单片机汇编语言指令.
单片机指令集的汇编语言编程方法介绍

单片机指令集的汇编语言编程方法介绍汇编语言是一种低级语言,它直接与计算机硬件进行交互,被广泛应用于单片机编程中。
本文将介绍单片机指令集的汇编语言编程方法。
一、简介单片机指令集是特定型号单片机支持的操作指令的集合。
每个指令都对应着特定的功能,通过组合和调用这些指令,可以实现复杂的计算和控制任务。
二、基本指令1. 数据传送指令数据传送指令用于将数据从一个位置传送到另一个位置。
常见的指令有MOV(将源操作数传送到目的操作数)、LDR(将存储器位置的数据传送到寄存器)和STR(将寄存器中的数据传送到存储器位置)等。
2. 算术指令算术指令用于进行数学运算,包括加法、减法、乘法和除法等。
常见的指令有ADD(将两个操作数相加并将结果存储到目的操作数中)、SUB(将目的操作数减去源操作数并将结果存储到目的操作数中)等。
3. 逻辑指令逻辑指令用于进行逻辑运算,包括与、或、非和异或等。
常见的指令有AND(将两个操作数进行按位与运算并将结果存储到目的操作数中)、ORR(将两个操作数进行按位或运算并将结果存储到目的操作数中)等。
4. 控制指令控制指令用于控制程序的执行流程,包括无条件跳转、条件跳转和中断等。
常见的指令有B(无条件跳转到指定的地址执行)、BEQ (当条件满足时跳转到指定的地址执行)等。
三、编程方法1. 熟悉指令集编程前需要详细了解所使用的单片机的指令集,包括指令的功能、操作数的类型和寻址方式等。
只有深入了解指令集,才能灵活运用指令编写程序。
2. 设计算法在开始编程之前,需要分析问题,设计出解决问题的算法。
算法应考虑输入、处理和输出等方面,合理利用指令集中的指令实现算法的逻辑。
3. 编写汇编程序根据算法,以汇编语言的格式编写程序。
程序的编写过程需要遵循指令的语法规则和寻址方式,并注意程序的可读性和效率。
4. 调试和优化程序编写完成后,需要进行程序的调试和优化。
通过单步执行程序,观察和检查程序执行过程中的中间结果,确保程序能够正确地执行。
单片机汇编语言指令集

汇编语言的所有指令数据传送指令集MOV功能: 把源操作数送给目的操作数语法: MOV 目的操作数,源操作数格式: MOV r1,r2MOV r,mMOV m,rMOV r,dataXCHG功能: 交换两个操作数的数据语法: XCHG格式: XCHG r1,r2 XCHG m,r XCHG r,mPUSH,POP功能: 把操作数压入或取出堆栈语法: PUSH 操作数POP 操作数格式: PUSH r PUSH M PUSH data POP r POP mPUSHF,POPF,PUSHA,POPA功能: 堆栈指令群格式: PUSHF POPF PUSHA POPALEA,LDS,LES功能: 取地址至寄存器语法: LEA r,m LDS r,m LES r,mXLAT(XLATB)功能: 查表指令语法: XLAT XLAT m算数运算指令ADD,ADC功能: 加法指令语法: ADD OP1,OP2 ADC OP1,OP2格式: ADD r1,r2 ADD r,m ADD m,r ADD r,data影响标志: C,P,A,Z,S,OSUB,SBB功能:减法指令语法: SUB OP1,OP2 SBB OP1,OP2格式: SUB r1,r2 SUB r,m SUB m,r SUB r,data SUB m,data影响标志: C,P,A,Z,S,OINC,DEC功能: 把OP的值加一或减一语法: INC OP DEC OP格式: INC r/m DEC r/m影响标志: P,A,Z,S,ONEG功能: 将OP的符号反相(取二进制补码)语法: NEG OP格式: NEG r/m影响标志: C,P,A,Z,S,OMUL,IMUL功能: 乘法指令语法: MUL OP IMUL OP格式: MUL r/m IMUL r/m影响标志: C,P,A,Z,S,O(仅IMUL会影响S标志)DIV,IDIV功能:除法指令语法: DIV OP IDIV OP格式: DIV r/m IDIV r/mCBW,CWD功能: 有符号数扩展指令语法: CBW CWDAAA,AAS,AAM,AAD功能: 非压BCD码运算调整指令语法: AAA AAS AAM AAD影响标志: A,C(AAA,AAS) S,Z,P(AAM,AAD)DAA,DAS功能: 压缩BCD码调整指令语法: DAA DAS影响标志: