七上数学应用一元一次方程-追赶小明例题分析(北师大版)

合集下载

北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)

北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)

一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。

北师大版七年级数学上册ppt课件:5.6 应用一元一次方程——追赶小明

北师大版七年级数学上册ppt课件:5.6 应用一元一次方程——追赶小明

知识点 3 一般行程问题
5.某人以 5 千米/小时的速度从家步行到单位上班,下班时以 4 千米/
小时的速度按原路返回,结果发现下班路上所花的时间比上班路上
所花的时间多 10 分钟.如果设上班路上所花的时间为 x 小时,则下
列根据题意所列方程正确的是( A )
1
1
A.5x=4 + 6
B.5 + 6 =4x
1.8 元/千米
0.3 元/分钟
0.8 元/千米
注:车费=里程费+时长费+运途费,其中里程费按行车的实际里程计算;时长
费按行车的实际时间计算;运途费的收取方式为:行车 7 千米以内( 含 7 千
米 )不收运途费;超过 7 千米的,超出部分每千米收 0.8 元.
小王与小张各自乘坐滴滴快车,行车里程分别为6千米与8.5千米,如果下车时两人所付车费
第五章 一元一次方程
5.6 应用一元一次方程——追赶小明
第五章
5.6 应用一元一次方程——追赶小明
知识要点基础练
综合能力提升练
拓展探究突破练
-2-
知识点1 相向相遇问题
1.A,B两站间的距离为335 km,一列慢车从A站开往B站,每小时行驶55 km,慢车行驶1小时后,
另有一列快车从B站开往A站,每小时行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方
乙船从B地到达C地时,甲船距离B地有多远?
第五章
5.6 应用一元一次方程——追赶小明
知识要点基础练
综合能力提升练
拓展探究突破练
-14-
解:设乙船由B地航行到C地用了x h.那么甲、乙两船由A地到B地都用了( 4-x )h.
( 1 )若C地在A,B两地之间,则A地到B地的距离是( 7.5+2.5 )( 4-x )km,B地到C地的距离是

七年级北师大版数学5.6追赶小明

七年级北师大版数学5.6追赶小明
1号队员 A 自行车队
千 米 处
自行车队行驶 的路程为?
35 x
C B 会 合 1号队员行驶 点 的路程为?
解:设1号队员从离队开始到与队员重新会合,经过了 等量关系为: 根据题意得 35 x + 45 x ═ 10 × 2 1号队员行驶时间 = 自行车队行驶时间
x
45 x
h
1号队员行驶路程 + 自行车队行驶路程 = 10 × 2 答:1号队员从离队开始到与队员重新会合,经过了 h。
2、小彬和小强每天早晨坚持跑步,小彬每秒跑4米, 小强每秒跑6米。 (( 2)如果他们站在百米跑道的两端同时相向起跑, 1)如果他们站在百米跑道的两端同时相向起跑, 那么几秒后两人相距 那么几秒后两人相遇? 10米? 小彬所跑的路程 小强所跑的路程 小 小 4X 6 X 彬 强 总路程100米
解:设X秒后两人能相遇. 依题意列方程,得 6X + 4X = 100 解得: X=10 答:经过10秒后两人能相遇。
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
80×5
80x
c
解(1)设爸爸追上小明用了x分钟。 即:爸爸走完AB的时间为X 小明走完CB的时间也为X 等量关系: 根据题意,得 180x = 80x + 80 × 5 解得 x = 4 答:爸爸追上小明用了4分钟 180x 爸爸所走的距离 AB是多少呢?
运动场的一圈长400米,甲练习骑自 行车,平均每分钟250米,乙练习跑步,
平均每分钟350米,两人从同一处反向出
发,经过多少时间首次相遇?
相遇点
甲走的路程
+ 乙走的路程 =运动场的一圈长400米
出发点

(名师整理)最新北师大版数学7年级上册第5章第6节《应用一元一次方程—追赶小明》精品课件

(名师整理)最新北师大版数学7年级上册第5章第6节《应用一元一次方程—追赶小明》精品课件

练习:
1.课本议一议 2.习题5.10
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
相遇问题
速度和×时间=总路程
应用一 元一次 方程— —追赶 小明
追及问题
顺流(风) 逆流(风)
问题
速度差×追及时间=追及路程
顺水速度=原来速度+水流 (风)速度 逆水速度=原来速度-水流(风)速度.
板书设计
(1)爸爸用了多少时间? (2)追上小明时,距离学校还有多远?
80x5

