高中数学必修3周测题
(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)

一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
高中数学必修三习题带答案

第一章1. 家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是 B(A)靠近电视的一小段,开始检查 (B)电路中点处检查 (C)靠近配电盒的一小段开始检查 (D)随机挑一段检查2. 早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 C (A)S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 (B)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 (C)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 (D)S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3. 给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c ,中的最大数;④求函数⎩⎨⎧<+≥-=)0(2)0(1)(x x x x x f 的函数值;⑤求两个正整数a ,b 相除的商及余数.其中不需要用条件语句来描述其算法的有_____125_______. 4. 下面的问题中必须用条件分支结构才能实现的是__23__________.①求面积为1的正三角形的周长; ②求方程0ax b +=(,a b 为常数)的根; ③求两个实数,a b 中的最大者; ④求1+2+3+…+100的值 5. 840和1764的最大公约数是84.6. 用秦九韶算法计算多项式23456()1235879653f x x x x x x x =+-++++,在4x =-时的值时,3V 的值为 C(A)-845 (B)220 (C)-57 (D)34 9.___28_____.12.(08-广东-9)阅读下图的程序框图,若输入4m =,3n =,则输出a =12,i =3;13.按如图所示的框图运算:若输入x =8,则输出k =5;(基本算法语句)1.下列给出的赋值语句中正确的是 B(A)M =4 (B)M M -= (C)3==A B (D)0=+y x 2.下列给变量赋值的语句正确的是 D(A)3a =(B)1a a +=(C)3a b c ===(D)8a a =+ 3.下列赋值语句中错误的是 C(A)1N N =+ (B)*K K K = (C)()C A B D =+ (D)M=M/5第二章一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( C )A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )k=5A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
(压轴题)高中数学必修三第二章《算法初步》检测(答案解析)(4)

一、选择题1.如图是计算11113519++++的值的一个程序框图,其中判断框内应填的是( )A .10iB .10i ≤C .10i >D .10i <2.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N =,则图中①②应分别填入( )A .1T k=,k N > B .1T k=,k N ≥ C .TT k=,k N > D .TT k=,k N ≥ 3.执行如下图的程序框图,输出S 的值是( )A.2 B.1C.12D.-14.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭5.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A .1次B .2次C .3次D .4次6.如图是一个程序框图,则输出k 的值为( )A .6B .7C .8D .97.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A.17 B.34 C.36 D.688.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28 B.56 C.84 D.1209.如图,执行程序框图后,输出的结果是()A .140B .204C .245D .30010.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .504011.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A.6 B.4 C.2 D.1 12.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=二、填空题13.如图所示的流程图中,输出n的值为______.14.如果执行如图的程序框图,那么输出的S __________.15.下图是某算法的程序框图,则程序运行后输出的结果是 .16.执行如下图所示的程序框图,则输出的结果n __________.17.执行右边的程序框图,若,则输出的________.18.执行如图所示的流程图,则输出的的值为___________.x=,则输出y的值为__________.19.执行如图所示的程序框图,若输入420.执行如图所示的程序框图,输出的T=______.三、解答题21.已知数列{}n a 的递推公式111n n n a a a --=+,且11a =,请画出求其前10项的流程图. 22.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.23.现有一个算法框图如图所示。
北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)

一、选择题1.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18554.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差5.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( )A .26B .27C .28D .296. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份 8.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油10.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2, ,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____14.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..15.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
2019-2020学年高中数学人教B版必修3:阶段质量检测(三) 概 率 Word版含解析