C,P,A,Z,S位运算指令集AND,OR,XOR,NOT,TEST功能: 执行BIT与BIT之间的逻辑运算语法: AND r/m,r/m/data OR r/m,r/m/data XOR r/m,r/m/data TEST r/m,r/m/data NOT r/m 影响标志: C,O,P,Z,S(其中C与O两个标志会被设为0) NOT指令不影响任何标志位SHR,SHL,SAR,SAL功能: 移位指令语法: SHR r/m,data/CL SHL r/m,data/CL SAR r/m,data/CL SAL r/m,data/CL影响标志: C,P,Z,S,OROR,ROL,RCR,RCL功能: 循环移位指令语法: ROR r/m,data/CL ROL r/m,data/CL RCR r/m,data/CL RCL r/m,data/CL 影响标志: C,P,Z,S,O程序流程控制指令集CLC,STC,CMC功能: 设定进位标志语法: CLC STC CMC标志位: CCLD,STD功能: 设定方向标志语法: CLD STD标志位: DCLI,STI功能: 设定中断标志语法: CLI STI标志位: ICMP功能: 比较OP1与OP2的值语法: CMP r/m,r/m/data标志位: C,P,A,Z,OJMP功能: 跳往指定地址执行语法: JMP 地址JXX功能: 当特定条件成立则跳往指定地址执行语法: JXX 地址注:A: ABOVE,当C=0,Z=0时成立B: BELOW,当C=1时成立C: CARRY,当弁时成立CXZ: CX寄存器的值为0(ZERO)时成立E: EQUAL,当Z=1时成立G: GREATER(大于),当Z=0且S=0时成立L: LESS(小于),当S不为零时成立N: NOT(相反条件),需和其它符号配合使用O: OVERFLOW,O=1时成立P: PARITY,P=1时成立PE: PARITY EVEN,P=1时成立PO: PARITY ODD,P=0时成立S: SIGN,S=1时成立Z: ZERO,Z=1时成立LOOP功能: 循环指令集语法: LOOP 地址LOOPE(Z)地址LOOPNE(Z) 地址标志位: 无CALL,RET功能: 子程序调用,返回指令语法: CALL 地址RET RET n标志位: 无INT,IRET功能: 中断调用及返回指令语法: INT n IRET标志位: 在执行INT时,CPU会自动将标志寄存器的值入栈,在执行IRET时则会将堆栈中的标志值弹回寄存器字符串操作指令集MOVSB,MOVSW,MOVSD功能: 字符串传送指令语法: MOVSB MOVSW MOVSD标志位: 无CMPSB,CMPSW,CMPSD功能: 字符串比较指令语法: CMPSB CMPSW CMPSD标志位: C,P,Z,S,OSCASB,SCASW功能: 字符串搜索指令语法: SCASB SCASW标志位: C,P,Z,S,OLODSB,LODSW,STOSB,STOSW功能: 字符串载入或存贮指令语法: LODSB LODSW STOSB STOSW标志位: 无REP,REPE,REPNE功能: 重复前缀指令集语法: REP 指令S REPE 指令S REPNE 指令S标志位: 依指令S而定对于IBM PC机它有它的指令系统,其中包括:数据传送指令、串处理指令、算术指令、控制移动指令、逻辑指令、处理机控制指令。
单片机c51汇编语言51单片机汇编语言

单片机c51汇编语言51单片机汇编语言单片机C51汇编语言单片机(C51)是指一种集成电路上只包含一个集中式控制器的微处理器,具有完整的CPU指令集、RAM、ROM、I/O接口等功能。
汇编语言是一种低级语言,是用于编写单片机指令的一种语言。
汇编语言能够直接操作单片机的寄存器和输入/输出端口,因此在嵌入式系统的开发中非常重要。
本文将介绍单片机C51的汇编语言编程。
一、了解单片机C51单片机C51是目前应用最广泛的一种单片机系列,广泛用于各种电子设备和嵌入式系统的开发。
C51指的是Intel公司推出的一种基于MCS-51架构的单片机。
该系列单片机具有较高的性能和低功耗的特点,可用于各种控制和通信应用。
二、汇编语言的基本概念汇编语言是一种低级语言,与机器语言紧密相关。
它使用助记符来代替机器指令的二进制表示,使程序的编写更加易读。
在单片机C51汇编语言中,每一条汇编指令都对应着特定的机器指令,可以直接在单片机上执行。
三、汇编语言的基本指令在单片机C51汇编语言中,有一些基本的指令用于控制程序的执行和操作寄存器。
