半波损失与增透膜原理

半波损失与增透膜原理
半波损失与增透膜原理

半波损失与增透膜原理

这是2010年10月在仪器信息网上由版主祥子发起的一个讨论,我参与讨论,但总觉得还不够深入。转载到这里,希望和更多的同行讨论这个问题。https://www.360docs.net/doc/b114180807.html,/shtml/20101117/2932956/index.shtml

关于半波损失或者相位突变,版主的论述比较详细,转载如下(略有编辑),并提出我的问题(红色字体部分):

增透膜中的半波损失

一。基本概念

图1所示为增透膜示意图,其中n0、n1、n2分别表示空气、膜层和玻璃的折射率,如空气的折射率n0=1,MgF2的折射率n1=1.38,冕牌玻璃的折射率n2=1.52。n0相对于n1就是光疏介质,n1相对于n2就是光疏介质。当入射光线SA从no射入n1时,在no和n1的界面反射,由于n0

A。所谓“半波损失",就是当光从折射率小的光疏介质射向折射率大的光密介质时,在入射点,反射光相对于入射光有相位突变π,即在入射点反射光与入射光的相位差为π,由于相位差π与光程差λ /2相对应,它相当于反射光多走了半个波长λ /2的光程,故这种相位突变π的现象叫做半波损失。

问题1:这是经典的理论。为什么光从光疏介质入射到光密介质时,反射光相对于入射光会产生半个波长的变化?这种半波突变的机理是什么?

B。半波损失仅存在于当光从光疏介质射向光密介质时的反射光中,折射光没有半波损失。当光从光密介质射向光疏介质时,反射光也没有半波损失。

以图1为例,光从n1射向n0,在n0和n1界面上,反射光没有半波损失。半波损失概念为什么很重要,是因为“它相当于反射光多走了半个波长λ /2的光程”,这是因为在光的干涉研究中,两个光线的光程不同,干涉的效果不同。以图1为例,因为光线1,2,3都在某个界面有半波损失,所以,在考虑光线1,2,3之间的干涉时,它们的光程都要再加上半个波长。

问题2:为何在光密介质到光疏介质的反射过程与光透射过程中没有波长或者相位变化?

在优酷网上,有个演示半波损失的例子:https://www.360docs.net/doc/b114180807.html,/v_show/id_XNDI3MjM5MzI=.html

二。增透膜中的半波损失

1.反射光组中的半波损失

对增透膜而言n0<n1<n2(如空气的折射率n0=1,MgF2的折射率n1=1.38,冕牌玻璃的折射率n2=1.52),光线在由空气进入薄膜(光线由光疏到光密介质),和由薄膜进入玻璃时,上下两面反射均出现半波损失,即产生相位π的突变.因此,反射光组1、2、3…中由于反射引起的相位差为零.如果相邻两反射光互相减弱。这里有两个相位差,反射引起的半波相位差和薄膜厚度引起的相位差,薄膜引起的相位差是增透膜的关键。

则有光程差Δ=2dn1cosγ=(k+(1/2))λ0,

其中λ0为光在空气中的波长,λ1光在n1中的波长,d为薄膜的厚度,γ为光在薄膜中的折射角,k=0,1,2,3….当光线SA正射薄膜时,γ=0,则

Δ=2dn1=(k+(1/2))λ0,n1d=(k+(1/2))λ0/2,

又n1=λ0/λ1,所以薄膜厚度为d=((2k+1)/4)λ1,当k=0时,d=λ1/4,

即增透膜薄膜厚度d为入射光在薄膜中波长的1/4.

从上述关于反射干涉光的描述过程可以看出:入射光首先在界面上反射,反射的光带走能量,即能量离开了介质界面,然后由于相位差而产生干涉,在一定的条件下将能量相互抵消。

问题3:反射光1和反射光2在离开界面时是有能量的,干涉后能量到哪里去了?根据能量守恒,这部分能量应该转换成其他形式或者转移,但到哪里去了?

2.透射光组中的半波损失

由于反射光组1、2、3…的互相抵消,就大大减少了反射光组的能量.同样因为n0<n1<n2,所以光在薄膜中连续两次反射时,只在薄膜下表面出现半波损失,产生相位π的突变.

直接由薄膜下表面透射的光(如光线Ⅰ)和在薄膜中连续两次反射后再透射的光(如光线Ⅱ),它们的相位差为π。同理可知在透射光组Ⅰ、Ⅱ、Ⅲ…中相邻两透射光线由于反射引起的相位差均为π.

当反射光线1、2、3…互相抵消时,透射光线Ⅰ、Ⅱ、Ⅲ…中相邻的两透射光线的光程差也为(光线正射时):Δ=2dn1,再加上相位差π或附加光程差±λ0/2(在此可取+λ0/2),所以相邻的两透射光线将是互相加强,从而使透射光的能量也得以加强.

在增透膜实现增透的过程中不难发现:反射光组1、2、3…的互相抵消与透射光组Ⅰ、Ⅱ、Ⅲ…的互相加强形成了互补效应,体现出干涉效果只是将能量重新分配,而总能量仍然守恒.

因为能量守恒,所以,反射光相互减弱的能量跑到透射光中了,不然,减弱的能量去哪里了呢?

从上述对透射光的描述过程可以发现:这里所谓的加强只是透射光Ⅰ、Ⅱ、Ⅲ之间相互加强,并不能推论到由于反射光相互减弱,从而使得透射光加强,或者透射光相对于入射光加强。反射光与透射光的互补效应,从上述论述过程中难以成立。

问题4:有无实验证明透射光与反射光的互补效应?或者实验证明上述过程能量分布过程?这是我们理解中增透膜的工作基础。

第3个问题实质是:相消的反射光能量哪里去了?

由界面处反射的光1、2、3,在离开界面的时刻,具有相应的光振动幅值a1,a2,a3,其对应能量分别为e1,e2,e3.

离开界面处以后,其由于半波长差相互干涉而消失,那么他们的能量哪里去了?

好比两辆相对而行的车,在碰撞前各自具有动能,相互碰撞后,各自的都能转化为自身的变形的“内部能量”。那上述相互干涉相消后呢?

