半导体制造工艺流程课件PPT(共 105张)
合集下载
《半导体器件与工艺》课件

晶圆制备
切割
将大块单晶硅切割成小片,得到晶圆。
研磨
对晶圆表面进行研磨,以降低表面粗糙度。
抛光
通过化学和机械作用对晶圆表面进行抛光,使其 表面更加光滑。
薄膜沉积
物理气相沉积
通过物理方法将材料气化并沉积在晶圆表面,如真空 蒸发镀膜。
化学气相沉积
通过化学反应将材料沉积在晶圆表面,如金属有机化 学气相沉积。
有巨大的应用潜力。
制程技术进步
纳米尺度加工
随着制程技术的不断进步,半导体器件的特征尺寸不断缩小,目前已进入纳米尺度。纳米 尺度加工技术面临着诸多挑战,如表面效应、量子效应和隧穿效应等,需要不断探索新的 加工方法和材料体系。
异质集成技术
通过将不同材料、结构和工艺集成在同一芯片上,可以实现高性能、多功能和低成本的半 导体器件。异质集成技术需要解决材料之间的界面问题、应力问题和工艺兼容性问题等。
可靠性试验
对芯片进行各种环境条件下的可靠性试验,如温度循环、湿度、振动等。
失效分析
对失效的芯片进行失效分析,找出失效原因,以提高芯片的可靠性。
05 半导体工艺发展趋势与挑 战
新型材料的应用
01
硅基材料
作为传统的半导体材料,硅基材料在集成电路制造中仍占据主导地位。
随着技术的不断发展,硅基材料的纯度、结晶度和性能不断提升,为半
柔性电子技术
柔性电子技术是将电子器件制作在柔性基材上的技术,具有可弯曲、可折叠、可穿戴等优 点。柔性电子技术在智能终端、可穿戴设备、医疗健康等领域具有广泛的应用前景。
可靠性及成品率问题
可靠性问题
随着半导体器件的特征尺寸不断缩小,可靠 性问题日益突出。需要加强可靠性研究,建 立完善的可靠性评价体系,提高半导体器件 的长期稳定性。
半导体器件与工艺PPT课件

.
5
晶胞
在晶体材料中,对于长程有序的原子模式最基本的实体就是晶胞。 晶胞在三维结构中是最简单的由原子组成的重复单元,它给出了晶体 的结构。在一个晶体结构中,晶胞紧密地排列,因此存在共有原子。 共有原子非常重要,因为晶胞是通过它们来组成一个紧密连接在一起 的晶格结构的。在金刚石面心立方晶胞中每个角上的原子被8个晶胞 所共有,每个面上的原子被2个晶胞所共有。因此每个面心立方晶胞 包含4个完整原子。
.
18
硅中的晶体缺陷
位错 在单晶中,晶胞形成重复性结构。如果晶胞错位,这种情
况就叫做位错。位错可以在晶体生长和硅片制备过程中的任意 阶段产生。然而,发生在晶体生长之后的位错通常由作用在硅 片上的机械应力所造成,例如不均匀的受冷或受热以及超过硅 片承受范围的应力。
.
19
硅中的晶体缺陷
层错 层错与晶体结构有关,经常发生在晶体生长过程中。滑移
.
11
单晶硅生长—CZ法
坩埚里的硅被拉单晶炉加热,使用 电阻加热或射频(RF)加热线圈。电阻 加热用于制备大直径的硅锭。当硅被加 热时,它变成液体,叫做熔体。籽晶放 在熔体表面并在旋转过程中缓慢地拉起, 它的旋转方向与坩埚的旋转方向相反。 随着籽晶在直拉过程中离开熔体,熔体 上的液体会因表面张力而提高。籽晶上 的界面散发热量并向下朝着熔体的方向 凝固。随着籽晶旋转着从熔体里拉出,
.
22
硅片制备
整型处理 ■硅片定位边或定位槽 半导体业界传统上在硅单晶锭上
做一个定位边来标明晶体结构和硅片的晶向。主定位边标明 了晶体结构的晶向。还有一个次定位边标明硅片的晶向和导 电类型。
.