以下是一些常用的指令:1. MOV指令:用于将数据从一个寄存器或内存单元复制到另一个寄存器或内存单元。
2. ADD指令:用于将两个操作数相加,并将结果存储到目的寄存器中。
3. SUB指令:用于将第一个操作数减去第二个操作数,并将结果存储到目的寄存器中。
4. JMP指令:用于无条件跳转到指定的地址。
5. JZ指令:用于在条件为零时跳转到指定的地址。
6. DJNZ指令:用于将指定寄存器的值减一,并根据结果进行跳转。
四、编写单片机C51汇编程序的步骤编写单片机C51汇编程序需要按照以下步骤进行:1. 确定程序的功能和目标。
2. 分析程序的控制流程和数据流程。
3. 设计算法和数据结构。
4. 编写汇编指令,实现程序的功能。
5. 调试程序,并进行测试。
六、实例演示以下是一个简单的单片机C51汇编程序的示例,用于实现两个数的相加,并将结果输出到LED灯上:org 0H ; 程序的起始地址为0mov a, 05H ; 将05H赋值给累加器mov b, 07H ; 将07H赋值给B寄存器add a, b ; 将A寄存器和B寄存器的值相加mov P1, a ; 将相加结果输出到P1口end ; 程序结束在这个例子中,首先将05H赋值给累加器A,然后将07H赋值给B寄存器,接着使用ADD指令将A和B的值相加,将结果存储到累加器A中,最后将累加器A的值输出到P1口。
单片机汇编指令

内部 RAM
R0
3 AH 6 5H 3 AH
A
6 5H
图2.4 寄存器间接寻址示意图
5. 变址寻址 变址寻址是指将基址寄存器与变址寄存器的内容相加,结 果作为操作数的地址。DPTR或PC是基址寄存器,累加器A是变 址寄存器。该类寻址方式主要用于查表操作。
例如,指令MOVC A,@A+DPTR执行的操作是将累加器
8051
开始 55H送P1口 延时0.3秒 AAH送P1口 延时0.3秒
流水式彩灯控制程序框图
控制程序 ORG 0000H LOOP: MOV P1,#55H ;将立即数55H送P1端口 LCALL TIME ;调延时子程序TIME MOV P1,#0AAH ;将立即数AAH送P1端口 LCALL TIME ;调延时子程序TIME SJMP LOOP ;转移到LOOP TIME: MOV R6,#200 ;延时子程序TIME TIME1:MOV R7,#200 TIME2:NOP NOP NOP DJNZ R7,TIME2 DJNZ R6,TIME1 RET END
CPL
RL
A
A
;将累加器A中的内容取反
;将累加器A的内容循环左移
内部RAM
R1 A 2 0H
2 0H
0 9H 0 1
RS1 RS0
图2.1 寄存器寻址示意图
2. 直接寻址 直接寻址是指把存放操作数的内存单元的地址直接写在
指令中。在MCS-51单片机中,可以直接寻址的存储器主要
有内部RAM区和特殊功能寄存器SFR区。 例如,指令MOV A,3AH执行的操作是将内部RAM 中 地址为3AH的单元内容传送到累加器A中,其操作数3AH就 是存放数据的单元地址,因此该指令是直接寻址。
大学课件MCS51单片机指令系统与汇编语言程序设计

ANL C, P ; (C)← (C)∧(P)
其中:P是PSW的第0位,C是PSW的第7位。
(4)字节符号地址(字节名称)加位序号的形式。对于部分特 殊功能寄存器(如状态标志寄存器PSW),还可以用其字节名 称加位序号形式来访问某一位。AC 如:
定义:操作数存放在MCS-51内部的某个工作寄存器Rn (R0~R7)或部分专用寄存器中,这种寻址方式称为 寄存器寻址。
特点:由指令指出某一个寄存器的内容作为操作数。 存放操作数的寄存器在指令代码中不占据单独的一个 字节,而是嵌入(隐含)到操作码字节中。
寻址范围:四组通用寄存器Rn(R0~R7)、部分专用 寄存器( A, B, DPTR, Cy )。
伪指令只出现在汇编前的源程序中,仅提供汇编用的某些控制 信息,不产生可执行的目标代码,是CPU不能执行的指令。
(1)定位伪指令ORG
格式:ORG n
其中:n通常为绝对地址,可以是十六进制数、标号或表达式。
功能:规定编译后的机器代码存放的起始位置。在一个汇编 语言源程序中允许存在多条定位伪指令,但每一个n值都应和前
2.2.2 直接寻址
定义:将操作数的地址直接存放在指令中,这种寻址方式称为 直接寻址。 特点:指令中含有操作数的地址。该地址指出了参与操作的数 据所在的字节单元地址或位地址。计算机执行它们时便可根据 直接地址找到所需要的操作数。