同样的问题,透射光由于整波长差,光振动幅值相互叠加,能量增加。这是说叠加后的波幅振动大于3个分幅值,叠加后的波能量大于3个各自的波振动能量,但叠加波幅能量仍旧小于界面前的入射波各能量之和。所以说透射能量增加是没有道理的。

牛顿环思考题及答案

(1)牛顿环的中心在什么情况下是暗的,在什么情况下是亮的? 中心处是暗斑,这是因为中心接触处的空气厚度,而光在平面玻璃面上反射时有半波损失,所以形成牛顿环中心处为暗斑(用反射光观察时)。当没有半波损失时则为亮斑。 当有半波损失时为暗纹,没有半波损失时为亮纹。 (2)实验中为什么用测量式 λ )(42 2 n m D D R n m --= ,而不用更简单的λ K r R k 2 = 函数关系式求出 R 值? 因为用后面个关系式时往往误差较大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触点成为一个圆面,干涉环中心为一暗斑,所以无法确定环的几何中心。所以比较准确的方法是测量干涉环的直径。测出个对应k 环环直径Dk ,由rk 2 =k λR 可知Dk 2=4R λk,又由于灰尘等存在,是接触点的dk ≠0,其级数也是未知的,则是任意暗环的级数和直径Dk 难以确定,故取任意两个不相邻的暗环,记其直径分别为Dm 和Dn(m>n),求其平方差即为 Dm 2-Dn 2=4(m-n)R λ,则R=(Dm 2-Dn 2)/4(m-n) λ (3) 在本实验中若遇到下列情况,对实验结果是否有影响?为什么? ①牛顿环中心是亮斑而非暗斑。 ②测各个D m 时,叉丝交点未通过圆环的中心,因而测量的是弦长而非真正的直径。 1. 环中心出现亮斑是因为球面和平面之间没有紧密接触(接触处有尘埃,或有破损或磨毛),从而产生了附加光程差。这对测量结果并无影响(可作数学证明)。 2.( 提示:从左图A ,看能否证 明:2 2 2 2 n m n m D D d d -=-) 没有影响.可能的附加光程差会导致中心不是暗点而是亮斑,但在整个测量过程中附加光程差是恒定的,因此可以采用不同暗环逐差的方式消除 (4)在测量过程中,读数显微镜为什么只准单方向前进,而不准后退? 会产生回程误差,即测量器具对同一 个尺寸进行正向和反向测量时,由于 结构上的原因,其指示值不可能完全相同,从而产生误差. d d m Dn Dm h r n r m n 图A R d n =1 H 图B

单、双、多层增透膜的原理及应用

单、双、多层增透膜的原理及应用 (转载自网络并整理) ? 单层λ/4增透膜 λ/4的光学增透膜(下面讨论时光学元件用玻璃来代替, 初始入射介质用空气来代替), 一般为在玻璃上镀一层光学厚度为λ/4的薄膜,且薄膜的折射率大于空气的折射率, 小于玻璃的折射率由菲涅耳公式知, 光线垂直人射时, 反射光在空气一薄膜界面和薄膜一玻璃界面都有半波损失设空气、镀膜、玻璃的折射率分别为n0,n1,n2 且n2>n1>n0定义R01,T01为空气-薄膜界面的反射率与透射率,R01,T01为薄膜-空气界面的反射率与透射率,R12,T12为薄膜-玻璃界面的反射率与透射率, R21,T21为玻璃-薄膜界面的反射率与透射率如图4-1所示示, 为了区分人射光线和反射光线, 这里将入射光线画成斜入射,图4-1中反射光线1和2的光程差为λ/2, 这样反射光便能完全相消由菲涅耳公式知道, 光垂直通过界面时, 反射率R 和透射率T 与折射率n 的关系为: 2 212 11221122 1 21221 122 101 00110012 1011001)(41) ()(41) (n n n n R T T n n n n R R n n n n R T T n n n n R R += -==+-==+= -==+-== 设人射光的光强为I0, 则反射光线1的光强I1=I0R0, 反射光线2的光强I2=I0I01R12T10。余下的反射光的光强中会出现反射率的平方, 因为反射率都比较小, 故可不再考虑。λ/4的光学增透膜使反射光线1与反射光线2的光程差为δ=2n1d1=λ/2, 故相位差为л, 由干涉理论知, 干涉后的光强为: 212010102121)(cos R T R I I I I I I p -=++=π 因为折射率n0,n1,n2比较接近,例如n0=1,n2=1.5的界面,T=96%,故可近似地取T01和T10为1,若使Ip 为0 ,则有R01=R12,即: 21 21220101)()( n n n n n n n n +-=+-

增透膜的原理及应用

增透膜的原理及应用 陕西省安塞县安塞高级中学物理教研组贺军 摘要:在光学元件中,由于元件表面的反射作用而使光能损失,为了减少元件表面的反射损失,常在光学元件表面镀层透明介质薄膜,这种薄膜就叫增透膜。本文分别从能量守恒的角度对增透膜增加透射的原理给予定性分析;根据菲涅尔公式和折射定律对增透膜增加透射的原理给予定量解释;利用电动力学的电磁理论对增透膜增加透射的原理给予理论解释。同时对增透膜的研究和应用现状作一介绍。 关键词:增透膜;干涉;增透膜材料;镀膜技术 1前言 在日常生活中,人们对光学增透膜的理解,存在着一些模糊的观念。这些模糊的观念不仅在高中生中有,而且在大学生中也是存在的。例如,有不少人认为入射光从增透膜的上、下表面反射后形成两列反射光,因为光是以波的形式传播的,这两列反射光干涉相消,使整个反射光减弱或消失,从而使透射光增强,透射率增大。然而他们无法理解:反射回来的两列光不管是干涉相消还是干涉相长,反射光肯定是没有透射过去,因增加了一个反射面,反射回来的光应该是多了,透射过去的光应该是少了,这样的话,应当说增透膜不仅不能增透,而且要进一步减弱光的透射,怎么是增强透射呢?也有人对增透膜的属性和技术含量不甚了解,对它进行清洁时造成许多不必要的损坏。随着人类科学技术的飞速发展,增透膜的应用越来越广泛。因此,本文利用光学及其他物理学知识对增透膜原理给以全面深入的解释,同时对增透膜的研究和应用现状作一介绍。让人们对增透膜有一个全面深入的了解,进而排除在应用时的无知感和迷惑感。 2增透原理 2.1 定性分析 光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。 这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀膜后,在不考虑膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而所镀膜的作用是使反射光与透射光的能量重新分配。对增透膜而言,分配的结果使反射光的能量减小,透射光的能量增大。由此可见,增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小。光就有这样的特性:通过改变反射区的光强可以改变透射区的光强。 2.2 定量描述光从一种介质反射到另一种介质时,在两种介质的交界面上将发生反射和折射,把 反射光强度与入射光强度的比值叫做反射率。用表示,,和分别表示反射光和入射光的振幅。 设入射的光强度为1,则反射光的强度为,在不考虑吸收及散射情况下,折射光的强度为(1-ρ)。根据菲涅尔公式和折射定律可知:当入射角很小时,光从折射率n1的介质射向折射率n2介质,反射率 (1) 例如光线由很小的入射角从空气射入折射率为 1.8的介质时,则反射率为