23
硅片制备
整型处理
■硅片定位边或定位槽 硅片定位边在200 mm及以上的硅片已被定位槽所取代。
半导体制造技术ppt

半导体制造的环保与安全
05
采用低能耗的设备、优化生产工艺和强化能源管理,以降低能源消耗。
节能设计
利用废水回收系统,回收利用生产过程中产生的废水,减少用水量。
废水回收
采用低排放的设备、实施废气处理技术,以减少废气排放。
废气减排
半导体制造过程中的环保措施
严格执行国家和地方的安全法规
安全培训
安全检查
半导体制造过程的安全规范
将废弃物按照不同的类别进行收集和处理,以便于回收利用。
废弃物处理和回收利用
分类收集和处理
利用回收技术将废弃物进行处理,以回收利用资源。
回收利用
按照国家和地方的规定,将无法回收利用的废弃物进行合法处理,以减少对环境的污染。
废弃物的合法处理
未来半导体制造技术的前景展望
06
新材料
随着人工智能技术的发展,越来越多的半导体制造设备具备了智能化控制和自主学习的能力。
半导体制造设备的最新发展
更高效的生产线
为了提高生产效率和降低成本,各半导体制造厂家正在致力于改进生产线,提高设备的联动性和生产能力。
更先进的材料和工艺
随着科学技术的发展,越来越多的先进材料和工艺被应用于半导体制造中,如石墨烯、碳纳米管等材料以及更为精细的制程工艺。
薄膜沉积
在晶圆表面沉积所需材料,如半导体、绝缘体或导体等。
封装测试
将芯片封装并测试其性能,以确保其满足要求。
半导体制造的基本步骤
原材料准备
晶圆制备
薄膜沉积
刻蚀工艺
离子注入
封装测试
各步骤中的主要技术
制造工艺的优化
通过对制造工艺参数进行调整和完善,提高产品的质量和产量。
制造工艺的改进
最新半导体制造工艺第1章绪论课件PPT

图1-9 PN结电容结构
1.2 基本半导体元器件结构
图1-10 MOS场效应晶体管电容结构
1.2 基本半导体元器件结构
1.2.2 有源器件结构 有源器件,如二极管和晶体管与无源元件在电子控制方式上
有很大差别,可以用于控制电流方向,放大小的信号,构成复杂的 电路。这些器件与电源相连时需要确定电极(+或-)。工作时利用 了电子和空穴的流动。 1.二极管的结构
图1-21 半导体芯片制造的关键工艺
1.4 集成电路制造阶段
(3)掩膜版制作 掩膜版中包括构成芯片的各层图形结构,现在最常 用的掩膜版技术是石英玻璃涂敷铬,在石英玻璃掩膜版表面的铬层 上形成芯片各层结构图形。 (4)装配与封装 芯片制造完成后,封装之前芯片要经过测试/拣选进 行单个芯片的电学测试,拣选出合格芯片和不合格芯片,并作出标 识,合格芯片包装在保护壳体内。 (5)终测 为了确保芯片的功能,要对每个被封装的集成电路进行测 试,以保证芯片的电学和环境特性参数满足要求,即保证发给用户 的芯片是合格芯片。
1.2 基本半导体元器件结构
图1-5 利用基区、发射区扩散形成电阻的结构
1.2 基本半导体元器件结构
图1-6 外延层电阻结构
1.2 基本半导体元器件结构
图1-7 MOS集成电路中的多晶硅电阻
1.2 基本半导体元器件结构
2.集成电路பைடு நூலகம்容结构
图1-8 集成电路中电容的结构
1.2 基本半导体元器件结构
图1-15 CMOS反相器电路的电路图、顶视图和剖面图
1.3 半导体器件工艺的发展历史
图1-16 生长型晶体管生长示意图
1.3 半导体器件工艺的发展历史
图1-17 合金结结型晶体管示意图
1.2 基本半导体元器件结构
图1-10 MOS场效应晶体管电容结构
1.2 基本半导体元器件结构
1.2.2 有源器件结构 有源器件,如二极管和晶体管与无源元件在电子控制方式上
有很大差别,可以用于控制电流方向,放大小的信号,构成复杂的 电路。这些器件与电源相连时需要确定电极(+或-)。工作时利用 了电子和空穴的流动。 1.二极管的结构
