汽轮机后缸喷水减温装置
汽机100知识点

汽轮机设备结构与工作原理1.汽轮机工作的基本原理是怎样的?汽轮机发电机组是如何发出电来的?具有一定压力、温度的蒸汽,进入汽轮机,流过喷嘴并在喷嘴内膨胀获得很高的速度。
高速流动的蒸汽流经汽轮机转子上的动叶片做功,当动叶片为反动式时,蒸汽在动叶中发生膨胀产生的反动力亦使动叶片做功,动叶带动汽轮机转子,按一定的速度均匀转动。
这就是汽轮机最基本的工作原理。
从能量转换的角度讲,蒸汽的热能在喷嘴内转换为汽流动能,动叶片又将动能转换为机械能,反动式叶片,蒸汽在动叶膨胀部分,直接由热能转换成机械能。
汽轮机的转子与发电机转子是用联轴器连接起来的,汽轮机转子以一定速度转动时,发电机转子也跟着转动,由于电磁感应的作用,发电机静子线圈中产生电流,通过变电配电设备向用户供电。
2.汽轮机如何分类?汽轮机按热力过程可分为:⑴凝汽式汽轮机(代号为N)。
⑵一次调整抽汽式汽轮机(代号为C)。
⑶二次调整抽汽式汽轮机(代号为C、C)。
⑷背压式汽轮机(代号为B)。
按工作原理可分为:⑴冲动式汽轮机。
⑵反动式汽轮机。
⑶冲动反动联合式汽轮机。
按新蒸汽压力可分为:⑴低压汽轮机新汽压力为1.18~1.47MPa。
⑵中压汽轮机新汽压力为1.96~3.92MPa。
⑶高压汽轮机新汽压力为5.88~9.81MPa。
⑷超高压汽轮机新汽压力为11.77~13.75MPa。
⑸亚临界压力汽轮机新汽压力为15.69~17.65MPa。
⑹超临界压力汽轮机新汽压力为22.16MPa。
按蒸汽流动方向可分为:⑴轴流式汽轮机。
⑵辐流式汽轮机。
3.汽轮机的型号如何表示?汽轮机型号表示汽轮机基本特性,我国目前采用汉语拼音和数字来表示汽轮机型号,其型号由三段组成:×××-×××/×××/×××-×(第一段)(第二段)(第三段)第一段表示型式及额定功率(MW),第二段表示蒸汽参数,第三段表示设计变型序号。
汽轮机运行及调整

机组振动的原因
• 4. 振动系统的刚度不足与共振 强迫振动的振幅与系统的静刚度成正比,
系统的静刚度不足又会引起共振频率降低。 如果工作转速接近共振频率,就可能发生 共振。
系统刚度不足除了设计上的原因外,还有 轴承座与台板,轴承座与汽缸,台板与基 础之间连接不够牢固等原因。
机组振动的原因
汽轮机主要特点
• 本汽轮机为纯冲动式汽轮机,级数相对较 少,高中压缸采用合缸,减小了轴向长度 和轴承数量。端汽封和轴承箱均处在温度 较低的高、中压排汽口区域。
• 汽轮机的汽封采用椭圆汽封。
• 汽轮机各个转子与发电机各转子采用刚性 连接方式,轴系为挠性轴系。叶片采用弯 曲/弯扭静叶和弯扭动叶,末级叶片为 1016mm长叶片。
胀差
• 当某一区段的胀差值超过了在这个方向的动静 部件轴向间隙时,就会发生动静部件的摩擦或 碰撞,造成启动时间的延误或引起机组振动、 大轴弯曲等严重事故。
• 胀差指示器只能指示测点处的胀差值,而并不 能准确地反映汽轮机各截面处的胀差情况,有 时胀差指示器指示数值在允许的范围之内,转 子与汽缸的某些地方还会出现摩擦现象。
机组振动的原因
机组振动的原因
• 1.转子质量不平衡 由于转子的质心不在旋转中心线上,转子旋转时
就产生了不平衡的离心力。 ➢ 汽轮机运行时出现动叶片和拉金断裂,动叶
不均匀磨损,蒸汽中携带的盐分在叶片上不均匀 沉积等使转子产生静不平衡。 ➢ 汽轮机检修时拆装叶轮,连轴节,动叶等转子 上的零部件也会造成不平衡。