基础物理学答案

第三篇 波动和波动光学 第九章 振动和波动基础 思考题 9-1 符合什么规律的运动是简谐振动、简谐振动的特征量由什么决定? 答:某一物理量在某一量值值附近随时间作周期性往复变化的运动是简谐运动, 或者是描述 系统的物理量ψ遵从微分方程ψωψ 22 2-=dt d , 则该系统的运动就是简谐运动. 其特征量为振幅(由初始状态决定),频率(由做简谐振动系统的物理性质决定),初相位(由振动的初始状态决定). 9-2 说明下列运动是不是谐振动: (1)完全弹性球在硬地面上的跳动; (2)活塞的往复运动; (3)如本问题图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短); (4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动; (5)一质点做匀速圆周运动,它在直径上的投影点的运动。 (6)小磁针在地磁的南北方向附近摆动。 答:简谐振动的运动学特征是:振动物体的位移(角位移)随时间按余弦或正弦函数规律变化;动力学特征是:振动物体所受的合力(合力矩)与物体偏离平衡位置的位移(角位移) 成正比而反向。 从能量角度看,物体在系统势能最小值附近小范围的运动是简谐振动。所以: (1)不是简谐运动,小球始终受重力,不满足上述线性回复力特征。 (2)不是简谐振动。活塞所受的力与位移成非线性关系,不满足上述动力学特征。 (3)是简谐振动。小球只有在“小幅度”摆动时才满足上述特征。 (4)是简谐振动。 (5)是简谐振动。因为投影点的方程符合物体的位移(角位移)随时间按余弦或正弦函数规律变化 (6)是简谐振动。小磁针只有在“小幅度”摆动时才满足上述特征。 9-3 一弹簧振子由最左位置开始摆向右方,在最左端相位是多少?过中点、达右端、再回中点、返回左端等各处的相位是多少?初相位呢?若过中点向左运动的时刻开始计时,再回答以上各问。 答:在最左端相位是π 思考题 9-2 图

半波损失的条件

目录半波损失 定义 半波损失理论的应用 半波损失的原因 定义 光从光疏介质射向光密介质时反射过程中,如果反射光在离开反射点时的振动方向相对于入射光到达入射点时的振动方向恰好相反,这种现象叫做半波损失。 从波动理论知道,波的振动方向相反相当于波多走(或少走)了半个波长的光程。入射光在光疏媒质中前进,遇到光密媒质界面时,在掠射或垂直入射2种情况下,在反射过程中产生半波损失,这只是对光的电场强度矢量的振动而言。如果入射光在光密媒质中前进,遇到光疏媒质的界面时,不产生半波损失。不论是掠射或垂直入射,折射光的振动方向相对于入射光的振动方向,永远不发生半波损失。 光的干涉现象是有关光的现象中的很重要的一部分,而只要涉及到光的干涉现象,半波损失就是一个不得不考虑的问题。 光在不同介质表面反射时,在入射点处,反射光相对于入射光来说,可能存在半波损失,半波损失可以通过直观的实验现象——干涉花样——来得到验证。 半波损失理论的应用 半波损失理论在实践生活中有很重要的应用,如:检查光学元件的表面,光学元件的表面镀膜、测量长度的微小变化以及在工程技术方面有广泛的应用。 半波损失的原因 在洛埃镜实验中,如果将屏幕挪进与洛埃镜相接触。接触处两束相干波的波程差为零,但实验发现接触处不是明条纹,而是暗条纹。这一事实说明洛埃镜实

验中,光线自空气射向平面镜并在平面镜上反射后有了量值为∏的位相突变,这也相当于光程差突变了半个波长。 光在反射时为什么会产生半波损失呢?这是和光的电磁本性有关的,可通过菲涅耳公式来解释。 在任何时刻,我们都可以把入射波、反射波和折射波的电矢量分成两个分量,一个平行入射面,另一个垂直入射面。有关各量的平行分量和垂直分量依次用指标p和s表示。以 i1、i1´ 和i2分别表示入射角、反射角和折射角,它们确定了各波的传播方向。以A1、A1´、A2来依次表示入射波、反射波和折射波的电矢量的振幅,它们的分量相应就是Ap1、Ap1´、Ap2和As1、As1´、As2。但由于三个波的传播方向各不相同,必须分别规定各分量的某一方向为正,这种规入射光在光疏介质(n1小)中前进,遇到光密介质(n2大)的界面时定可任意(只要在一个问题的全部讨论过程中始终采取同一种正方向选择)。