寻址范围:ROM、片内RAM区、SFR和位地址空间。P42
2.2.3 寄存器寻址
定义:指令中给出的操作数是一个可单独寻址的位地址,这种寻址 方式称为位寻址方式。
特点:位寻址是直接寻址方式的一种,其特点是对8位二进制数中 的某一位的地址进行操作。
寻址范围:片内RAM低128B中位寻址区、部分SFR(其中有83位 可以位寻址)。
80c51汇编语言指令

80c51汇编语言指令80C51汇编语言是一种常用的低级程序设计语言,广泛应用于嵌入式系统中。
它是基于Intel 8051系列单片机的指令集架构,具有高效、灵活、可靠的特点。
本文将介绍80C51汇编语言的一些常用指令。
一、MOV指令MOV指令是80C51汇编语言中最基本、最常用的指令之一,用于将数据从一个寄存器或内存位置复制到另一个寄存器或内存位置。
例如,MOV A, #25H表示将立即数25H复制到A寄存器中。
二、ADD指令ADD指令用于执行两个操作数的相加运算,并将结果存储在目标操作数中。
例如,ADD A, R0表示将A寄存器和R0寄存器中的数据相加,并将结果存储在A寄存器中。
三、SUBB指令SUBB指令用于执行两个操作数的减法运算,并将结果存储在目标操作数中。
与ADD指令不同的是,SUBB指令会考虑进位位的值。
例如,SUBB A, R1表示将A寄存器中的数据减去R1寄存器中的数据,并将结果存储在A寄存器中。
四、MUL指令MUL指令用于执行两个操作数的乘法运算,并将结果存储在累加器A和可选的乘法寄存器B中。
例如,MUL AB表示将累加器A和B 中的数据相乘,并将结果存储在A和B中。
五、DIV指令DIV指令用于执行两个操作数的除法运算,并将结果存储在累加器A和可选的余数寄存器B中。
例如,DIV AB表示将累加器A和B 中的数据相除,并将商存储在A中,余数存储在B中。
六、JC、JNC指令JC指令用于在条件跳转时执行跳转操作,如果进位标志位(C)为1,则执行跳转。
JNC指令则相反,只有当进位标志位为0时才执行跳转。
七、JZ、JNZ指令JZ指令用于在条件跳转时执行跳转操作,如果零标志位(Z)为1,则执行跳转。
JNZ指令则相反,只有当零标志位为0时才执行跳转。
八、CJNE指令CJNE指令用于在条件跳转时执行跳转操作,它比较两个操作数的值,并根据比较结果来确定是否执行跳转。
如果两个操作数相等,则不执行跳转;如果不相等,则执行跳转。
单片机汇编语言指令查表
目录表1 寻址方式与相应的寻址空间 (2)1.1数据传送指令MOV (2)1.2程序存储器取数据指令MOVX,MOVC (3)1.3 数据交换指令XCH,XCHD,SWAP (3)1.4 逻辑运算指令ANL,ORL(按位进行) (4)续表1.4 逻辑运算指令XRL CLR CPL RL RLC RR RRC(按位进行) (5)1.5 控制转移指令LJMP AJMP SJMP JMP JZ JNZ CJNE (6)续表1.5 控制转移指令DJNZ LCALL ACALL RET RETI NOP (7)1.6 布尔处理(位操作)指令CLR SETB CPL ANL ORL (8)续表1.6 布尔处理(位操作)指令JC JNC JB JNB JBC (9)1.7堆栈操作指令PUSH POP (10)2.MCS-51系列单片机算术运算指令表ADD ADDC SUBB INC DEC MUL DIV DA (10)表1 寻址方式与相应的寻址空间1.1数据传送指令MOV方式 利用的变量 使用的空间寄存器 R0∽R7,A ,B ,CY ,DPTR直接寻址 direct片内RAM 低128字节特殊功能寄存器SFR寄存器间址 @Ro ,@R1 SP @R0,@R1,@DPTR片内RAM 片外RAM立即数 #data程序存储器 基址加变址 @A+PC @A+DPTR程序存储器 相对寻址 PC+rel程序存储器位寻址bit片内RAM 的20H ∽2FH 部分SFR目的操作数汇编指令机器码功能字节数 机器周期A 累加器 立即数送AMOV A ,#data 74H data data 传至A 2 1 内部RAM 或SFR 内容送AMOV A ,direct E5H direct(direct)传至A2 1 寄存器内容送AMOV A ,Rn (n=0∽7) E8H ∽EFH 11101rrr (Rn)传至A 1 1 内部RAM 内容送A MOV A ,@Ri (i=0,1) 1110011i((Ri))传至A 