图1-21 半导体芯片制造的关键工艺
1.4 集成电路制造阶段
(3)掩膜版制作 掩膜版中包括构成芯片的各层图形结构,现在最常 用的掩膜版技术是石英玻璃涂敷铬,在石英玻璃掩膜版表面的铬层 上形成芯片各层结构图形。 (4)装配与封装 芯片制造完成后,封装之前芯片要经过测试/拣选进 行单个芯片的电学测试,拣选出合格芯片和不合格芯片,并作出标 识,合格芯片包装在保护壳体内。 (5)终测 为了确保芯片的功能,要对每个被封装的集成电路进行测 试,以保证芯片的电学和环境特性参数满足要求,即保证发给用户 的芯片是合格芯片。
1.2 基本半导体元器件结构
图1-5 利用基区、发射区扩散形成电阻的结构
1.2 基本半导体元器件结构
图1-6 外延层电阻结构
1.2 基本半导体元器件结构
图1-7 MOS集成电路中的多晶硅电阻
1.2 基本半导体元器件结构
2.集成电路பைடு நூலகம்容结构
图1-8 集成电路中电容的结构
1.2 基本半导体元器件结构
图1-15 CMOS反相器电路的电路图、顶视图和剖面图
1.3 半导体器件工艺的发展历史
图1-16 生长型晶体管生长示意图
1.3 半导体器件工艺的发展历史
图1-17 合金结结型晶体管示意图
最新半导体制造工艺第2章-半导体制造工艺概况PPT课件

2.4 CMOS器件制造工艺
表2-2 20世纪80年代的CMOS工艺流程
2.4 CMOS器件制造工艺
2.4.2 20世纪90年代的CMOS工艺技术 数字通信设备、个人计算机和互联网有关的应用推进了CMOS
工艺技术的发展。特征尺寸从0.8μm到0.18μm,晶圆直径从150m m到300mm ,原有的制造工艺已无法实现如此小的特征尺寸图形的 制作。许多因素都会影响器件的制作,包括衬底中的杂质含量及缺 陷密度、多层金属化之后造成的表面起伏、光刻技术等。20世纪90 年代CMOS工艺技术具有以下特点: 1)器件制作在外延硅上(这样可以消除在CZ法拉单晶过程中的C、O)。 2)采用浅槽隔离技术(取代了局部氧化隔离技术)。
2.2 器件的隔离
图2-2 绝缘体隔离
2.2 器件的隔离
1.局部氧化隔离(LOCOS)工艺 1)热生长一层薄的垫氧层,用来降低氮化物与硅之间的应力。 2)淀积氮化物膜(Si3N4),作为氧化阻挡层。 3)刻蚀氮化硅,露出隔离区的硅。 4)热氧化,氮化硅作为氧化阻挡层保护下面的硅不被氧化,隔离区 的硅被氧化。 5)去除氮化硅,露出器件区的硅表面,为制作器件做准备。
2.4 CMOS器件制造工艺
3)使用侧墙隔离(防止对源漏区进行更大剂量注入时,源漏区的杂质 过于接近沟道以致可能发生源漏穿透),钛硅化合物和侧墙隔离解决 了硅铝氧化问题。 4)多晶硅栅和采用钨硅化合物和钛硅化合物实现局部互连,减小了 电阻并提高了器件速度。 5)光刻技术方面使用G-line(436nm)、I-line(365nm)、深紫外线DUV(2 48nm)光源曝光,并使用分辨率高的正性光刻胶,用步进曝光取代整 体曝光。 6)用等离子体刻蚀形成刻蚀图形。 7)湿法刻蚀用于覆盖薄膜的去除。 8)采用立式氧化炉,能使硅片间距更小,更好地控制沾污。
半导体芯片制造技术晶圆制备课件

4.氧含量
控制硅锭中的氧含量水平的均匀性是非常重要 的,而且随着更大的直径尺寸,难度也越来越大。 少量的氧能起到俘获中心的作用,它能束缚硅中的 沾染物。然而,硅锭中过量的氧会影响硅的机械和 电学特性。例如,氧会导致P-N结漏电流的增加,也 会增大MOS器件的漏电流。
硅中的氧含量是通过横断面来检测的,即对硅 晶体结构进行成分的分析。一片有代表性的硅被放 在环氧材料的罐里,然后研磨并抛平使其露出固体 颗粒结构。用化学腐蚀剂使要识别的特定元素发亮 或发暗。样品准备好后,使用透射电镜(TEM)描述 晶体的结构,目前硅片中的氧含量被控制在24到 33ppm。
