重庆理工大学概率2014,12.19(A卷)

合集下载

重庆理工大学概率论与数理统计期末试卷B卷【非理工】(2010--2011上学期)

重庆理工大学概率论与数理统计期末试卷B卷【非理工】(2010--2011上学期)

- 1 -重庆理工大学考试试题卷2010~2011学年第一学期 考试科目 概率论与数理统计【非理工】一、单项选择题(本大题共7小题,每小题3分,共21分)请将正确选项前的字母填写在题后的括号内。

1.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( )A .)(1)(B P A P -= B .)()(B P B A P =-C .)()()(B P A P AB P =D . )()(A P B A P =- 2.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则=)(B A P ( )A .1B .P (A )C .P (B )D .P (AB )3.下列函数中可作为随机变量分布函数的是( )A .⎩⎨⎧≤≤=.,0;10,1)(1其他x x FB .⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x F C .⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F D .⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F 4.设离散型随机变量X,则=≤≤-)11(x P ( ) A .0.3 B .0.4 C .0.6 D .0.75.设二维随机变量(X ,Y)的分布律为且X 与Y 相互独立,则下列结论正确的是( )A .a =0.2,b =0.B .a =-0.1,b =0.9C .a =0.4,b =0.4D .a =0.6,b =0.26.设随机变量X 服从参数为21的指数分布,则E (X )=( )A .41B .21C .2D .47.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则D (Z )=( )A .5B .7C .11D .13二、填空题(本大题共7小题,每空3分,共21分)1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______.2.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______.3.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413)4.设二维随机变量(X ,Y )的分布律为则P {X <1,Y 2≤}=______.5.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______.6.设随机变量X 服从二项分布)31,3(B ,则E (X 2)= ______.7.设样本x 1,x 2,…,x n 来自总体N (μ,25),假设检验问题为H 0:μ=μ0,H 1:μ≠μ0,则检验统计量为______.- 2 -三、计算题(本大题共2小题,每小题8分,共16分)1.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,求P (B ).2.设一批产品中有95%的合格品,且在合格品中一等品的占有率为60%. 求:(1)从该批产品中任取1件,其为一等品的概率;(2)在取出的1件产品不是一等品的条件下,其为不合格品的概率四、综合题(本大题共3小题,每小题8分,共24分)1.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x 求:(1) P{0<X <1,0<Y <1}(2) X 的分布函数F (x ).2.设随机变量X 的概率密度为⎩⎨⎧≤≤-=.,0;22,)(其他x A x f 试求:(1)常数A ;(2)E (X ),D (X );(3)P {|X |≤1}.3.设某型号电视机的使用寿命X 服从参数为1的指数分布(单位:万小时). 求:(1)该型号电视机的使用寿命超过t (t >0)的概率;(2)该型号电视机的平均使用寿命.五、应用题(本大题共2小题,每小题9分,共18分)1.设总体X 服从均匀分布U (θθ2,),x 1,x 2,…,x n 是来自该总体的样本,求θ的矩估计θˆ2.设某批建筑材料的抗弯强度X ~N (μ,0.04),现从中抽取容量为16的样本,测得样本均值x =43,求μ的置信度为0.95的置信区间.(附:u 0.025=1.96)。

重庆理工大学概率论试卷和答案

重庆理工大学概率论试卷和答案

重庆理⼯⼤学概率论试卷和答案重庆理⼯⼤学概率论试卷和答案概率与数理统计复习资料⼀、单选1. 设随机事件与互不相容,且则()A. )B.C. D.2. 设,为随机事件,, ,则必有()A. B. C. D.3. 将两封信随机地投⼊四个邮筒中,则未向前⾯两个邮筒投信的概率为()A. B. C. D.4. 某⼈连续向⼀⽬标射击,每次命中⽬标的概率为,他连续射击直到命中为⽌,则射击次数为的概率是()A. B. C. D.5. 已知随机变量的概率密度为,令,则的概率密度为()A. B. C. D.6. 如果函数是某连续随机变量 X 的概率密度,则区间可以是()A. B. C. D.7. 下列各函数中是随机变量分布函数的为()A. B.C.D.8. 设⼆维随机向量( X,Y )的联合分布列为() Y X 01210 2则A. B. C. D.9. 已知随机变量和相互独⽴,且它们分别在区间和上服从均匀分布,则() A. B. C.D.10. 设为标准正态分布函数,,且,相互独⽴。