学 校
问题:1、爸爸走的路程怎么表示 2、爸爸从开始追到追上这段时间小明走的路程怎么表示
80x5
80X
家 180X
学 校
80×5
80x
等量关系:
180x
爸爸走的路程—小明同一时刻走的路程=相差的路程
解:设爸爸用了X分追上小明,依题意得: 180x -80x =80×5 解得:x = 4
板书设计
问题的 已知条件
画出 线段图
找出 等量关系
回答
检验
列方程 并求解
光读书不思考也许能使平庸之辈知识 丰富,但它决不能使他们头脑清醒。
—— 约·诺里斯
V= s t
3.已知小明家距离火车站1500米,他以4米/秒的

6.25
度骑车到达车站需要_____分钟.
t =s v
小明每天早上要在7:50之前赶到距家1000米的 学校:一天,小明以80米/分的速度出发,5分钟后,小 明的爸爸发现他忘了带语文书,爸爸以180 米/分的 速度去追小明,并且在途中追上了他.
答:爸爸用了4分追上小明. 思考解答:追上小明时,距离学校还有多远?1000米8Fra bibliotek×580x

北师大版初中数学七年级上册知识讲解:第21讲 一元一次方程应用(二) 希望工程”义演与追赶小明(基础)

北师大版初中数学七年级上册知识讲解:第21讲 一元一次方程应用(二) 希望工程”义演与追赶小明(基础)

一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题方程解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚. 要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,−−−→分析抽象−−−→求解检验顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2018春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒kg ,则蒜苗kg ,得解得:(2)利润: (元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克? x (40)x -1.6 1.8(40)70x x +-=10x =4030x -=10(2.6 1.6)30(3.3 1.8)55-+-=【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为小时,下坡行驶的时间为小时.依题意,得:, 化简得: .显然a ≠0,解得 答:汽车的平均速度为千米/时. 2.相遇问题(相向问题)3.(2019•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】10a 20a 21020a a x a ⎛⎫+= ⎪⎝⎭340ax a =1133x =1133解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2018•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300.3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意,得, 得:, 小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.18145560x x =⨯+16x =16解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为千米/时,逆水航行时速度为千米/时,由船在静水中的速度不变得方程:,解得: 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .千米/小时B .千米/小时C .千米/小时D .千米/小时5.(2018秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5 二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支. 3x 5x 4435x x -=+60x =()x y +()x y -(2)x y +(2)x y +8.(2018•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为________. 9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有人,书有本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2019春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2019春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】 二、填空题7.【答案】40,35【解析】设钢笔数量是x 支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x 人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y 本,,解得y=270,42. 10.【答案】25;200 【解析】(1)相遇问题:(秒);(2)追及问题: (秒). 11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh 水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h 水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x 千米/时,题意得:×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x 人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x 人,则这三个车间的人数依次为13x 人4x 人、7x 人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】200505050112.55070-⨯+=+y-18y+24=67y-18=64002579=+40020097=-112解:设原来每天生产x 个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x 小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米.(2)解:设乙出发x 小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=. 答:乙出发小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x 小时,使甲、乙二人相遇于AB 的中点.依题意,得,解这个方程,得x=. 答:只要乙比甲先出发小时,两人就能相遇于AB 的中点. (4)解:设x 小时后甲乙相遇,依题意,得15x+12x=216×31631631121621612221512x ⨯⨯-=415415解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。