一旦晶体在切割块上定好晶向,就沿着轴滚磨出 一个参考面,如图4-4所示。
图4-4定位面研磨
图4-5 硅片的类型标志
四、切片
单晶硅在切片时,硅片的厚度,晶向,翘曲度和 平行度是关键参数,需要严格控制。晶片切片的要求 是:厚度符合要求;平整度和弯曲度要小,无缺损, 无裂缝,刀痕浅。
单晶硅切成硅片,通常采用内圆切片机或线切片 机。
图4-18 硅片变形
2.平整度
平整度是硅片最主要的参数之一,主要是因为 光刻工艺对局部位置的平整度是非常敏感的。硅片 平整度是指在通过硅片的直线上的厚度变化。它是 通过硅片的上表面和一个规定参考面的距离得到的。 对一个硅片来说,如果它被完全平坦地放置,参考 面在理论上就是绝对平坦的背面,比如利用真空压 力把它拉到一个清洁平坦的面上,如图4-19所示, 平整度可以规定为硅片上一个特定点周围的局部平 整度,也可以规定为整体平整度,它是在硅片表面 的固定质量面积(FQA)上整个硅片的平整度。固定 质量面积不包括硅片表面周边的无用区域。测量大 面积的平整度要比小面积难控制。
然而,晶圆具有的一个特性却限制了生产商随 意增加晶圆的尺寸,那就是在芯片生产过程中,离 晶圆中心越远就越容易出现坏点,因此从晶圆中心 向外扩展,坏点数呈上升趋势。另外更大直径晶圆 对于单晶棒生长以及芯片制造保持良好的工艺控制 都提出了更高的要求,这样我们就无法随心所欲地 增大晶圆尺寸。
半导体制造工艺技术(PPT 68页)

本章将讨论薄膜淀积的原理、过程和所 需的设备,重点讨论SiO2和Si3N4等绝缘材料薄 膜以及多晶硅的淀积。金属和金属化合物薄膜 的淀积将在第13章中介绍。
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
目标
通过本章的学习,将能够:
1. 描述出多层金属化。叙述并解释薄膜生长的三个阶段。 2. 提供对不同薄膜淀积技术的慨况。 3. 列举并描述化学气相淀积(CVD)反应的8个基本步骤,包
Figure 11.10
电信学院微电子教研室
CVD 反应中的压力
如果CVD发生在低压下,反应气体通过边 界层达到表面的扩散作用会显著增加。这会增 加反应物到衬底的输运。在CVD反应中低压的 作用就是使反应物更快地到达衬底表面。在这 种情况下,速度限制将受约于表面反应,即在 较低压下CVD工艺是反应速度限制的。
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
MSI时代nMOS晶体管的各层膜
顶层
垫氧化层
Poly
n+
金属前氧化层 侧墙氧化层
栅氧化层
ILD 场氧化层
n+
p- epi layer
氮化硅
氧化硅
氧化硅 多晶
p+
金属
金属
p+
n-well
p+ silicon substrate
Photo 11.3
电信学院微电子教研室
CVD 化学过程
• 高温分解: 通常在无氧的条件下,通过加热化 合物分解(化学键断裂);
2. 光分解: 利用辐射使化合物的化学键断裂分解; 3. 还原反应: 反应物分子和氢发生的反应; 4. 氧化反应: 反应物原子或分子和氧发生的反应; • 氧化还原反应: 反应3与4地组合,反应后形成两
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
目标
通过本章的学习,将能够:
1. 描述出多层金属化。叙述并解释薄膜生长的三个阶段。 2. 提供对不同薄膜淀积技术的慨况。 3. 列举并描述化学气相淀积(CVD)反应的8个基本步骤,包
Figure 11.10