1 1 Direct内部RAM 或SFR立即数送内部RAM 或SFR MOV direct ,#data 75H direct data data 传至direct 3 2 内部RAM 和SFR 直接直接传送 MOV direct ,direct 85H direct direct (direct)传至direct 3 2 累加器内容送内部RAM 或SFR MOV direct ,AF5H direct(A)传至direct 2 1 寄存器内容送内部RAM 或SFR MOV direct ,Rn (n=0∽7) 10001rrr direct (Rn)传至direct 2 2 内部RAM 内容送内部RAM 或SFRMOV direct ,@Ri (i=0,1) 1000011i direct ((Ri))传至direct 2 2 Rn 寄存器立即数送寄存器 MOV Rn,#data (n=0∽7) 01111rrr data data 传至Rn 2 1 内部RAM 或SFR 内容送寄存器MOV Rn,direct (n=0∽7) 10101rrr direct (direct)传至Rn 2 2 累加器内容送寄存器MOV Rn,A (n=0∽7) 11111rrr (A)传至Rn 1 2 @Ri 内部RAM立即数送内部RAMMOV @Ri,#data (i=0,1) 0111011i data data 传至(Ri) 2 1 内部RAM 或SFR 内容送内部RAMMOV @Ri,direct (i=0,1) 1010011i direct (direct)传至(Ri) 2 2 累加器内容送内部RAM MOV @Ri,A (i=0,1) 1111011i(A)传至(Ri) 1 1 DPTR 16位立即数传送指令MOV DPTR,#data1690H dataH dataLdata16传至DPTR321.2程序存储器取数据指令MOVX ,MOVC1.3 数据交换指令XCH ,XCHD ,SWAP目的操作数汇编指令机器码功能字节数 机器周期A 外部数据存储器内容送A MOVX A ,@Ri (i=0,1) E2H E3H ((Ri))传至A 1 2 A 外部数据存储器内容送A MOVX A ,@DPTR E0H ((DPTR))传至A 1 2 @Ri 累加器内容送外部数据存储器 MOVX @Ri,A (i=0,1) F2H ,F3H A 传至(Ri) 1 2 DPTR 累加器内容送外部数据存储器 MOVX @DPTR,A F0H A 传至(DPTR) 1 2 A 以PC 为基址寄存器加变址寻址 MOVC A,@A+PC 83H ((A)+(PC))传至A 1 2 A以DPTR 为基址寄存器加变址寻址MOVC A,@A+DPTR93H((A)+(DPTR))传至A12目的操作数指令机器码 功能字节数 机器周期 A 内部RAM 或SFR 内容与累加器内容互换 XCH A,directC5H direct (A)←(direct) 2 1 A 寄存器内容与累加器内容互换 XCH A,Rn (n=1-7) 11001rrr (A)←(Rn) 1 1 A 内部RAM 内容与累加器内容互换XCH A,@Ri (i=0,1) 1100011i (A)←((Ri))1 1 A 内部RAM 低4位内容与累加器低4位内容互换XCHD A,@Ri (i=0,1) 1101011i (A)0∽3←((Ri))0∽3 1 1 A累加器高4位与低4位交换SWAP AC4H(A)0∽3←(A)4∽7111.4 逻辑运算指令ANL,ORL(按位进行)目的操作数指令机器码功能字节数机器周期逻辑与ANLA内容∧立即数ANL A ,#data54H A←(A)∧#data 2 1 A内容∧内部RAM或SFR当direct为端口地址P0∽P3时,操作数由端口锁存器读入。
单片机汇编语言经典一百例
单片机汇编语言经典一百例汇编语言是一种底层的程序设计语言,是一种将汇编指令直接翻译成机器指令的语言。
在单片机编程中,掌握汇编语言是非常重要的,因为它可以充分发挥单片机的性能,并且提高程序的运行效率。
本文将介绍一百个经典的单片机汇编语言例子,帮助读者更好地理解汇编语言的使用。