• c. 油膜振荡一旦发生以后,涡动速度将始 终保持等于第一临界转速,而不再随转速 的升高而升高。所以,油膜振荡是不能用 提高转速的办法来消除。
机组振动的原因
过热蒸汽和再热蒸汽和减温水系统

过热蒸汽和再热蒸汽及减温水系统一、设备资料1.我厂炉膛内前墙布置有六片中温过热器管屏、六片高温过热器管屏,六片高温再热器管屏及一片水冷隔墙,后墙布置两片水冷蒸发屏。
尾部采纳双烟道结构,前烟道布置了三组低温再热器,后烟道布置四组低温过热器。
2.过热器系统中设有两级喷水减温器,别离布置与屏过前后。
再热器系统中布置有事故喷水减温器和微喷水减温器,别离布置于低再前后。
过热器减温水来自给水母管,再热器减温水来自给水泵中间抽头。
3.低温过热器、低温再热器管组采纳长伸缩式吹灰器吹灰,低温过热器管组间8只,低温再热器管组间6只。
4.要紧设计参数5.锅炉热力性能计算数据6.平安阀整定参数过热器平安阀再热器入口平安阀再热器出口平安阀过热器出口电磁泄放阀7.蒸汽品质二、过热蒸汽及其减温水系统1.过热蒸汽流程从汽包分离出来的饱和蒸汽从汽包顶部的蒸汽连接管引出。
饱和蒸汽从汽包引出后,由饱和蒸汽连接管引入冷却式旋风分离器入口烟道的上集箱,下行冷却烟道后由连接管引入冷却式旋风分离器下集箱,上行冷却分离器筒体以后,由连接管从分离器上集箱引至尾部竖井侧包墙上集箱,下行冷却侧包墙后进入侧包墙下集箱,由包墙连接管引入前、后包墙下集箱,向上行进入中间包墙上集箱汇合,向下进入中间包墙下集箱,即低温过热器入口集箱,逆流向上对后烟道低温过热器管组进行冷却后,从锅炉双侧连接管引至炉膛顶部中温过热器入口集箱,流经中温过热器受热面后,在炉前从锅炉双侧连接管引至炉前高温过热器入口集箱,最后合格的过热蒸汽由位于炉膛顶部的高过出口集箱双侧引出。
2.过热蒸汽温度调剂方式过热器系统采取调剂灵活的喷水减温作为汽温调剂和爱惜各级受热面管子的手腕,整个过热器系总共布置有两级喷水。
一级减温器(左右各一台)布置在低过出口至屏过入口管道上,作为粗调操纵屏式过热器出口温度,爱惜屏式过热器;二级减温器(左右各一台)位于屏过与高过之间的连接管道上,作为细调操纵高过出口温度,保证蒸汽参数合格,其主环和付环均为比例积分调剂。
汽轮机组低压缸切缸供热操作及注意事项

汽轮机组低压缸切缸供热操作及注意事项摘要:某火电厂热网首站换热汽源从汽机房12米运转层汽轮机中压缸至低压缸连通管上接出。
汽轮机切缸系统在中压缸至低压缸连通管上装有液压调节蝶阀(EGV),控制进入低压缸的蒸汽流量;热网抽汽管道上装有安全阀(2个)、抽汽止回阀、电动调节蝶阀(LEV)和液压快关阀以及流量测量装置;由中压缸引出一路冷却蒸汽对低压缸冷却,由机组凝杂水对冷却蒸汽进行冷却;对低压缸喷水进行改造,增加一路水源(凝杂水)控制排汽温度。
热网首站基本加热器和预加热器换热后的凝结水进入凝结水疏水罐,由凝结水疏水泵打入机组#6低压加热器入口管道,水质不合格时排至地沟。
关键词:低压缸切缸;LEV;EGV;低压缸冷却旁路1、机组低压缸切缸前暖管;确认供热抽汽投入、电动调节蝶阀(LEV)开度大于50%;做交直流润滑油泵、顶轴油泵启动试验正常;开启低压缸冷却旁路系统各分支疏水气动门、手动门;全开低压缸冷却旁路系统疏水总门1,微开低压缸冷却旁路系统疏水总门2,若真空正常,全开疏水总门2;开启低压缸冷却旁路汽水分离器集液箱自动疏水器前、后手动门,开启低压缸冷却旁路出口电动门后自动疏水器前、后手动门及疏水器旁路门,检查自动疏水器动作正常。