令,则由中⼼极限定理知 Y 的分布函数近似于()A. B. C. D.11. 设随机事件 A 与 B 互不相容,且有 P(A)>0 , P(B)>0 ,则下列关系成⽴的是( )A. A , B 相互独⽴B. A , B 不相互独⽴C. A , B 互为对⽴事件D. A , B 不互为对⽴事件12. 已知 P(A)=0.3 , P(B)=0.5 ,P(A ∪ B)=0.6 ,则 P(AB)=( ).A. 0.15B. 0.2 C . 0.8 D. 113. 设随机变量 X 的概率密度为 f(x) ,则 f(x) ⼀定满⾜()A.0 ≤ f(x) ≤ 1B.C.D.f(+ ∞ )=114. 从 0 , 1 ,…, 9 ⼗个数字中随机地有放回地接连抽取四个数字,则“ 8 ” ⾄少出现⼀次的概率为 ( )A.0. 1B. 0.3439C. 0.4D. 0.656115. 设⼀批产品共有 1000 个,其中有 50 个次品。

重庆理工大学2012-2013概率统计A(A卷)

重庆理工大学2012-2013概率统计A(A卷)

2012~ 2013学年第一学期考查试卷课程序号 班级 学号 姓名 ____________1.设 5.0)(=A P ,4.0)(=B P ,则下列结论中正确的是 ( ) (A)9.0)(=B A P (B) 1.0)(=-B A P (C)2.0)(=AB P (D) B A ⊄.2.一个宿舍4个学生中恰好有2人生日在1月份的概率是 ( )(A)22441112C (B) 244111012C ⨯ (C) 241112 (D) 4111012⨯3.设随机变量1X ,2X 的分布函数分别为)(1x F ,)(2x F ,且1X 与2X 相互独立,则下列函数中为某个随机变量分布函数的是 ( ) (A) )(1x F )(2x F + (B) )(1x F )(2x F - (C) )()(21x F x F (D) )(1x F 1)(2-+x F4.设随机变量)1,0(~N X ,则X Y 2=的概率密度为 ( ) (A)8221y e-π(B)82221y e-π(C)22221y e-π(D)8222y e-π5.若X 服从(1,5)-上的均匀分布,则()E X ,()D X 分别为 ( ) (A) 2,3 (B) 3,3 (C) 3,2 (D) 2,26.设,21,4)(,1)(-===XY Y D X D ρ则=-)2(Y X D ( )(A) 8 (B) 9 (C) 10 (D) 127.据医学统计,心肌梗塞病人约70%有先兆症状,某医院收治了100名心肌梗塞病人,其中有先兆症状的病人数为X ,则下列结论中错误的是 ( ) (A) )7.0,100(~B X (B) 20803.07.0}80{==X P(C) )21,70(~N X 近似(D) 8070{80}21P X -⎛⎫≤≈Φ ⎪⎝⎭8.若2212()~(1)Y a X X χ=+,其中12,X X 是取自正态总体)1,0(N 的样本,则 ( )(A) 14a = (B) 4a = (C) 12a = (D) 2a =二、填空题(本题共8小题,每小题3分,共24分,将答案填在下面对应的空格中) 1.两个学生参加某个公司的招聘会,被聘用的概率分别为0.6和0.7,则两个学生至少有一人被该公司聘用的概率为 .2.设随机变量X 的概率密度为⎩⎨⎧∉∈+=)1,0(,0)1,0(),1()(x x x kx x f ,则常数=k .3.甲乙两支乒乓球队计划进行10场比赛,假设甲队获胜X 场,乙队获胜Y 场,则X 与Y 的相关系数=XY ρ .4.设总体X 服从参数为λ的泊松分布,X 为样本均值,容量为n ,则()D X = . 5.设总体X 的分布律为(210<<θ)为未其中θ知参数,若样本均值23=x ,则参数θ的矩估计值=θˆ . 6.设321,,X X X 是来自总体X 的样本,下列总体均值μ的无偏估计量中最有效的是 .3211213161X X X Y ++=,3212214141X X X Y ++=,3213313131X X X Y ++=7.从去年死亡的人中随机选取100人,其平均寿命为71.8岁,标准差为8.9岁,假设人的寿命服从正态分布,在显著水平01.0=α下,是否可以认为现在人的平均寿命μ已经超过了70岁?则在假设检验中,原假设0H 应选为 . 8.