减反射膜原理

减反射膜原理 减反射膜又称增透膜、AR膜、AR片、减反射膜、AR滤光片,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低的薄膜。如果膜层的光学厚度是某一波长的四分之一,相邻两束光的光程差恰好为π,即振动方向相反,叠加的结果使光学表面对该波长的反射光减少。适当选择膜层折射率,这时光学表面的反射光可以完全消除。一般情况下,采用单层增透膜很难达到理想的增透效果,为了在单波长实现零反射,或在较宽的光谱区达到好的增透效果,往往采用双层、三层甚至更多层数的减反射膜。减反射膜是应用最广、产量最大的一种光学薄膜,因此,它至今仍是光学薄膜技术中重要的研究课题,研究的重点是寻找新材料,设计新膜系,改进淀积工艺,使之用最少的层数,最简单、最稳定的工艺,获得尽可能高的成品率,达到最理想的效果。对激光薄膜来说,减反射膜是激光损伤的薄弱环节,如何提高它的破坏强度,也是人们最关心的问题之一。 光具有波粒二相性,即从微观上既可以把它理解成一种波、又可以把他理解成一束高速运动的粒子(注意,这里可千万别把它理解成一种简单的波和一种简单的粒子。它们都是微观上来讲的。红光波的波长=0.750微米紫光波长=0.400微米。而一个光子的质量是 6.63E-34 千克. 如此看来他们都远远不是我们所想想的那种宏观波和粒子.) 增透膜的原理是把光当成一种波来考虑的,因为光波和机械波一样也具有干涉的性质。 在镜头前面涂上一层增透膜(一般是"氟化钙",微溶于水),如果膜的厚度等于红光(注意:这里说的是红光)在增透膜中波长的四分之一时,那么在这层膜的两侧反射回去的红光就会 发生干涉,从而相互抵消,你在镜头前将看不到一点反光,因为这束红光已经全部穿过镜头了. 为什么我从来没有看到没有反光的镜头? 原因很简单,因为可见光有“红、橙、黄、绿、蓝、靛、紫”七种颜色,而膜的厚度是唯一的,所以只能照顾到一种颜色的光让它完全进入镜头,一般情况下都是让绿光全部进入的,这种情况下,你在可见光中看到的镜头反光其颜色就是蓝紫色,因为这反射光中已经没有了绿光。膜的厚度也可以根据镜头的色彩特性来决定。 定义及其设计: 二十世纪三十年代发现的增透膜促进了薄膜光学的早期发展.对于技术光学的推动来说,在所有的光学薄膜中,增透膜也起着最重要的作用.直至今天,就其生产的总量来说,它仍然超过所有其他的薄膜因此,研究增透膜的设计和制备教术,对于生产实践有着重要的意义. 我们都知道,当光线从折射率n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射.如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R为透射率为 透射率为:

增透膜的原理及应用

增透膜的原理及应用 摘要:在光学元件中,由于元件表面的反射作用而使光能损失,为了减少元件表面的反射损失,常在光学元件表面镀层透明介质薄膜,这种薄膜就叫增透膜。本文分别从能量守恒的角度对增透膜增加透射的原理给予定性分析;根据菲涅尔公式和折射定律对增透膜增加透射的原理给予定量解释;利用电动力学的电磁理论对增透膜增加透射的原理给予理论解释。同时对增透膜的研究和应用现状作一介绍。 关键词:增透膜;干涉;增透膜材料;镀膜技术 1前言 在日常生活中,人们对光学增透膜的理解,存在着一些模糊的观念。这些模糊的观念不仅在高中生中有,而且在大学生中也是存在的。例如,有不少人认为入射光从增透膜的上、下表面反射后形成两列反射光,因为光是以波的形式传播的,这两列反射光干涉相消,使整个反射光减弱或消失,从而使透射光增强,透射率增大。然而他们无法理解:反射回来的两列光不管是干涉相消还是干涉相长,反射光肯定是没有透射过去,因增加了一个反射面,反射回来的光应该是多了,透射过去的光应该是少了,这样的话,应当说增透膜不仅不能增透,而且要进一步减弱光的透射,怎么是增强透射呢?也有人对增透膜的属性和技术含量不甚了解,对它进行清洁时造成许多不必要的损坏。随着人类科学技术的飞速发展,增透膜的应用越来越广泛。因此,本文利用光学及其他物理学知识对增透膜原理给以全面深入的解释,同时对增透膜的研究和应用现状作一介绍。让人们对增透膜有一个全面深入的了解,进而排除在应用时的无知感和迷惑感。 2增透原理 2.1 定性分析 光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。 这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀膜后,在不考虑膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而所镀膜的作用是使反射光与透射光的能量重新分配。对增透膜而言,分配的结果使反射光的能量减小,透射光的能量增大。由此可见,增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小。光就有这样的特性:通过改变反射区的光强可以改变透射区的光强。 2.2 定量描述

增透膜的厚度计算

增透膜的厚度计算 根据光的干涉原理,定量计算增透膜的厚度。 当某一频率光分为两束,在重新相遇时,若经过的光程差为kλ(k=0、1、2、3…),发生相长干涉,光被加强;若光程差为(2k+1)λ2(k=0、1、2、3…),发生相消干涉,光被减弱,变成暗纹。 某频率的光在真空中波长为λ,垂直射向某厚度为d的薄膜的折射率为n2,周围介质的折射率为n1、n3,且n1 Δx=(2n2d+λ2)-λ2=2n2d 当Δx=kλ,k=1、2、3…时,两反射光相叠加,反射光被加强,出现明纹。 当Δx=(2k+!)λ2,k=0、1、2、3…时,两反射光相叠加,相互削弱,出现暗纹,即 2n2d=(2k+1)λ2 d=2k+14n2λ 当k=0时,增透膜的厚度最小,最小值为 dmin=14 λn2 注意到λn2是光在介质中的波长14,即增透膜的最小厚度是光在介质中波长的。这正是高中物理课本中的结论。 以下是两个具体的例子。 例1、一台照相机的镜头折射率为1.50,表面上涂敷一层折射率为1.38的增透膜,即MgF2,若使镜头对人眼和照相机底片最敏感的黄绿光(λ=550nm)反射最小,试求增透膜的最小厚度d是多少? 假设光是垂直入射。 解、设增透膜的厚度为d,空气、增透膜和玻璃的折射率分别为n1、n2、n3,入射光1在增透膜的上、下表面上的反射光2、3的光程差为Δx=2n2d,如果要使反射光消失,须满足 Δx=2n2d=(2k+1)2λ (k=0、1、2、3…)

增透膜的厚度为 d=2k+14n2λ 当k=0时,增透膜的厚度最小,最小厚度是 dmin=λ4n2=550×10-94×1.38m =9.96×10-8m. 由于反射光中缺少了黄绿光,所以,镜头呈淡紫色。 例2、为了减少从玻璃表面反射光的成分,在玻璃表面敷一层薄膜,即增透膜,增透膜的折射率小于玻璃的折射率。当入射光包含波长为λ1=700nm和λ2=420nm情况下,为使这两种波长的反射光被最大限度减弱,在玻璃表面上敷有折射率为n=43的增透膜,假设这两种光在增透膜中折射率基本相同皆为n。则这种增透膜的最小厚度是多少? 解、设增透膜的厚度为d,若使波长为λ1的反射光消失应满足 2nd=2k1+12λ1 ① 其中k1=0、1、2、3… 若使波长为λ2的反射光消失,应满足 2nd=2k2+12λ2 ② 其中k2=0、1、2、3…,由①②两式可得 3k2=5k1+1 ③ 显然,当k1=1、k2=2时,波长为λ1、λ2的入射光在增透膜的前后表面反射光的相位差都是π,叠加时,都会产生相消干涉,增透膜的最小厚度为 dmin=34nλ1=916×700nm =394nm.