最新北师大版七年级数学上册精品课件5.6 应用一元一次方程——追赶小明

最新北师大版七年级数学上册精品课件5.6  应用一元一次方程——追赶小明

列方程 并求解
• 第三级
• 第四• 级第五同级 地不同时: 甲路程=乙路程
同向追及问题
回答
同时不同地:甲路程+路程差=乙路程;
相向相遇问题 甲的路程+乙的路程=总路程
2019/8/20
27
• 第三级
一般有如• 下第四两级 种情形:
• 第五级
①同时同地、同向而行: v甲t-v乙t=s.
①同时同地、背向而行: v甲t+v乙t=s.
2019/8/20
23
单击此处编随母堂版练标习 题样式
1.甲、乙两人练习赛跑,甲每秒跑4米,乙每秒跑
6依米•题单,意击甲列此先方处跑程编10得辑秒(母,B版乙)文开本始样跑式,设乙x秒后追上甲,
4.A、B两地相距27千米,甲、乙两人分别从A、B两地 同时出发,相向而行.已知甲的速度为4千米/时,乙的 速度为5千米/时,则甲、乙两人_3__小时后相遇.
2019/8/20
25
单击此处编母版标题样式
5.敌我两军相距25km,敌军以5km/h的速度逃跑,
我•军单同击时此以处8编km辑/h母的版速文度本追样击式,并在相距1km处发生 战斗,• 第问二战级斗是在开始追击后几小时发生的?
60
6
即通讯员用 10 min 可以追上学生队伍.
单击此处编母版标题样式
归纳总结
对于行程问题,通常借助“线段图”来分析问题
•中单的击数此量处关编系辑.母版文本样式 甲、• 第乙二两级人同向出发,甲追乙这类问题为追及问题:
• 第三级
(1)对于•同第向四级同时不同地的问题,如图所示,甲的 • 第五级
行程-乙的行程=两出发地的距离;
解得
x=4.
答:爸爸追上小明用了4分钟.

北师大版七年级数学上册5.6:应用一元一次方程 追赶小明

根据上面的事实提出问题并尝试去解答. 问题1:后队追上前队用了多长时间 ? 问题2:后队追上前队时联络员行了多少路程?
问题3:联络员第一次追上前队时用了多长时间? 问题4:当后队追上前队时,前、后队行走了多少路程? 问题5:联络员在前队出发多少时间后第一次追上前队?
议一议: 宿州十一中七年级学生步行到郊外旅行。七(1)班的学生组 成前队,步行速度为4千米/时,七(10)班的学生组成后队, 速度为6千米/时。前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/时。
解:设经过了x小时重新会合, 根据题意,得 35x+45x=10×2
解得 x=0.25
答:经过0.25小时重新会合。
这节课我学会了什么?
1.书P151. 习题5.9 第1,2 题。
2.思考题
某轮船在两个码头之 间航行,顺水航行需要 4 h,逆水航行需要6 h,水流的速度是2 km/h,求两个码头之间 的距离.
感谢谢 聆 听
问题2:后队追上前队时联络员行了多少路程?
解:由问题1得后队追上前队用了2小时,因此 联络员共行进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米。
议一议: 宿州十一中七年级学生步行到郊外旅行。七(1)班的学生组 成前队,步行速度为4千米/时,七(10)班的学生组成后队, 速度为6千米/时。前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/时。
分析:等量关系:快车所用时间=慢车所用时间;
快车行驶路程=慢车行驶路程+相距路程.
解:设快车x小时追上慢车,
据题意得: 85x=450+65x.解,得 x=22.5.

七年级数学上册第五章一元一次方程6应用一元一次方程—追赶小明课件北师大版


◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( 导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )

初中数学北师大版七年级上册6 应用一元一次方程—追赶小明

问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 由题意列方程得;
12x = 4x + 4
解方程得:x =0.5
答:联络员第一次追上前队时用了0.5小时。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地
小明每天早上要在7:50之前赶到距家1000米的 学校上学。小明以80米/分的速度出发,5分后, 小明的爸爸发现他忘了带语文书。于是,爸爸立 即以180米/分的速度去追小明,并且在途中追上 了他。
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
小明每天早上要在7:50之前赶到距家1000米的 学校上学。小明以80米/分的速度出发,5分后, 小明的爸爸发现他忘了带语文书。于是,爸爸立 即以180米/分的速度去追小明,并且在途中追上 了他。
问题2:后队追上前队时联络员行了多少路程?
解:由问题1得后队追上前队用了2小时,因此 联络员共行进了
12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。
---能追上小明吗?
复习回顾
基本等量关系为: 路程=速度×时间 速度=路程÷时间
时间=路程÷速度
小明每天早上要在7:50之前赶到距家1000米的 学校上学。小明以80米/分的速度出发,5分后, 小明的爸爸发现他忘了带语文书。于是,爸爸立 即以180米/分的速度去追小明,并且在途中追上 了他。