1. 点亮LED灯```ORG 0x0000 ; 程序起始地址MOV P1, #0xAA ; P1口输出高电平,LED灯点亮END ; 程序结束```2. LED流水灯效果```ORG 0x0000 ; 程序起始地址MOV P1, #0x01 ; P1口输出低电平,第一个LED点亮CALL DELAY ; 调用延时函数MOV P1, #0x02 ; P1口输出低电平,第二个LED点亮CALL DELAY ; 调用延时函数MOV P1, #0x04 ; P1口输出低电平,第三个LED点亮CALL DELAY ; 调用延时函数MOV P1, #0x08 ; P1口输出低电平,第四个LED点亮CALL DELAY ; 调用延时函数…DELAY: ; 延时函数MOV R0, #100 ; 设置延时时间DELAY_LOOP:DJNZ R0, DELAY_LOOP ; 循环减一RET ; 返回END ; 程序结束```3. 数码管动态扫描显示```ORG 0x0000 ; 程序起始地址CLR P0.0 ; P0.0口输出低电平,选择第一个数码管MOV P2, #0x7E ; 将数码管对应的值存放到P2口CALL DELAY ; 调用延时函数CLR P0.1 ; P0.1口输出低电平,选择第二个数码管MOV P2, #0x30 ; 将数码管对应的值存放到P2口CALL DELAY ; 调用延时函数CLR P0.2 ; P0.2口输出低电平,选择第三个数码管MOV P2, #0x6D ; 将数码管对应的值存放到P2口CALL DELAY ; 调用延时函数CLR P0.3 ; P0.3口输出低电平,选择第四个数码管MOV P2, #0x79 ; 将数码管对应的值存放到P2口CALL DELAY ; 调用延时函数…DELAY: ; 延时函数MOV R0, #100 ; 设置延时时间DELAY_LOOP:DJNZ R0, DELAY_LOOP ; 循环减一RET ; 返回END ; 程序结束```...通过以上例子,我们可以看到单片机汇编语言的应用非常广泛,可以实现各种各样的功能。
51单片机汇编语言指令教程汇集
51单片机汇编语言指令教程汇集
1.MOV
MOV指令把源操作数的值复制到目的操作数。
格式如下:
MOV dest,src
dest :用于存储源操作数值的目的操作数。
src :用于取源操作数值的源操作数。
MOV指令可以把源操作数的值复制到目的操作数里,其中它的源操作数和目的操作数可以是内存单元,寄存器或立即数。
2.MVI
MVI指令把单字节立即数的值复制到其中一寄存器或内存单元。
格式如下:
MVI dest,data
dest :用于存放单字节立即数值的目的操作数。
data :用于取立即数值的立即数。
MVI指令可以把数据(data)复制到dest所指向的存储单元。
它的目的操作数可以是内存单元或寄存器,源操作数只能是8位立即数。
3.LXI
LXI指令可以把16位数据装载到左边和右边双字节寄存器中。
格式如下:
LXI rp,data
rp :用接受16位数据的双字节寄存器,它可以是BC,DE,HL或SP。
data :用于取16位立即数的立即数。
LXI指令可以把16位立即数data复制到双字节寄存器rp里。
4.LDA
LDA指令可以把存储单元中的数据装载到A寄存器中,格式如下:
LDA addr
addr :用于取存储单元数据值的存储单元地址。
LDA指令可以把存储单元addr中的数据复制到A寄存器中。
5.STA
STA指令可以把A寄存器的值存入指定的存储单元中,格式如下:
STA addr。
51单片机汇编cjnz指令
51单片机汇编cjnz指令题目:51单片机汇编指令cjnz的功能与应用引言:在51单片机汇编语言中,指令是程序员用来编程的基本元素之一。
其中,cjnz(Compare and Jump if Not Zero)指令是一条非常有用的条件分支指令。
本文将逐步介绍cjnz指令的功能、使用方法以及一些常见的应用场景。
第一部分:cjnz指令的功能和使用方法cjnz指令是一条带有条件判断的跳转指令。
它的基本功能是,在条件为非零时进行跳转,否则执行顺序往下执行。
使用方法如下:cpl A ; 对寄存器A中的内容进行取反操作cjnz A, Label ; 根据A寄存器的值,决定是否跳转到标签Label处其中cpl A指令是用来对寄存器A的内容进行逻辑非运算的,即将0变为1,将非零值变为零。
第二部分:cjnz指令的基本格式和实例分析cjnz指令的基本格式如下:cjnz 条件,目标地址其中,条件可以是寄存器、内部RAM、外部RAM或直接常数。
以下是一些实例分析,以进一步说明cjnz指令的使用方式和效果。