全开低压缸冷却旁路蒸汽减压阀和低压缸冷却旁路蒸汽流量调节门;打开低压缸冷却旁路系统暖管进汽一次门,缓慢开启暖管进汽二次门,低压缸冷却旁路暖管,暖管20分钟后,打开低压缸冷却旁路暖管排汽电动门,微开低压缸冷却旁路暖管排汽手动门,若凝汽器真空、低压缸排汽温度无异常,全开排汽手动门;打开低压缸冷却旁路进口电动门,关闭低压缸冷却旁路系统暖管进汽一、二次门,暖管20分钟。
关闭低压缸冷却旁路进口电动门,就地将低压缸冷却旁路出口电动门开至10%进行反暖10分钟,根据暖管情况,就地缓慢开大低压缸冷却旁路出口电动门至20%,待汽水分离器出口温度保持在150℃以上时,关闭旁路出口电动门;打开低压缸冷却旁路进口电动门,注意管道振动情况,当汽水分离器后温度达250℃时,关闭蒸汽流量调节门,打开冷却旁路出口电动门,通过蒸汽流量调节门调节冷却蒸汽流量,当低压缸冷却旁路流量调节阀前温度显示300℃以上时,关闭所有疏水气动门,低压缸冷却旁路系统疏水总手动门始终保持开启状态。
汽轮机快冷系统总结

汽轮机快冷系统学习总结1快冷装置概述随着电力工业的不断发展,汽轮机组逐渐趋于大型化。
随着单机容量的增加,机组的热容量也随之增大。
加之汽缸保温采用硅酸钙、硅酸铝等优质保温材料被广泛地使用,其保温性能,安全性能得到了很大的改善,但是却大大增加了汽轮机检修的等待冷却时间。
单机容量愈大,其矛盾愈突出。
对于目前国内的600MW机组而言,制造厂规定:停机后,只有当高压缸首级金属温度降到150~200℃时,方可停止盘车和润滑油系统运行,进行机组检修工作。
而实际运行中,当机组发生一般事故停机时,高、中压缸第一级金属温度大在430~450 ℃左右,自然冷却到150 ℃需210h—230h方能停止盘车和润滑油系统。
如果采取滑参数停机,首级金属温度最低可降到290℃—300℃,自然冷却到150℃停盘车和润滑油系统,仍需120h一150h。
而且滑参数停机时,锅炉需要大量助燃油,增加电厂的燃油消耗量。
停机后自然冷却,汽缸内金属温度下降速度一般为0.75℃—1℃/h之间,这样使得机组检修工期延长,机组可用系数降低。
为了加快汽轮机停机后的冷却速度,缩短停机后的冷却时间,利用在汽缸中通热空气的方式对汽轮机高中压缸进行冷却。
在汽轮机停机后的高温阶段,输送工作压力0.4 MPa —0.8MPa、温度300℃左右干燥洁净的热空气,并保持与汽缸内壁一定的温差,由高温阶段的小流量逐渐调至低温阶段的大流量热空气。
通过对汽轮机冷却过程中汽缸应力变化的监视,发现高温干燥洁净的热空气对汽缸的热冲击和应力所产生的破坏极小,因此采用汽缸快冷装置降低汽缸温度是十分安全、高效、可靠的。
利用空气压缩机输送气源,经油水过滤器过滤后,由二套空气电加热器将压缩空气加热到一定温度输送到集气箱,然后送入汽轮机各冷却部位,为便于灵活操作和控制,在中间管路中安装了控制阀门、压力、流量、温度显示装置,随时调节温度和流量,再配合汽轮机应力监视,在规定范围内按比例降低汽缸温度,达到快速冷却的目的。
火电厂深度调峰安全性与经济性分析

火电厂深度调峰安全性与经济性分析发布时间:2021-03-26T14:39:52.147Z 来源:《电力设备》2020年第32期作者:宋科[导读] 摘要:随着新能源电力系统不断推进,能源网络面临的调峰形势日益严峻。
(安徽马鞍山万能达发电有限责任公司 243000)摘要:随着新能源电力系统不断推进,能源网络面临的调峰形势日益严峻。