北师大版七年级数学上册:5.6应用一元一次方程追赶小明优秀教学案例

(四)总结归纳
1.解题思路:引导学生总结解题思路,明确解决追赶问题的关键步骤。让学生从实际问题中提炼出关键信息,找出问题中的等量关系,列出方程,求解未知量。
2.解题方法:总结一元一次方程的解法,让学生掌握解题方法。强调解题步骤的重要性,让学生学会如何将实际问题转化为数学问题。
3.应用拓展:鼓励学生将所学知识应用到实际生活中,解决类似问题。引导学生关注身边的人和事,提高学生的数学应用意识。
3.媒体辅助:利用多媒体课件展示追赶问题的生活场景,让学生更直观地理解问题背景。通过动态演示,让学生观察和分析问题,找出问题中的等量关系。
(二)问题导向
1.自主探究:在解决问题的过程中,教师提出一系列问题,引导学生自主探究,激发学生的思考。例如,教师可以提问:“小明和小华的速度如何表示?他们分别跑了几分钟?如何列出方程解决问题?”
1.分组讨论:将学生分成若干小组,每组学生共同讨论解决问题。在讨论过程中,鼓励学生发表自己的观点,培养学生的团队协作精神和沟通能力。
2.分工合作:在小组内部,分工合作,明确每个学生的责任。例如,一个学生负责找出等量关系,另一个学生负责列出方程,共同解决问题。
3.互动评价:小组成员之间相互评价,共同提高。在小组合作过程中,鼓励学生相互倾听、相互反馈,培养学生的评价能力和自我反思能力。
3.教师评价:教师对学生的学习过程和结果进行评价,关注学生的成长。评价时,教师要以鼓励为主,充分激发学生的学习积极性,提高学生的自信心。
四、教学内容与过程
(一)导入新课
1.故事引入:以一个有趣的追赶小明的故事作为导入,引发学生的兴趣。教师讲述故事,让学生在轻松愉快的氛围中进入本节课的学习。故事中,小明和小华进行一场跑步比赛,小华要追赶小明,正好追上。引导学生思考:小华和小明分别跑了几分钟?他们的速度如何?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用精品文献资料分享
七上数学应用一元一次方程-追赶小明例题分析(北师大版)
七上数学应用一元一次方程-追赶小明例题分析(北师大版)
1. 行程问题中的基本关系式 行程问题是在 匀速运动的条件下,所
有研究物体运动的路程、速度和时间,及运动状态的问题的统称. 行
程问题中路程、速度和时间三个量之间的关系 ①路程=速度×时间;
②速度=路程时间; ③时间=路程速度. 【例1】 一列火车从车头
进隧洞到车尾出隧洞共用了10分钟,已知火车的速度是500米/分,
隧洞长为4 800米,问这列火车长是多少米? 分析:隧洞用AB表示,
火车用CD表示,画 出示意图如图所示.设火车长为x米,从图中易
见:火车从进洞前的D点行驶到出洞后的D点,共行驶了(4 800+x)
米,用了10分钟,然后根据“4 800+x=火车的速度×10”列出方
程求解. 解:设火车长为x米,依题意,得4 800+x=500×10. 解
得x=200. 答:这列火车长是200 米. 2.相遇问题的解决方法 相
遇问题是比较重要的行程问题,其特点是相向而行.如图1就是相遇
问题.图2也可看成相遇问题来解决. 相遇问题中的相等关系 ①甲、
乙的速度和×相遇时间=总路程; ②甲行的路程+乙行的路程=总
路程,即s甲+s乙=s总; ③甲用的时间=乙用的时
间. ______________________________________________________
__ ________________________________________________________
________________________________________________________
_______ _________________________________________________
________________________________________________________
【例2】 A, B两地间的路程为360千米,甲车从A地出发开往B地,
每小时 行驶72千米.甲车出 发25分钟后,乙车从B地出发开往A
地,每小时行驶48千米. (1)几小时后两车相遇? (2)两车相遇后,
各自仍按原速度和原方向继续行驶.那么相遇以后两车相距100 千
米时,甲车从出发共行驶了多少小时? 分析:(1)本小题属于相遇问
题.相等关系是:甲车的行程+乙车的行程=360千米. (2)相等关