实例1:使用cjnz指令进行循环控制我们想要实现一个循环程序,将寄存器B的值依次加1,直到其值达到10为止。
可以使用cjnz指令来实现以下伪代码:loop:inc B ; 将寄存器B的值加1cjnz B, loop ; 如果B寄存器不为零,就跳转到标签loop处继续循环实例2:使用cjnz指令进行条件判断假设我们编程一个LED灯开关程序,当按下开关时,亮起LED灯,再按下开关则熄灭灯光。
可以使用cjnz指令来实现以下伪代码:main:cjnz P1.0, Led_On ; 如果P1.0口是高电平,则跳转到标签Led_On 处sjmp main ; 如果P1.0口是低电平,则一直停留在标签main处Led_On:setb P2.0 ; 设置P2.0口为高电平,从而点亮LED灯sjmp main ; 返回到标签main处,等待下一次按下开关第三部分:cjnz指令的优点和应用场景cjnz指令具有以下优点和应用场景:1. 简化程序逻辑:cjnz指令使得程序员可以通过条件判断来控制程序的执行路径,从而实现多样化的程序逻辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇编指令
常用单片机汇编指令:
1 .MOV A,Rn 寄存器内容送入累加器
2 .MOV A,direct 直接地址单元中的数据送入累加器
3 .MOV A,@Ri (i=0,1间接RAM 中的数据送入累加器
4 .MOV A,#data 立即数送入累加器
5 .MOV Rn,A 累加器内容送入寄存器
6 .MOV Rn,direct 直接地址单元中的数据送入寄存器
7 .MOV Rn,#data 立即数送入寄存器
8 .MOV direct,A 累加器内容送入直接地址单元
9 .MOV direct,Rn 寄存器内容送入直接地址单元
10.MOV direct,direct 直接地址单元中的数据送入另一个直接地址单元
11.11 .MOV direct,@Ri (i=0,1间接RAM 中的数据送入直接地址单元
12.12 MOV direct,#data 立即数送入直接地址单元
13.13 .MOV @Ri,A (i=0,1累加器内容送间接RAM 单元
14.14 .MOV @Ri,direct (i=0,1直接地址单元数据送入间接RAM 单元
15.15 .MOV @Ri,#data (i=0,1立即数送入间接RAM 单元16 .MOV DPTR,#data16
16.16 位立即数送入地址寄存器
17.17 .MOVC A,@A+DPTR 以DPTR为基地址变址寻址单元中的数据送入累加器
18.18 .MOVC A,@A+PC 以PC 为基地址变址寻址单元中的数据送入累加器
19.19 .MOVX A,@Ri (i=0,1外部RAM(8 位地址送入累加器
20.20 .MOVX A,@DPTR 外部RAM(16 位地址送入累加器
21.21 .MOVX @Ri,A (i=0,1累计器送外部RAM(8 位地址
22.22 .MOVX @DPTR,A 累计器送外部RAM(16 位地址
23.23 .PUSH direct 直接地址单元中的数据压入堆栈
24.24 .POP direct 弹栈送直接地址单元
25.25 .XCH A,Rn 寄存器与累加器交换
26.26 .XCH A,direct 直接地址单元与累加器交换
27.27 .XCH A,@Ri (i=0,1间接RAM 与累加器交换
28.28 .XCHD A,@Ri (i=0,1间接RAM 的低半字节与累加器交换
算术操作类指令:
1. ADD A,Rn 寄存器内容加到累加器
2 .ADD A,direct 直接地址单元的内容加到累加器
3 A.DD A,@Ri (i=0,1间接ROM 的内容加到累加器
4 .ADD A,#data 立即数加到累加器
5 .ADDC A,Rn 寄存器内容带进位加到累加器
6 .ADDC A,direct 直接地址单元的内容带进位加到累加器
7 .ADDC A,@Ri(i=0,1 间接ROM 的内容带进位加到累加器
8 .ADDC A,#data 立即数带进位加到累加器
9 .SUBB A,Rn 累加器带借位减寄存器内容
10.SUBB A,direct 累加器带借位减直接地址单元的内容
11.11 .SUBB A,@Ri (i=0,1累加器带借位减间接RAM 中的内容
12.12 .SUBB A,#data 累加器带借位减立即数
13.13 .INC A 累加器加1