新常态下,频繁、深度调峰,尤其是高额煤价对火电机组发电效益提出了严峻挑战。
本文通过从燃烧稳定、设备安全、机组效率等多方面考虑并提供了一定的措施应对,分析了火电机组参与深度调峰的安全性与经济性,为同类型机组调峰策略提供一定的参考价值。
关键字:火电厂深度调峰安全性经济性1.目前火力发电机组相关概况截至2020年底,全国发电装机总量为22亿千瓦时,火电装机占比缩小至75.7%,为应对风电随机性与反调峰特性带来的严峻调峰形势,众多火电机组都通过电网调度参与到频繁、深度的调峰中来。
近年来,我国火力发电相关设备年利用小时数呈逐年下降趋势,加上国家大力倡导低碳经济发展新模式,煤价增加致使火电成本大幅上涨,使得全国大规模火电企业出现亏损现象。
为了鼓励火电机组参与区域深度调峰,不少地区也积极征求意见并逐步试行电力辅助服务市场运营规则,对参与调峰的机组给予一定补偿。
也因此,探究火电机组参与调峰的安全性与经济性,从而选择参与调峰的策略成为各个火电企业的聚焦点。
2.深度调峰过程中的安全性分析2.1锅炉燃烧稳定性变差对于设计为烟煤的锅炉最低稳燃负荷,一般均在30%BMCR,大致相当于33%的额定负荷,但是从运行的安全性角度出发,电厂控制的最低稳燃负荷一般在40%额定负荷,有的控制在50%额定负荷。
深度调峰运行时,锅炉的燃烧工况远低于最低稳定运行负荷,炉膛温度下降,煤粉着火困难,火焰稳定性差,易熄火,存在炉膛灭火放炮的重大隐患。
保证锅炉的稳定燃烧可以从以下方面进行风险管控:(1)加强配煤管理,改善入炉煤质,必要时储备优质煤种作为调峰时燃用煤种。
汽 水 系 统

2)过热器: ①组成:顶棚过热器、包覆过热器、低温过热器、屏式过热器、高温过热器 ②结构: 顶棚过热器:来自启动分离器的蒸汽由连接导管进入顶棚; 包覆过热器:蒸汽从顶棚出口集箱经连接管进入包墙过热器,包墙过热器分 为侧包墙、中隔墙、前后包墙;包墙为全焊接膜式结构; 低温过热器:经过包墙系统加热后的蒸汽进入低温过热器,低过的蛇形管布 置在后竖井后烟道内,分为水平段与垂直出口段(低过水平段 管组通过包墙过热器吊挂管悬吊在大板梁上,垂直出口段通过 低过出口集箱悬吊在大板梁上)。 屏式过热器:屏式过热器布置在炉膛上部区域,为全辐射受热面,在炉深方 向布置了2排,两排屏之间紧挨着布置,每一排管屏沿炉宽方向 布置了13片屏,供26片。每片屏由24根管组成,管屏入口段与 出口段采用不同的壁厚,内外观全采用不同的管子规格;沿炉 膛深度方向,两排屏之间紧挨着布置,为保证管屏的平稳运行 ,防止管子出列和错位及焦渣的生成,屏式过热器布置有定位 滑动、管屏夹持管等结构;每片屏式过热器出口集箱与汇集集 箱相连,蒸汽在出口集箱与混合集箱中混合,并经二级减温器后 ,进入高温过热器。
D、省煤器: ①自给水管路出来的水进入位于尾部后竖井烟道下部的省煤器进口集箱,受热 面由省煤器的蛇形管组成。给水自下而上流经省煤器进口集箱,进入省煤器蛇 形管主受热面,再从省煤器出口集箱一端引出下水连接管进入水冷壁系统。 ②省煤器位于后竖井后烟道低温过热器的下方,沿烟道深度方向顺利布置,省 煤器蛇形管168排。省煤器分上下两组逆流布置,上组布置在 后竖井下部环形 集箱以上包墙区域,下组布置在后竖井环形集箱以下护板区域。 ③省煤器及低温过热器自重均通过包墙系统引出的吊挂管悬吊在锅炉顶部的钢 梁上。
。