滤波片的增透膜作用及原理分析

在日常生活中,人们对光学增透膜的理解,存在着一些模糊的观念。这些模糊的观念不仅在高中生中有,而且在大学生中也是存在的。例如,有不少人认为入射光从增透膜的上、下表面反射后形成两列反射光,因为光是以波的形式传播的,这两列反射光干涉相消,使整个反射光减弱或消失,从而使透射光增强,透射率增大。然而他们无法理解:反射回来的两列光不管是干涉相消还是干涉相长,反射光肯定是没有透射过去,因增加了一个反射面,反射回来的光应该是多了,透射过去的光应该是少了,这样的话,应当说增透膜不仅不能增透,而且要进一步减弱光的透射,怎么是增强透射呢?也有人对增透膜的属性和技术含量不甚了解,对它进行清洁时造成许多不必要的损坏。随着人类科学技术的飞速发展,增透膜的应用越来越广泛。因此,本文利用光学及其他物理学知识对增透膜原理给以全面深入的解释,同时对增透膜的研究和应用现状作一介绍。让人们对增透膜有一个全面深入的了解,进而排除在应用时的无知感和迷惑感。 2增透原理 2.1 定性分析 光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。 这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀膜后,在不考虑膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而所镀膜的作用是使反射光与透射光的能量重新分配。对增透膜而言,分配的结果使反射光的能量减小,透射光的能量增大。由此可见,增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小。光就有这样的特性:通过改变反射区的光强可以改变透射区的光强。 2.2 定量描述 光从一种介质反射到另一种介质时,在两种介质的交界面上将发生反射和折射,把反射 光强度与入射光强度的比值叫做反射率。用表示,,和分别表示反射光和入射光的振幅。 设入射的光强度为1,则反射光的强度为,在不考虑吸收及散射情况下,折射光的 的介强度为(1-ρ)。根据菲涅尔公式和折射定律可知:当入射角很小时,光从折射率n 1 质射向折射率n 介质,反射率 2

光学设计中增透膜的设计与分析

用于玻璃和塑料基底上的增透膜 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm的自动变焦的照相机来说,假定每个玻璃和空气的界面有4%的反射,没有增透的镜头光透过率为27%,镀有一层膜(剩余的反射为1.3%)的镜头光透过率为66%,镀多层膜(剩余的反射为0.5%)的为85%。 在这篇文章中,列举了一些简单的增透膜和使用的材料。值得注意的是由于玻璃可以被高温加热,而塑料不能,因此,对玻璃和塑料必须选用不同的膜料和膜层设计。 用于玻璃基底的增透膜 经典的单层增透膜由一薄层MgF2构成,MgF2在510nm时的折射率为n=1.38,需要的膜厚为d=92nm。因此,在510nm波长时膜层有一个光学密度(厚度)n*d为1/4的波长。镀在加热到250-300°C 的玻璃基底上的MgF2,不但牢固,稳定,并且相当方便,经济,直接使用蒸发船便可。 想得到更低的反射率,最简单的方法是镀一层CeF3和一层MgF2(各为1/4的光学厚度),可用蒸发船。图1是单层和2层膜的反射曲线。2层膜的优点是在可见光范围的中段有更低的反射率,缺点在于在红,蓝端的反射率上升过快。由于2层膜的效果不理想,为了达到理想的效果,必须使用3层或多层膜。iIvc4 3YV% 经典的3层膜由一层1/4光学厚度的中折射率物质(1.6-1.7),一层1/2光学厚度的高折射率物质(2.0-2.2)和一层1/4光学厚度的低折射率物质组成。最常用的是Al2O3,ZrO2和MgF2。图1显示在整个光学敏感段(410-680nm)的反射率低于0.5%。 3层增透膜的膜料选择 膜料对膜层效果有决定性的影响。除了理想的折射率,每次镀膜时稳定的折射率,均匀的膜层,低吸收性,牢固性,稳定性也非常重要。 MgF2是最常用的第三层低折射率物质。但是,由于塑料不能被高温加热,用MgF2会使膜层变软和不稳定,此时,SiO2是最佳的选择。 Al2O3是最常用的第一层中折射率物质。它的膜层从红外到紫外线有相当高的透过率,十分牢固,稳定,并且每次镀膜时有稳定的折射率。 ZrO2通常被用作第二层高折射率物质。它的优点是从250到7000nm有宽广的透过率,并且,膜层牢固,稳定。但是,每次镀膜时呈现不同的折射率,也就是折射率会随着膜厚的增加而降低,这种现象可能和它的特殊晶体结构有关。图2显示了在五个单独的膜层中ZrO2不同的折射率。我们可以看到和和同次性的膜料相比,折射率有急剧的上升,特别是在中段。ZrO2的另一个缺点是在蒸发是它只是部分的溶解,因此,很难得到均匀的膜厚。 为了减少单体氧化物的这些缺点,可以使用混合氧化物。这些混合料可以根据客户不同的折射率需要来生产。德国默克公司根据客户大量的实际使用情况和多年的膜料生产经验,研制开发了一系列的混合料:H1,高折射率,2.1-2.15 H2,高折射率,2.1-2.15 H4,高折射率,2.1-2.15 M1,中折射率,1.65-1.7 H1,H2和H4可以被用来生产高折射率的膜层,在250°C的基底上2.1-2.15的折射率具有同次性。M1可以被用来生产中折射率得膜层。H1,H4和M1也能镀在未经加热的基底上,折射率会降低。 H1在从可见光到紫外的波段内有相当高的透过率,在360nm左右有吸收。但是,同ZrO2一样,无法从溶解的状态下被蒸发,因此较难得到比较均匀的膜层。H2在可见光的波段内有很高的透过率,但是在380nm时有截止吸收,这意味着当镀膜条件不理想时,1/2光学厚度的末曾在400nm时会有0.5%的吸收。H2的优点在于它能从溶解的状态下被蒸发,因此有良好的同次性和均匀的膜厚。 H4在可见光的波段内有很高的透过率,像H1一样,在360n左右有吸收。它也能从溶解的状态下被蒸发,具有良好的同次性和均匀的膜厚。 图3显示了用ZrO2(n=2.05)和上述混合料(n=2.15)的3层增透膜的反射曲线得比较。从中可以看出用