14.14 .INC Rn 寄存器加1
15.15 .INC direct 直接地址单元加1
16.16 .INC @Ri (i=0,1间接RAM 单元加1
17.17 .DEC A 累加器减1
18.18 .DEC Rn 寄存器减1
19.19 .DEC direct 直接地址单元减1
20.20 .DEC @Rj 间接RAM 单元减1
21.21 .INC DPTR 地址寄存器DPTR 加1
22.22 .MUL AB A 乘以B,结果放在A
23.23 .DIV AB A 除以B,结果放在A
24.24. DA A 累加器十进制调整
布尔变量操作类指令:
1. CLR C 清进位位
2 .CLR bit 清直接地址位
3 .SETB C 置进位位
4 .SETB bit 置直接地址位
5 .CPL C 进位位求反
6 .CPL bit 置直接地址位求反
7 .ANL C,bit 进位位和直接地址位相“与”
8 .ANL C,/bit 进位位和直接地址位的反码相“与”
9 .ORL C,bit 进位位和直接地址位相“或”
10.ORL C,/bit 进位位和直接地址位的反码相“或”
11.11 .MOV C,bit 直接地址位送入进位位
12.12 .MOV bit,C 进位位送入直接地址位
13.13 .JC rel 进位位为1 则转移
14.14 .JNC rel 进位位为0 则转移
15.15 .JB bit,rel 直接地址位为1 则转移
16.16 .JNB bit,rel 直接地址位为0 则转移
17.17 .JBC bit,rel 直接地址位为1 则转移,该位清零逻辑操作数指令:
1. ANL A,Rn 累加器与寄存器相“与”
2 .ANL A,direct 累加器与直接地址单元相“与”
3 .ANL A,@Ri 累加器与间接RAM 单元相“与”
4 .ANL A,#data 累加器与立即数相“与”
5 .ANL direct,A 直接地址单元与累加器相“与”
6 .ANL direct,#data 直接地址单元与立即数相“与”
7 .ORL A,Rn 累加器与寄存器相“或”
8 .ORL A,direct 累加器与直接地址单元相“或”
9 .ORL A,@Ri 累加器与间接RAM 单元单元相“或”
10.ORL A,#data 累加器与立即数相“或”
11.11. ORL direct,A 直接地址单元与累加器相“或”
12.12 .ORL direct,#data 直接地址单元与立即数相“或”
13.13 .XRL A,Rn 累加器与寄存器相“异或”
14.14 .XRL A,direct 累加器与直接地址单元相“异或”
15.15 .XRL A,@Ri 累加器与间接RAM 单元单元相“异或”
16.16 .XRL A,#data 累加器与立即数相“异或”
17.17 .XRL direct,A 直接地址单元与累加器相“异或”
18.18 .XRL direct,#data 直接地址单元与立即数相“异或”
19.19 .CLR A 累加器清“0”
20.20 .CPL A 累加器求反
21.21 .RL A 累加器循环左移
22.22 .RLC A 累加器带进位位循环左移
23.23 .RR A 累加器循环右移
24.24 .RRC A 累加器带进位位循环右移
25.25 .SW AP A 累加器半字节交换
控制转移类指令
1. ACALL addr11 绝对(短调用子程序
2 .LCALL addr16 长调用子程序
3 .RET 子程序返回
4 .RETI 中数返回
5 .AJMP addr11 绝对(短转移
6 .LJMP addr16 长转移
7 .SJMP rel 相对转移
8 .JMP @A+DPTR 相对于DPTR 的间接转移
9.JZ rel 累加器为零转移
10.10. JNZ rel 累加器非零转移
11.11. CJNE A,direct,rel 累加器与直接地址单元比较,不相等则转移
12.12 .CJNE A,#data,rel 累加器与立即数比较,不相等则转移
13.13 .CJNE Rn,#data,rel 寄存器与立即数比较,不相等则转移
14.14 .CJNE @Ri,#data,rel 间接RAM 单元与立即数比较,不相等则转移
15.15 .DJNZ Rn,rel 寄存器减1,非零转移
16.16 .DJNZ direct,erl 直接地址单元减1,非零转移
17.17 .NOP 空操作。