根据成年男性身高x (m)与体重y (kg)的抽样数据计算得到1.757,67.597,0.0384, 4.6464,678.4,xx xy yy x y L L L =====则成年男性体重y 关于身高x 的线性回归方程为=y ˆ .三、(10分)有个学生把钥匙丢了,钥匙丢在宿舍、教室或路上的概率分别为0.4、0.35、0.25,而在这些地方找到钥匙的概率分别为0.9、0.3、0.1,(1)求该学生找到钥匙的概率;(2)若钥匙已经找到,求当初钥匙的确是丢在了宿舍的概率.X 0 1 2 3k p 2θ )1(2θθ- 2θ θ21-四、(10分)设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧∉∈=Gy x Gy x y x f ),(,0),(,1),(,其中区域G 由1,==y x y 所围成.(1) 求关于X 、Y 的边缘概率密度)(x f X 、)(y f Y ,并由此判断X 与Y 是否相互独立? (2)求)(X E ,)(Y E ,)(XY E ,并由此判断X 与Y 是否互不相关?五、(10分)设总体X 的概率密度为x e x f λλ2)(-=(0>λ),求参数λ的极大似然估计.六、(7分)一台机器生产圆柱形金属片,从中提取样本,直径(cm )分别为1.01,0.97,1.03,1.04,0.99,0.98,0.99,1.01,1.03,1.02.假设金属片的直径服从正态分布,求这台机器生产的金属片直径均值置信度为99%的置信区间.七、(10分)在A 班随机抽取9位学生的线性代数课程的考试成绩,得到样本方差为11021=S ,在B 班随机抽取4位学生的线性代数课程的考试成绩,得到样本方差为17422=S .假设学生的考试成绩服从正态分布,可否认为2221σσ=(50.0=α)?八、(5分)设关于,X Y 的边缘分布律分别为且{0}1P XY ==,求(,)X Y 的联合分布律.数理统计公式表及数据一.正态总体均值、方差置信水平为1α-的双侧置信区间待估参数其他参数置信区间μ2σ已知 2()X z nασ±μ 2σ未知)1((2-±n t nS X α2σμ未知))1()1(,)1()1((2212222-----n S n n S n ααχχ二.两个正态总体均值差、方差比的置信水平为1α-的置信区间待估参数 其他参数 置信区间X1- 0 1.i p14 12 14Y0 1 .j p12 1221μμ-2221,σσ已知)(2221212n σn σZ Y X α+±-2221,σσ未知,但22221σσσ==)11)2((21212n n S n n t Y X Wα+-+±- 2221/σσ μ1,μ2未知22212121212222/((1,1))(1,1)ααS S S F n n F n n S ----, 其中2)1()1(212222112-+-+-=n n S n S n S W三:正态总体均值、方差的检验法(显著性水平为α)原假设0H备择假设1H检验统计量拒绝域0μμ≤ 0μμ≥ 0μμ= (2σ未知)0μμ> 0μμ< 0μμ≠nS X T 0μ-=)1(-≥n t T α )1(--≤n t T α)1(2-≥n t T α21μμ≤ 21μμ≥ 21μμ= (22221σσσ==未知)21μμ> 21μμ< 21μμ≠ 2111n n S Y X T w+-=2)1()1(212222112-+-+-=n n S n S n S w )2(21-+≥n n t T α )2(21-+-≤n n t T α)2(212-+≥n n t T α2212σσ=2212σσ≤ 2212σσ≥ (21,μμ未知)2212σσ≠2212σσ> 2212σσ<2221S S F =()1221,1F F n n α≥--或()12121,1F Fn n α-≤-- ()121,1F F n n α>-- ()1121,1F F n n α-<--四:数据:(1.645)0.95Φ=, (1.96)0.975Φ=, (2.575)0.995Φ=, (9)=2.82140.01t , 0.005(9) 3.2498t = ,0.05(8,3)8.85F =, 0.05(3,8)4.07F =, 0.025(8,3)14.54F =, 0.025(3,8) 5.42F =。

