电路的输出信号(b)滞回比较器比较电压波形 (c)滞回比较器输出波形(d)反相器输出波形 图4 测试波形 4、PCB板绘制(板子大小限定为62mm*18mm) PCB图如图5所示。其中电阻采用0805封装,LM358采用DIP8封装。

图5 光电传感器电路PCB图 5、完成实物图 实物图如图6所示。 (a)未焊接的PCB板 (b)焊接好的PCB板 (c)板子的外加塑料壳 图6 实物图 6、小结 在本次电路设计中,主要的难点有两个。 一是参数的整定,主要是滞回比较器上下门限的选择。滞回比较器上下门限的选择跟发射接收电路的输出波形有关,而光电对管与旋转面的距离、旋转面的反光度、反光带所在位置、可能遇到的干扰等都会影响输出波形。 二是PCB板的绘制。本次绘制采用的是Altium Designer Summer 09软件(Protel99SE的升级版)。首先画好原理图,然后再导入到PCB中,没有的元件

相关文档
最新文档