半波损失原因

光从波疏媒质到波密媒质表面上反射时产生半波损失的原因 2008-07-02 16:33 光从波疏媒质到波密媒质表面上反射时产生半波损失的原因 何万勇 (楚雄师范学院物理与电子科学系云南 675000) 摘要:本文介绍什么是半波损失,并用电磁场理论中的菲涅耳公式予以解释。最后得出光从波疏媒质到波密媒质表面上反射时产生半波损失的原因是,反射光相对于入射光产生了π的相位突变。 关键词:半波损失菲涅耳公式光波波疏媒介波密媒介相位 中图分类号: 043 文献标识码:文章编号: 引言: 当光从波疏媒质到波密媒质表面上反射时将会产生波损失,那到底什么是半波损失呢?所谓“半波损失",就是当光从折射率小的光疏介质射向折射率大的光密介质时,在入射点,反射光相对于入射光有相位突变π,即在入射点反射光与入射光的相位差为π,由于相位差π与光程差λ\2相对应,它相当于反射光多走了半个波长λ\2的光程,故这种相位突变π的现象叫做半波损失。半波损失仅存在于当光从光疏介质射向光密介质时的反射光中,折射光没有半波损失。当光从光密介质射向光疏介质时,反射光也没有半波损失。“半波损失”现象可以由电磁场理论中的菲涅耳公式予以解释。

光波是频率范围很窄(400nm~700nm)的电磁波。在光波的电矢量E→和磁矢量H→中,能够引起人眼视觉作用和光学仪器感光作用的主要是电矢量E→,所以把光波中的电矢量E→叫做光矢量。电磁波(光波)通过不同介质的分界面时会发生反射和折射。根据麦克斯韦的电磁场理论,在分界面处,入射波、反射波、折射波的振幅矢量E→1、E`→1、E→2沿垂直于入射面的分量和沿平行于入射面的分量之间的关系满足菲涅耳公式: 由文献[1]可知,菲涅耳公式为公式(1)~公式(4): E`s1/Es1=-sin(i-r)/sin(i+r) (1) E`p1/Ep1=tg(i-r)/tg(i+r) (2) Es2/Es1=2sin(r)cos(i)/sin(i+r) (3) Ep2/Ep1=2sin(r)cos(i)/[sin(i+r)cos(i-r)] (4) 设Es1与Ep1的合矢量为E1;E`s1与E`p1的合矢量为E`1。设入射光中E s1、Ep1取正方向,即Es1>0、Ep1>0。 1.当光从光疏媒质射向光密媒质而在界面上反射时,n2>n1 ① 掠射:此时,入射角i≈90° 因为n2>n1,由折射定律:n1sin(i)=n2sin(r),易知,i>r,又i≈90°,则i+r>90°。 由公式(1),可得,E`s1=-Es1<0; 由公式(2),可得,E`p1=-Ep1<0。 于是,E`1=-E1,发生半波损失。 ② 正入射:此时,入射角i≈0° 因为n2>n1,由折射定律:n1sin(i)=n2sin(r),易知,i>r,又i≈0°,则i+r>0°。 由公式(1),可得,E`s1=-Es1<0; 由公式(2),可得,E`p1=Ep1>0; 于是,E`1=-E1,发生半波损失。 ③斜入射:此时,入射角090°。 由公式(1),可得,E`s1=Es1>0; 由公式(2),可得,E`p1=Ep1>0。 于是,E`1=E1,不发生半波损失。 ② 正入射:此时,入射角i≈0° 因为n20°。 由公式(1),可得,E`s1=Es1>0; 由公式(2),可得,E`p1=-Ep1<0。 于是,E`1=E1,不发生半波损失。 ③斜入射:此时,入射角0

增透膜原理

增透膜原理 增透膜原理: 增透膜原理:“当薄膜的厚度适当时,在薄膜的两个面上反射的光,路程差恰好等于半个波长,因而互相抵消。这就大大减少了光的反射损失,增强了透射光的强度。” 其一是当光从一种介质进入另一种介质时,如果两种介质的折射率相差减小,反射光的能量减小,透射光的能量增加。当光射到两种透明介质的界面时,若光从光密介质射向光疏介质,光有可能发生全反射;当光从光疏介质射向光密介质,反射光有半波损失。对于玻璃镜头上的增透膜,其折射率大小介于玻璃和空气折射率之间,当光由空气射向镜头时,使得膜两面的反射光均有半波损失,从而使膜的厚度仅仅只满足两反射光的光程差为半个波长。膜的后表面上的反射光比前表面上的反射光多经历的路程,即为膜的厚度的两倍。所以,膜厚应为光在薄膜介质中波长的1/4,从而使两反射光相互抵消。由此可知,增透膜的厚度d =λ/4n(其中n为膜的折射率,λ为光在空气中的波长)。 如果镜头表面不涂薄膜,光直接由折射率为n1=1.0空气垂直入射到折射率为n2=1.5的玻璃的介面时,反射率,即将有4%的入射光能被反射,96%的入射光能进入玻璃,这说明光学器件表面的反射光会导致光能损失。进入玻璃的光再从玻璃垂直进入空气的分介面时,透射光与入射光相比,又要产生相同比例的能量损失。即一个简单玻璃透镜,光通过它的两个透光表面,透射光的强度I只占原入射光强度I0 的。 人们普遍使用较高级照相机的物镜、潜水艇上用的潜望镜等一般都由多个透镜组成,其目的是利用凸透镜和凹透镜的不同性质消除相差。光能损失越大,所成像的质量越差,而且反射光还可能被其它表面再反射到像的附近,形成有害的杂光,将进一步减弱成像质量。 如果在玻璃镜头表面涂上一层其折射率介于玻璃和空气之间的透明介质,当有增透膜时透射光的能量是原入射光能量的。增加氟化镁薄膜后,透射光能提高了97.3%-92%=5.3%,所以反射光能减少了。则涂有增透膜的6个透镜组成的镜头,与相同情况下光直接由空气进入玻璃镜头时相比较,提高了透射光能量84.8%-61%=23.8%,减少了光的反射损失。 利用薄膜干涉的原理,增加了透射光的能量。因为当光从光疏介质射向光密介质时,反射光有半波损失,即反射光与入射光相位恰好相反。