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

1 / 24习题一一.填空题一.填空题1.ABC 2、50× 3、20× 4、60× 二.单项选择题二.单项选择题 1、B 2、C 3、C 4、A 5、B 三.计算题三.计算题 1.(1)略)略 (2)A 、321A A AB 、321A A A ÈÈC 、321321321A A A A A A A A A ÈÈD 、321321321321A A A A A A A A A A A A ÈÈÈ 2.解.解)()()()(AB P B P A P B A P -+=È=85812141=-+83)()()()(=-=-=AB P B P AB B P B A P87)(1)(=-=AB P AB P21)()()])([(=-È=ÈAB P B A P AB B A P3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C 4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=ÈÈ=855.解:(1)n Nn A P !)(=(2)nn NNn C B P !)(=、 (3)nmn m n N N C C P --=)1()(习题二一.填空题一.填空题1.0.8 2、50× 3、32 4、735、43 二.单项选择题二.单项选择题 1、D 2、B 3、D 4、B 三.计算题三.计算题1. 解:设i A :分别表示甲、乙、丙厂的产品(i =1,2,3) B :顾客买到正品:顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=´+´+´ 8334)()/()()/(222==B P A B P A P B A P2.解:设iA :表示第i 箱产品(i =1,2)i B :第i 次取到一等品(i =1,2) (1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=´+´ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P +=19423.02917301821499501021=´´+´´ 4856.04.019423.0)()()/(12112===B P B B P B B P (4)4856.04.019423.0)()()/(212121===B P B B P B B P 3. 解:设i A :表示第i 次电话接通(i =1,2,3)101)(1=A P 10191109)(21=´=A A P1018198109)(321=´´=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++如已知最后一位是奇数,则如已知最后一位是奇数,则51)(1=A P 514154)(21=´=A A P51314354)(321=´´=A A A P 所以拨号不超过三次接通电话的概率为60515151=++ 4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=ÈÈ-=ÈÈ=6.04332541=-5.解:设21,B B 分别表示发出信号“A ”及“B ” 21,A A 分别表示收到信号“A ”及“B ”)/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A P B A P B P A P B A P A B P第一章 复习题一.填空题一.填空题1.0.3,0.5 2、0.2 3、2120 4、153,1535、158,32,31 6.4)1(1p --二.单项选择题二.单项选择题1、B2、B3、 D4、D5、A 三.计算题三.计算题1. 解:设i A :i 个人击中飞机(i =0,1,2,3) 则09.0)(0=A P 36.0)(1=A P 41.0)(2=A P 14.0)(3=A PB :飞机被击落:飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(00A B P A P +=458.0009.0114.06.041.02.036.0=´+´+´+´ 2.解:设i A : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况:)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0××C打五局,概率122246.06.04.0××CP (甲胜)=36.0+11221136.06.04.0××C +1122222246.06.04.0××C =0.68256 (2)93606.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321321212121=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案:知道答案 B :填对:填对)/()()(A B P A P B P =475.0417.013.0)/()(=´+´=+A B P A P197475.0417.0)()/()()()()/(=´===B P A B P A P B P B A P B A P 4.解:设iA :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到:迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=´+´+´+´2120341103)()/()()()()/(11111=´===B P A B P A P B P B A P B A P同理94)/(2=B A P 181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球:乙袋中取红球)()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=È =40211610106166104=´+´习题三 第二章 随机变量及其分布一、填空题一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <ìï£<ï=í£<ïï³î6、113~0.40.40.2X -éùêúëû二、单项选择题二、单项选择题1、B2、A3、B4、B 三、计算题三、计算题1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2,...,15)kk kP X k C k -===至少有两人的概率:(2)1(2)1(0)(1)0.833P X P X P X P X ³=-<=-=-==多于13人的概率:(13)(14)(15)P X P X P X >==+==02、解、解 设击中的概率为p ,则X 的分布率为的分布率为 X123456k p p (p p )1- (p p 2)1- (p p 3)1- (p p 4)1- (p p 5)1-+(6)1p -3、解:X 的分布律为:的分布律为:X34 5 k p0.10.30.6X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <ìï£<ï=í£<ïï³î4、解:由已知,X 的密度函数为:1,33()60,x f x ì-££ï=íïî其它此二次方程的22(4)44(2)16(2)x x x x D =-××+=--(1)当0D ³时,有实根,即2(2)021x x x x --³Þ³£-或 所以{}{21}{2}{1}P P X X P X P X =³£-=³+£-方程有实根或3123111662dx dx --=+=òò(2)当0D =时,有重根,即2(2)021x x x x --=Þ==-或所以{}{21}{2}{1}0P P X X P X P X ===-==+=-=方程有重根或 (3)当0D <时,无实根,1{}1{}2P P =-=方程有实根无实根 5、解:设X 为元件寿命,Y 为寿命不超过150小时的元件寿命。