系是:甲车行驶的路程+乙车行驶的路程=(360+100)千米. 解:
(1)设经过x小时两车相遇,则据题意,得722560+x+48x=360.解
得x=234. 答:234小时后两车相遇. (2)设相遇以后两车相距100
实用精品文献资料分享
千米时,甲车共行驶了x小时,则乙车共行驶了x-2560小时,由题
意可知,甲车行驶的路程是72x千米,乙车行驶的路程是48x-2560
千米. 根据题意,得72x+48x-2560=360+100. 解这个方程,得
x=4. 答:甲车共行驶了4小时., 3.追及问题的解决方法 追及问
题的特点是同向而行.追及问题有两类: ①同时不同地,如下图: 等
量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距
离.即s乙-s甲=s差.甲用的时间=乙用的时间. ②同地不同时,
如下图: 等量关系:甲的行程=乙的行程.即s甲=s乙. “同时
不同地”中,双方行驶所用的时间相同,行驶的路程却不同(出发点
不同);而“同地不同时”中,由于行驶双方出发时间有先后,故行
驶过程中用的时间不同,双方出发地相同,故行驶的路程相同. 【例
3-1】 李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑
7.5米,同时起跑,问王亮跑多少米可以追上李成? 分析:本题是
追及问题,属于“同时不同 地”的类型,可根据“王亮跑的路程-
李成跑的路程=10米”,列方程求解. 解:设x秒时王亮追上李成,
根据题意,得7.5x-7x=10.解得x=20. 所以7.5×20=
150(米). 答:王亮跑150米可追上李成 . 【例3-2】 甲、乙两
人从同地出发前往某地.甲步行,每小时行6千米,先出发1.5小时
后,乙骑自行车出发,又过了50分钟,两人同时到达目的地,问乙
每小时行多少千米? 分析:本题是“同地不同时”的追及问题,可
画出线段图帮助解答. 本题的相等关系是:甲行驶的路程=乙行驶
的路程. 解:设乙每小时行x千米,根据题意,得5060x=61.5+
5060. 解这个方程,得x=16.8. 答:乙每小时行16.8千米. 4.航
行(飞行)问题与环行问题 (1)航行(飞行)是指轮船的航行或飞机的
飞行,也属于行程问题. 航行问题中的基本概念: ①静水速度:轮
船在不流动的水中行驶的速度;②顺水速度:轮船顺着水流的方向航
行的速度;③逆水速度:轮船行驶方向与水流的方向相反时的航行速
度;④水速:水自身流动的速度. 航行或飞行中会受到水速或风速
的影响,因此此类问题的基本关系是:①顺水速=静水速+水速,顺
风速=无风速+风速;②逆水速=静水速-水速,逆风速=无风速-
风速. (2)环行问题 环行问题即沿环行路的行程问题,有以下两种
实用精品文献资料分享
情况: ①甲、乙两人在环形道上同时同地同向出发:快的必须多跑
一圈才能追上慢的.即快者走的路程=慢者走的路程+一圈的路
程. ②甲、乙两人在环形道上同时同地反向出发:两人首次相遇时
的总路程为环形道的一圈长.即甲走的路 程+乙走的路程=一圈的
路程. 【例4-1】 一名极限运动员在静水中的划船速度为12千米
/时,今往返于某河,逆流时用了10时,顺流时用了6时,求此河的
水流速度. 分析:逆水速=静水速-水速,顺水速=静水速+水速,
顺流行程=逆流行程. 解:设此河的水流速度为x千米/时,根据题
意,得6(12+x)=10(12-x),解这个方程,得x=3. 答:此河的水
流速度为3千米/时. 【例4-2】 甲、乙两人在环形跑道上练习跑
步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米. (1)
如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒
两人首次相遇? (2)如果甲在乙前 面8米处同时同向出发,那么经
过多少秒两 人首次相遇? 分析:(1)属于相遇问题,相等关系:甲
的行程+乙的行程=环形跑道一圈的长-8米;(2)属于追及问题,
相等关系:甲走的路程=乙走的路程+两地间的距离-8米. 解:
(1)设经过x秒,甲、乙两人首次相遇. 根据题意得8x+6x=400-
8, 解这个方程,得x=28. 答:经过28秒两人首次相遇. (2)设
经过x秒,甲、乙两人首次相遇, 根据题意得8x=6x+400-8, 解
这个方程,得x=196. 答:经过196秒两个人首次相遇.

相关文档
最新文档