物理学实验课后题答案

试验一示波器得使用 1、写出操作步骤 (1) 怎样迅速找出清晰得扫描线? 推入电源,几秒钟后,显示屏上会出现扫描线,若无扫描线,为排除外界干扰,将CH1/CH2输入耦合方式选择键拨到GND接地,仔细调节垂直位移、水平位移、灰度旋钮找出扫描线并调制适中位置。再调节聚焦、灰度旋钮就是撒尿先细而清晰。 (2) 怎样迅速调出稳定得波形? 将CH1/CH2输入耦合方式选择键拨到AC(或DC),由输入端输入被测信号,选择合适得偏转因数,配合调节信号源输出幅度,使显示屏上波形适中。调节扫描时间粗调与扫描时间细调使波形简单且相对稳定。 (3) 怎样测定信号得幅度(AC,DC)? 调出波形,调节Level触发电平,待波形稳定后,将波形调到正中。之后将测量线一个移动到零点,一个移动到波形峰值处。读出此时示波器得示数即可。 (4) 怎样观测李萨如图形? 将扫描时间粗调钮逆时针旋到底至于X-Y方式,触发源选择CHI或CH2,显示选择拨档开关选择CH1或CH2。 2、某同学使用示波器测量电压与频率,结果测量值于真值相差很大(大于50%),试分析可能得原因。 电压差距大得原因: (1) 偏转因数微调旋钮没有处于校准状态; (2) 偏转因数微调旋钮向外拉出,信号在数值上扩大5倍。 测频率不准得原因: (1) 时间扫描微调旋钮没有处于校准位置; (2) ×10 MAG键被按下,信号在水平上扩大10倍。 3、本实验中观测李萨如图形就是,为什么图形总在变化?调控触发系统得各键钮能否就是图形稳定?能观测到李萨如图形得条件就是什么? X、Y两通道信号经过不同得硬件设备造成不同得时间延迟,两通道信号得相位差始终在变化,所以图形始终在变化。 不能。 能观测到李萨如图形得条件: (1) 两通道信号都就是稳定得正弦或余弦信号; (2) 两通道信号得频率比满足简单得整数比; (3) 将时间扫描粗条旋钮调制X-Y方式。 实验二单缝衍射光强分布 1、单缝衍射图样中明暗条纹得间距与那些因素有关? 单缝缝宽a,衍射屏与接收屏得距离L,入射波长λ。 2、可以用硅光电池得电流大小来描绘光强分布曲线得调节就是什么? 硅光电池就是换能装置,可以将接收到得光强等比例地转换为电流值。 实验三用拉脱法测液体得表面张力系数 1、保持下方空间位置不变为什么要三线对齐? 消除视差。

增透膜与高反膜

增透膜与高反膜 薄膜干涉使用扩展光源,虽然相干性不好,但因能在明亮环境观察,所以实用价值高。利用上述原理可以测定薄膜的厚度e或光波波长λ。在光学器件上镀上一层厚度为d的薄膜,使强度相等的两束反射光(或透射光)的光程差δ满足干涉加强(δ=kλ)或减弱(δ=(k+1/2) λ)条件,可以提高光学器件的透射率或反射率。增加透射率(即透射光的光程差δ=kλ)的薄膜叫增透膜,增加反射率(即反射光的光程差δ=kλ)的薄膜叫高反膜。增透膜和高反膜常用在光学仪器的镜头上。由于相邻两束光的强度不等,实际常采用多层膜,使高反膜的反射率达99%以上。 减反射膜 涂敷在透明光学元件表面、用来消除或减弱反射光以达增透目的的光学薄膜。又称增透膜。最简单的减反射膜是单层介质膜,其折射率一般介于空气折射率和光学元件折射率之间,使用最普遍的介质膜材料为氟化镁。减反射膜的工作原理是基于薄膜干涉原理。入射光在介质膜两表面反射后得两束相干光,选择折射率适当的介质膜材料,可使两束相干光的振幅接近相等,再控制薄膜厚度,使两相干光的光程差满足干涉极小条件,此时反射光能量将完全消除或大大减弱。反射能量的大小是由光波在介质膜表面的边界条件确定,适当条件下可完全没有反射光或只有很弱的反射光。单层减反射膜只能对某个波长和它附近的较窄波段内的光波起增透作用,为在较宽的光谱范围达到更有效的增透效果,常使用多层介质膜。常见的多层膜系统是玻璃-高折射率材料低折射率材料-空气,简称gHLa系统。H层通常用二氧化锆(n=2.1)、二氧化钛(n=2.40)和硫化锌(n=2.32)等,L层一般用氟化镁(n=1.38)等。 减反射膜广泛用于各种光学元件的表面处理,例如照相机镜头上涂减反射膜后,可减少由反射引起的杂散光并显著增加像的亮度。

多层增透膜的理论解释

多层增透膜的理论解释 4.1 λ/4增透膜 λ/4的光学增透膜(下面讨论时光学元件用玻璃来代替, 初始入射介质用空气来代替), 一般为在玻璃上镀一层光学厚度为λ/4的薄膜,且薄膜的折射率大于空气的折射率, 小于玻璃的折射率由菲涅耳公式知, 光线垂直人射时, 反射光在空气一薄膜界面和薄膜一玻璃界面都有半波损失设空气、镀膜、玻璃的折射率分别为n0,n1,n2且n2>n1>n0定义R01,T01为空气-薄膜界面的反射率与透射率,R01,T01为薄膜-空气界面的反射率与透射率,R12,T12为薄膜-玻璃界面的反射率与透射率, R21,T21为玻璃-薄膜界面的反射率与透射率如图4-1所示示, 为了区分人射光线和反射光线, 这里将入射光线画成斜入射,图4-1中反射光线1和2的光程差为λ/2, 这样反射光便能完全相消由菲涅耳公式知道, 光垂直通过界面时, 反射率R 和透射率T 与折射率n 的关系为: 2 212 11221122 1 21221 122 101 00110012 1011001)(41) ()(41) (n n n n R T T n n n n R R n n n n R T T n n n n R R += -==+-==+=-==+-== 设人射光的光强为I0, 则反射光线1的光强I1=I0R0, 反射光线2的光强I2=I0I01R12T10。余下的反射光的光强中会出现反射率的平方,因为反射率都比较小, 故可不再考虑。λ/4的光学增透膜使反射光线1与反射光线2的光程差为δ=2n1d1=λ/2, 故相位差为л, 由干涉理论知, 干涉后的光强为: 212010102121)(cos R T R I I I I I I p -=++=π 因为折射率n0,n1,n2比较接近,例如n0=1,n2=1.5的界面,T=96%,故可近似地取T01和T10为1,若使Ip 为0 ,则有R01=R12,即: 21 21220101)()(n n n n n n n n +-=+-