概率理工试题一

概率理工试题一

重庆理工大学概率论试题一一、填空题(每空2分,共36分)1.射击3次,事件A i 表示第i 次命中目标(i=1,2,3),则事件“命中三次”可用A i 表示为______________________________。

2.从总体中任取一个容量为5的样本,测得样本值为8,9,10,11,12,则总体期望的无偏估计为__________________。

3.随机变量X 服从标准正态分布,则EX=_______________,DX=_______________。

4.同时抛3枚均匀的硬币,则恰好有两枚正面朝上的概率为_______________。

5.事件A ,B 互不相容,且P(A) =0.3,P(B) =0.6,则P(A ∪B)= _____________,P(A ) =_____________, P(A|B)=___________。

6、设离散型随机变量X 的分布列为其分布函数为()F x ,则A=_____________ ,E(X)=____________,(3)F =___________。

7.随机变量X 与Y 相互独立,cov(X,Y) = ___________,E(XY) = __________,D(X+Y) =___________。

8.随机变量X 服从指数分布,P(X=1)=__________________。

9.随机变量X 服从参数为λ的普阿松分布,D(2X+1)=______________。

10.10只签中有2只难签,3人参加抽签,不重复抽取,每人一次,甲先,乙次,丙最后,丙抽到难签的概率为_____________。

11.袋中有6只红球,4只白球,大小相同,一次随机摸出两只,则摸到两只同颜色球的概率为_______________。

二、计算题及应用题(共64分)1.P(A)=0.4,P(B)=0.3,P(A+B)=0.4,求P(A —B) (7分)2.X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,求EX 2 (7分)3.3个人独立地去破译一个密码,他们能译出的概率分别为1/5,1/3,1/4,问能将此密码译出的概率是多少? (7分)4.d c d P c P N ,,0668.0)(,95.0)|10(|),2,10(`~2求已知=<=<-ξξξ)9332.0)5.1(,975.0)96.1((00=Φ=Φ (7分)5.一学生接连参加同一课程的两次考试,第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ,若第一次不及格则第二次及格的概率为p/2。

2014年重庆高考数学(理)试题和答案word版(2021年整理)

2014年重庆高考数学(理)试题和答案word版(2021年整理)