高温过热器:高温过热器的蛇形管位于折焰角上部,炉膛后墙水冷壁吊挂官之前 ,每片管屏由20根管子并联绕制而成。管屏内外圈采用不同的管子 规格,蒸汽从高过入口集箱经蛇形管加热后进入高过出口集箱,品 质合格的蒸汽由连接管从出口集箱两端引出,上行后合并成单根蒸 汽导管送入汽轮机高压缸。
2023版二十五项反措防止汽轮机事故变动条款(8

且能保证漏油着火时人员可到达并便于操作、便于撤离的地方,
8.4.3
8.4.3润滑油系统油泵出口逆止阀前应设置可靠的排气措施,防止油泵启动后泵出口堆积空气不能快速建立油压,导致轴瓦损坏。
新增条款
8.4.7
8.4.7润滑油系统不宜在轴瓦进油管道装设调压阀。已装设的机组,调压阀应有可靠的防松脱措施,并定期进行检查。避免运行中阀芯移位或脱落造成断油烧瓦。
新增条款
新增条款
8.2.8
8.2.8对于送出线路加装串联补偿装置的机组,应采取措施预防因次同步谐振造成发电机组转子损伤。
新增条款
我公司无串联补偿装置,有次同步谐振预警系统。
8.2.9
8.2.2运行100000h以上的机组,每隔3~5年应对转子进行一次检查。运行时间超过15年、转子寿命超过设计使用寿命、低压焊接转子、承担调峰启停频繁的转子,应适当缩短检查周期。
8.2.9运行100000h以上的机组,每隔3~5年应对转子进行一次检查(制造商有返厂检查等特殊要求的,可参照制造商要求执行)。运行时间超过15年、转子寿命超过设计使用寿命、低压焊接转子、承担调峰启停频繁或深度调峰运行的转子,应适当缩短检查周期。重点对高中压转子调速级叶轮根部的变截面R处和前汽封槽,叶轮、轮缘小角及叶轮平衡孔部位,以及高、中、低压转子套装叶轮键槽,焊接转子焊缝等部位进行检查。
增加
对于600MW以上机组或超临界及以上机组,高中压隔板累计变形超过1mm,按《火力发电厂金属技术监督规程》(DL/T 438)相关规定,应对静叶与外环的焊接部位进行相控阵检查,结构条件允许时静叶与内环的焊接部位也应进行相控阵检查。
8.2.7
8.2.7加强汽水品质的监督和管理。大修时应检查汽轮机转子叶片、隔板上沉积物,并取样分析,针对分析结果制定有效的防范措施,防止转子及叶片表面及间隙积盐、腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机后缸喷水减温装置
汽轮机在起动空负荷阶段,后缸鼓风排气温度往往偏高,大于80℃。
这将引起汽轮机总体胀差超限。
为此,汽轮机末级叶片后,低压缸至凝汽器之间布置了后缸喷水减温装置,用来调节后缸排气温度,保证汽轮机总体胀差不超限。
由于老式后缸喷水减温均是在一钢管上呈30o并排布置两排Ф3mm左右的细孔,减温水从细孔中喷,喷水很难雾化,减温水与鼓风排气热交换面积小,达有到所需的减温效果,而且高速射的水柱会冲蚀汽轮机后缸缸壁造成磨损。
为此,西安交通大学在吸收国外同类产品基础上,开发了适合国产汽轮机后缸喷水减温改造的专门技术,新型喷水减温装置中采用特殊设计的膜式雾化喷嘴,减温水从水管进入喷嘴后,立即沿喷管内壁旋转喷,形成高速旋转水膜,水膜是中空的。
高速旋转水膜与鼓风热气进行充分热交换,使后缸排气温度迅速下降。
由于大大加强了换热效果,喷水减温作用显著。
技术性能:
•结构简单,安装方便。
运行可靠,不需维修。
•减温调节性能优越,保证汽轮机总体胀差不超限,排气温度不超标。
•减温效果好,所需喷水量小。
•减温装置全部采用不锈钢1CR18NI9TI,保证使用寿命20年以上。