电信学院微电子教研室
CVD 反应中的压力
如果CVD发生在低压下,反应气体通过边 界层达到表面的扩散作用会显著增加。这会增 加反应物到衬底的输运。在CVD反应中低压的 作用就是使反应物更快地到达衬底表面。在这 种情况下,速度限制将受约于表面反应,即在 较低压下CVD工艺是反应速度限制的。
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
MSI时代nMOS晶体管的各层膜
顶层
垫氧化层
Poly
n+
金属前氧化层 侧墙氧化层
栅氧化层
ILD 场氧化层
n+
p- epi layer
氮化硅
氧化硅
氧化硅 多晶
p+
金属
金属
p+
n-well
p+ silicon substrate
Photo 11.3
电信学院微电子教研室
CVD 化学过程
• 高温分解: 通常在无氧的条件下,通过加热化 合物分解(化学键断裂);
2. 光分解: 利用辐射使化合物的化学键断裂分解; 3. 还原反应: 反应物分子和氢发生的反应; 4. 氧化反应: 反应物原子或分子和氧发生的反应; • 氧化还原反应: 反应3与4地组合,反应后形成两
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、IC构装制程
• IC構裝製程(Packaging):利用塑膠 或陶瓷包裝晶粒與配線以成積體電路
• 目的:是為了製造出所生產的電路的保 護層,避免電路受到機械性刮傷或是高 溫破壞。
半导体制造工艺分类
MOS型
双极型
PMOS型 NMOS型 CMOS型 饱和型
非饱和型
BiMOS TTL I2L ECL/CML
SiO2
P+ N-epi P+ N-epi P+
N+-BL
N+-BL
P-SUB
涂胶—烘烤---掩膜(曝光)---显影---坚膜—蚀刻—清洗 —去膜--清洗—P+扩散(B)
第三次光刻—P型基区扩散孔
决定NPN管的基区扩散位置范围 SiO2
外延层淀积
1。VPE(Vaporous phase epitaxy) 气相外延生长硅 SiCl4+H2→Si+HCl 2。氧化
Tepi>Xjc+Xmc+TBL-up+tepi-ox SiO2
N-epi
N+-BL
N+-BL
P-SUB
第二次光刻—P+隔离扩散孔
• 在衬底上形成孤立的外延层岛,实现元件的隔离.
半导体制造工艺流程
半导体相关知识
• 本征材料:纯硅 9-10个9
250000Ω.cm
• N型硅: 掺入V族元素--磷P、砷As、锑 Sb
• P型硅: 掺入 III族元素—镓Ga、硼B
• PN结:
P
-
-
++ + ++
N
半导体元件制造过程可分为
• 前段(Front End)制程 晶圆处理制程(Wafer Fabrication;简称 Wafer Fab)、 晶圆针测制程(Wafer Probe);
E
p+
N P
NPN
PNP
NPN晶体管刨面图
SiO2
B
N+ E
AL C
P
P+
P+
N-epi
N+-BL
P-SUB
1.衬底选择
P型Si ρ 10Ω.cm 111晶向,偏离2O~5O
晶圆(晶片) 晶圆(晶片)的生产由砂即(二氧化硅)开始, 经由电弧炉的提炼还原成 冶炼级的硅,再经由 盐酸氯化,产生三氯化硅,经蒸馏纯化后,透 过慢速分 解过程,制成棒状或粒状的「多晶 硅」。一般晶圆制造厂,将多晶硅融解 后,再 利用硅晶种慢慢拉出单晶硅晶棒。一支85公分 长,重76.6公斤的 8寸 硅晶棒,约需 2天半 时间长成。经研磨、抛光、切片后,即成半导 体之原料 晶圆片
• A 铝栅工艺 • B 硅 栅工艺 • 其他分类 1 、(根据沟道) PMOS、NMOS、CMOS 2 、(根据负载元件)E/R、E/E、E/D