2014年重庆高考数学(理)试题和答案word版(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2014年重庆高考数学(理)试题和答案word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2014年重庆高考数学(理)试题和答案word版(word版可编辑修改)的全部内容。

2014年重庆高考数学试题(理)一。

选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限.C 第三象限 .D 第四象限2。

对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =-.29.5C y x =-+ .0.3 4.4C y x =-+4。

已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A - .0B C.3 D 。

1525。

执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。

A .12s >B 。

1224abc ≤≤ 35s > C. 710s > D 。

重庆理工大学概率论与数理统计期末试卷

重庆理工大学考试试卷学年第 学期班级 学号 姓名 考试科目 概率与数理统计 A 卷 闭卷 共 3 页 ···································· 密························封························线································)0.7AB =, B 、0.4 服从参数为(λλ,,n X 是来自正态总体2(,)N μσ2)μ- 2)X - C2、已知随机变量X的分布律为101~0.40.30.3X-⎡⎤⎢⎥⎣⎦,则X的分布函数()F x=。

重庆理工大学2014高数C2A

班级学号姓名考试科目高等数学[经管2] A 卷闭卷共3 页································································································密························封························线··································································································学生答题不得超过此线班级学号姓名考试科目高等数学[经管2] A 卷闭卷共3 页································································································密························封························线··································································································学生答题不得超过此线重庆理工大学考试试卷2013 ~ 2014 学年第 二 学期班级 学号 姓名 考试科目 高等数学 [经管2] A 卷 闭卷 共 3 页 ································································································ 密························封························线··································································································学生答题不得超过此线 5、计算二重积分3(e )d d x Dy x y +⎰⎰,其中积分区域D 是由x y =和1x =所围成。

2014年普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)

2014年重庆高考数学试题〔理〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.在复平面内表示复数(12)i i -的点位于〔〕.A 第一象限.B 第二象限 .C 第三象限.D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,如下说法一定正确的答案是〔〕139.,,A a a a 成等比数列236.,,B a a a 成等比数列 248.,,C a a a 成等比数列239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,如此由观测的数据得线性回归方程可能为〔〕.0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+.0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,如此实数k=9.2A -.0B C.3 D.152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题〔5〕图所示的程序框图,假设输出k 的值为6,如此判断框内可填入的条件是。

A .12s >B.1224abc ≤≤35s >C.710s >D.45s >【答案】C 【解析】.∴10787981091C S 选=•••=6.命题:p 对任意x R ∈,总有20x >; :"1"q x >是"2"x >的充分不必要条件如此如下命题为真命题的是〔〕.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如下列图,如此该几何体的外表积为〔〕A.54B.60C.66D.72【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+如此该双曲线的离心率为〔〕A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,如此类节目不相邻的排法种数是〔〕A.72B.120C.144D.3 【答案】B【解析】解析完成时间2014-6-12 373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,如此如下不等式成立的是〔〕A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12 373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每一小题5分,共25分,把答案填在答题卡相应位置上。

重庆理工大学概率论与数理统计A【理工】(2011--2012下学期)