大学物理课堂小论文

关于半波损失的几个实验验证 姓名:班级:学号: 【摘要】在大学物理的波动光学部分,半波损失是一个重点内容。而进行干涉的相关计算研究时又不得不考虑半波损失的影响。于是本文通过菲涅尔公式分析了半波损失,也从几个比较经典的干涉实验来验证半波损失的存在。 【关键词】半波损失劳埃德镜实验劈尖干涉牛顿环 一.半波损失的基本概念 所谓“半波损失",就是当光从折射率小的光疏介质射向折射率大的光密介质时,在入射点,反射光相对于入射光有相位突变π,即在入射点反射光与入射光的相位差为π,由于相位差π与光程差λ/2相对应,它相当于反射光多走了半个波长λ/2的光程,故这种相位突变π的现象叫做半波损失。半波损失仅存在于当光从光疏介质射向光密介质时的反射光中,折射光没有半波损失。当光从光密介质射向光疏介质时,反射光也没有半波损失。 实验和理论研究表明光从光疏介质射向光密介质时,在掠入射(入射角接近90度)或正入射(入射角为0度)的情况下,在两种介质界面处反射时相位发生π的突变。这一变化导致反射光的光程差附加了半个波长,称为半波损失。 二.反射光会发生半波损失的原因 反射光的相位跃变情况较为复杂,它有两个转折,一个是入射角θ1>θB(布儒斯特角)和θ1<θB时的情况跃变不同;另一个是折射率n1>n2和n1θ2,因此sin(θ1-θ2)>0,又因sin(θ1+θ2)>0所以在这种情况下,r永远为负值。即光束由n小的介质进入n大的介质时,不论入射角为何值,反射光的垂直分量永远都π的相位突变。 至于平行分量,在θ1>θB和θ1<θB时的情况不一样。θ1<θB时,有θ1+θ2<90°(θ1=θB时, θ1+θ2=90°),因此tan(θ1+θ2)>0,tan(θ1-θ2)>0或r//为正。而在θ1>θB时,有θ1+θ2>90°,因此tan(θ1+θ2)<0,tan(θ1-θ2)>0或r//为负,所以有:光束从n小的介质进入n较大的介质时,若入射角θ1<θB,则反射光的平行分量无相位突变;若θ1>θB,则有π的相位突变。 2. n1>n2的情况 若n1>n2,则有θ1<θ2,因此sin(θ1-θ2)<0,这是r为正。即:光束由n大的介质进入n小的介质时,不论入射角为何值,反射光的垂直分量永远都没有π的相位突变。至于平行分量,在θ1<θB时有tan(θ1-θ2)<0,故有r//为负。而在θ1>θB时,有tan(θ1+θ2)<0,故r//为正。所以:光束从n大的介质进入n较小的介质时,若入射角θ1<θB,则反射光的平行分量有相位突变;若θ1>θB,则无π的相位突变。因此,在小角度入射和掠入射两种情况下,光波由光疏介质进入光密介质时,则会出现半波损失,反之则没有。

2014大学物理B复习题范围2 答案

2014年大学物理B 复习资料 判断题(对错) 1、只要温度相同,分子的平均平动动能就相等,与物体的种类没有关系。√ 2、处于平衡状态的理想气体,处于最概然速率附近单位速率区间的分子数的百分率最大。√ 3、处于平衡状态的理想气体,各个方向的平动动能都相等,且都等于KT/2。√ 4、孤立系统就是能量与物质都没有交换的系统。√ 5、同一波阵面上的各点都可以被看作是新的子波源。√ 6、理想气体在等压膨胀过程中,如果吸收热量,一定系统内能增加且系统对外做功。√ 7、自然光入射到两个界面上发生反射时,反射光是部分偏振光,且垂直于入射面的光大与平行于入射面的光。√ 8、点电荷的的电场中,在以点电荷为中心,R 长为半径的圆周上电场强度处处相等。×(是矢量,有方向) 9、在静电场的高斯定理中0i s E ds q ε=∑??r r g ò,如果0i q =∑,则高斯面上的场强E r 出处 为零。× 10、静电场线是闭合曲线。(如果是电荷引起的电场(库伦电场)是不可以闭合的)× 11、静电场场强沿一闭合路径的积分0L E dl ?=?r r ?, 说明电场线由正电荷出发终止于负电荷。× 12、将一中性的导体放入静电场中,在导体上感应出来的正负电荷电量相等。√ 13、处于静电平衡的导体是等势体,导体表面是等势面。√ 14、在载有电流I 的圆形回路中,回路平面内各点磁感应强度的方向相同。√ 15、在载有电流I 的圆形回路中,回路平面内各点磁感应强度的大小相同。× 16、稳恒磁场的磁场线是闭合曲线。√ 17、磁单极不存在。√ 18、若闭合曲线内不包围传导电流,则曲线上个点的磁感应强度B r 一定为零。× 19、感生电场和静电场都是由静电荷产生的。× 20、两个同方向、同频率简谐振动的合成还是简谐振动。√ 21、由两个同方向、同频率简谐振动合成的简谐振动的振幅在12A A +和12A A -之间。√ 22、振动速度和波动速度就是同一个速度值。× 23、波长是在波的传播方向上相邻两个相位相同点的距离。√ 24、波阵面上所有点的位移、速度和加速度都相同。√ 25、杨氏双缝干涉实验中,当缝间距增大时,相邻明纹间距变窄。(x=kD 入/d)√ 26、杨氏双缝干涉实验中,当缝到屏的距离增大时,相邻明纹间距变窄。× 27、在劈尖干涉实验中,如果把上面一块玻璃向上平移,干涉条纹向棱边移动。√ 28、在劈尖干涉实验中,如果把上面一块玻璃绕棱边转动,使劈尖角度增大,干涉条纹向棱边移动。√ 29、在牛顿环实验中,若在平凸透镜与平板玻璃间充满折射率为 1.6n =的油液,则干涉圆

相关文档
最新文档