半导体制造工艺分类
• 三 Bi-CMOS工艺: A 以CMOS工艺为基础 P阱 N阱
B 以双极型工艺为基础
双极型集成电路和MOS集成电 路优缺点
双极型集成电路 中等速度、驱动能力强、模拟精度高、功耗比 较大 CMOS集成电路
二、晶圆针测制程
• 经过Wafer Fab之制程後,晶圆上即形成 一格格的小格 ,我们称之为晶方或是晶粒 (Die),在一般情形下,同一片晶圆上 皆制作相同的晶片,但是也有可能在同一 片晶圆 上制作不同规格的产品;这些晶圆 必须通过晶片允收测试,晶粒将会一一经 过针测(Probe)仪器以测试其电气特性, 而不合格的的晶粒将会被标上记号(Ink Dot),此程序即 称之为晶圆针测制程 (Wafer Probe)。然後晶圆将依晶粒 为单位分割成一粒粒独立的晶粒
• 後段(Back End) 构装(Packaging)、 测试制程(Initial Test and Final Test)
一、晶圆处理制程
• 晶圆处理制程之主要工作为在矽晶圆上制作电路与 电子元件(如电晶体、电容体、逻辑闸等),为上 述各制程中所需技术最复杂且资金投入最多的过程 , 以微处理器(Microprocessor)为例,其所需处理 步骤可达数百道,而其所需加工机台先进且昂贵, 动辄数千万一台,其所需制造环境为为一温度、湿 度与 含尘(Particle)均需控制的无尘室(CleanRoom),虽然详细的处理程序是随著产品种类与所 使用的技术有关;不过其基本处理步骤通常是晶圆 先经过适 当的清洗(Cleaning)之後,接著进行氧 化(Oxidation)及沈积,最後进行微影、蚀刻及离 子植入等反覆步骤,以完成晶圆上电路的加工与制 作。
第一次光刻—N+埋层扩散孔
• 1。减小集电极串联电阻 • 2。减小寄生PNP管的影响
要求:
1。 杂质浓度大
SiO2
2。高温时在Si中的扩散系数小,
以减小上推 3。 与衬底晶格匹配好,以减小应力 N+-BL
P-SUB
涂胶—烘烤---掩膜(曝光)---显影---坚膜—蚀刻—清洗 —去膜--清洗—N+扩散(P)
低的静态功耗、宽的电源电ห้องสมุดไป่ตู้范围、宽的输出电压幅 度(无阈值损失),具有高速度、高密度潜力;可与 TTL电路兼容。电流驱动能力低
半导体制造环境要求
• 主要污染源:微尘颗粒、中金属离子、有 机物残留物和钠离子等轻金属例子。
• 超净间:洁净等级主要由 微尘颗粒数/m3
0.1um I级 35 10 级 350 100级 NA 1000级 NA
衬底制备 一次氧化 隐埋层光刻 隐埋层扩散
外延淀积
基区光刻
再氧化
隔离扩散
隔离光刻
基区扩散 再分布及氧化 发射区光刻 背面掺金
热氧化 发射区扩散
铝合金
反刻铝
铝淀积
接触孔光刻 再分布及氧化
淀积钝化层 压焊块光刻
中测
横向晶体管刨面图
B
C E
P+
P N
P
P+
P
PNP
纵向晶体管刨面图
CBE P
N
N+ C
B
0.2um 0.3um 7.5 3 75 30 750 300
NA NA
0.5um 1 10 100 1000
5.0um NA NA NA 7
半导体元件制造过程
前段(Front End)制程---前工序
晶圆处理制程(Wafer Fabrication; 简称 Wafer Fab)
典型的PN结隔离的掺金TTL电路工艺流程
半导体制造工艺分类
• 一 双极型IC的基本制造工艺: • A 在元器件间要做电隔离区(PN结隔离、
全介质隔离及PN结介质混合隔离) ECL(不掺金) (非饱和型) 、
TTL/DTL (饱和型) 、STTL (饱和型) B 在元器件间自然隔离
I2L(饱和型)
半导体制造工艺分类
• 二 MOSIC的基本制造工艺: 根据栅工艺分类