重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页,,X是来自正态总体6重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页X为来自总体,,n2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································学生答题不得超过此线重庆理工大学考试答题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(共5小题,每小题2分,共10分)
1、设随机事件A 与B 相互独立,且()0.5P B =,()0.3P A B -=,则()P B A -=()
A 、0.1
B 、0.2
C 、0.3
D 、0.4 2、设连续型随机变量X 的分布函数为()arctan F x A B x =+,(,)x ∈-∞+∞,则系数A 与B 分别为(
) A 、11,2A B π=-= B 、11,2A B π== C 、11,2A B π== D 、11,2A B π
==- 3、已知2{}P X k k a ==,{}(1)P Y k k b =-=+,(1,0,1k =-),则,a b 分别为()
A 、13a =,15b =
B 、15a =,13b =
C 、12a =,13b =
D 、13a =,12
b = 4、设总体2~(,)X N μσ,2σ已知,若12,,...,n X X X 是来自X 的样本,则μ的置信水平为1α-的双侧置信区间是()
A
、/2X α⎛⎫ ⎪⎝⎭ B
、X α⎛⎫ ⎪⎝⎭ C 、⎪⎪⎭⎫ ⎝⎛-±)1(2/n t n S X α D 、⎪⎪⎪⎭
⎫ ⎝⎛-----)1()1(,)1()1(22/12222n S n n S n ααχχ 5、下列结论中,不能作为随机变量X 与Y 不相关的充要条件的是()
A 、(),0Cov X Y =
B 、()()D X Y D X Y +=-
C 、()()()E XY E X E Y =
D 、X 与Y 相互独立
二、填空题(共5小题,每小题2分,共10分)
1、设A,B,C 为三事件,则事件“A,B,C 中不多于一个发生”可表示为_______________.
2、若盒中有6个白球,12个红球,从中不返回地取10次,每次取一个,则第七次取得白球的概率为 .
3、设随机变量2~(3,2)X N ,则{}3P X ==____________.
4、设21,X X 都服从参数1λ=的泊松分布,且21,X X 相互独立,则12()D X X -=____________.
5、设1234,,,X X X X 为总体X 的样本,12341173918
X kX X X +++为总体均值的无偏估计量,则k =____________. 三、计算题 (共5小题,每小题8分,共40分)
1、某射手有3发子弹,射一次命中的概率为23
,如果命中了就停止射击,否则一直独立射到子弹用尽,设X 为射击次数. 求(1)求X 的分布律;(2)求X 的分布函数;(3)求()D X .
2、设连续型随机变量X 的概率密度为() 010 kx x f x ≤≤⎧=⎨⎩其它
. 求(1)k 的值;(2)23Y X =-+的概率密度.
3、设随机变量X 的概率密度为 1 01()0 x f x <<⎧=⎨⎩其他
,以Y 表示对X 的三次独立重复观察中事件14X ⎧⎫≤⎨⎬⎩⎭出现的次数, 求{1}P Y =.
4、二维随机变量(,)X Y 的分布律如下表,求(1)边缘分布律;(2)Z X Y =+的分布律;(3)cov(,)X Y .
5、设随机变量X 与Y 相互独立,且分别服从参数1λ=与参数4λ=的指数分布. 求(1)X 与Y 的联合概率密度函数
(2){}P X Y <..
四、应用题 (共5小题,每小题8分,共40分)
1、某人有一笔资金闲置,想用来投资,他投入基金的概率为0.57,购买股票的概率为0.38,两项同时都投资的概率为0.19。

(1) 已知他已经投入基金,再购买股票的概率是多少? (2)已知他已经购买股票,再投入基金的概率是多少?
2、某学校调查学生的数学学习情况,抽样调查结果表明,考生的数学成绩(百分制)2~(70,)X N σ,且考生的数学成绩在70~90
之间的考生占考生总数的23%,求考生的数学成绩在90分以上的的概率。

3、设某商店在季节内销售某商品的销售量X (kg )服从区间(10,20)内的均匀分布,所得利润Y (以万元计)为23100Y X =+,
求该商店获得利润Y 的数学期望.
4、设总体X 的分布函数为2
1(;)0,00x x e x F x θθ-≥⎧=<⎪-⎨⎪⎩,其中θ是未知参数且大于零,12,,,n X X X ⋅⋅⋅是容量为n 的简单随机样本,试求参数θ的最大似然估计量.
5、某手机生产厂家在其广告宣传中声称他们生产的某品牌的手机待机时间的平均值为72小时,质监部门抽查了这种品牌手机
6部,得到的待机时间为69,68,72,70,66,75.设手机待机时间~(,24)X N u ,试用这些数据说明:手机待机时间与广告宣传
是否有显著差异?(0.05α=).(0.05 1.645u =,0.025 1.96u =,0.05(5) 2.015t =,0.025(5) 2.5706t =)。

相关文档
最新文档