阶段质量检测(三) 概 率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中随机事件的个数为( )①连续两次抛掷一枚质地均匀的骰子,两次都出现2点; ②在地球上,树上掉下的雪梨不抓住就往下掉; ③某人买彩票中奖;④已经有一个女儿,第二次生男孩; ⑤在标准大气压下,水加热到90 °C 会沸腾. A .1 B .2 C .3D .4解析:选C ①③④都有可能发生,也可能不发生,故是随机事件;对于②,在地球上,树上掉下的雪梨不抓住就往下掉,这是一定会发生的事件,属于必然事件.对于⑤,在标准大气压下,水加热到90 °C 会沸腾,是不可能事件.故选C.2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个黑球与都是红球 B .至少有一个黑球与都是黑球 C .至少有一个黑球与至少有一个红球 D .恰有1个黑球与恰有2个黑球解析:选D A 中的两个事件是对立事件,不符合要求;B 中的两个事件是包含关系,不是互斥事件,不符合要求;C 中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D 中是互斥而不对立的两个事件.故选D.3.从分别写有A ,B ,C ,D ,E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )A.15B.25C.310 D.710解析:选B 试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A ,B ),(B ,C ),(C ,D ),(D ,E )4种,故P =410=25.4.在正方体ABCD -A 1B 1C 1D 1中随机取一点,则点落在四棱锥O -ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13B.16解析:选B 设正方体的体积为V ,则四棱锥O -ABCD 的体积为V6,所求概率为V6V =16.5.在两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为( )A.12B.13C.14D.15解析:选B 该试验属于几何概型,所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.6.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 的子集的概率是( ) A.35 B.25 C.14D.18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19B.29C.13D.49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,故概率为29.8.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) A.110 B.18解析:选D 从正六边形的6个顶点中随机选择4个顶点,列举可得,以它们作为顶点的四边形共有15个,其中矩形有3个,所以所求的概率为315=15.故选D.9.甲、乙、丙三人在3天节目中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( ) A.16 B.14 C.13D.12解析:选C 甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A 记3个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为:甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有:甲1,乙1;甲2,乙2;甲3,乙3,共3个基本事件.因此P (A )=39=13.11.在2,0,1,6这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34B.58C.12D.14解析:选C 分析题意可知,共有(0,1,2),(0,2,6),(1,2,6),(0,1,6)4种取法,符合题意的取法有2种,故所求概率P =12.12.设一元二次方程x 2+Bx +C =0,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A.112 B.736 C.1336 D.1936 解析:选D 因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况.由方程有实数根知,Δ=B 2-4C ≥0,显然B ≠1.当B =2时,C =1(1种);当B =3时,C =1,2(2种);当B =4时,C =1,2,3,4(4种);当B =5时,C =1,2,3,4,5,6(6种);当B =6时,C =1,2,3,4,5,6(6种).故方程有实数根共有19种情况,所以方程有实数根的概率是1936.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在边长为2的正方形中作其内切圆,然后向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了1 000粒芝麻,落在圆内的芝麻总数是776粒,那么这次模拟中π的估计值是________.解析:由于芝麻落在正方形内任意位置的可能性相等,由几何概型的概率计算公式知S 内切圆S 正方形≈7761 000,即π×1222≈7761 000,解得π≈3.104.答案:3.10414.某中学青年教师、中年教师和老年教师的人数比例为4∶5∶1,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.解析:由青年教师、中年教师和老年教师的人数比例为4∶5∶1, 知该校共有教师120÷410=300(人).采用分层抽样的方法从这所学校抽取容量为30的教师样本,则每位老年教师被抽到的概率为P =30300=110. 答案:11015.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是________.解析:连接AC 交弧DE 于点F ,∠BAC =30°,P =弧EF 的长弧DE 的长=13.答案:1316.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.解析:如图所示,圆周上使的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧长为2,点B 落在优弧上就能使劣弧的长度小于1,所以劣弧的长度小于1的概率为23.答案:23三、解答题(本大题共6题,共70分,解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)对一批衬衣进行抽样检查,结果如下表:(1)(2)记“任取一件衬衣是次品”为事件A ,求P (A );(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件? 解:(1)次品率依次为:0,0.02,0.06,0.054,0.045,0.05,0.05.(2)当n 充分大时,出现次品的频率mn在0.05附近摆动,故P (A )≈0.05.(3)设进货衬衣x 件,为保证1 000件衬衣为正品,则(1-0.05)x ≥1 000,得x ≥1 053. ∴至少需进货1 053件衬衣.18.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.解:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.(1)用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25.(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=8 15.19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.20.(本小题满分12分)投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.解:(1)点P的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4)共9种,其中落在区域C:x2+y2≤10上的点P的坐标有(0,0),(0,2),(2,0),(2,2)共4种,故点P落在区域C:x2+y2≤10上的概率为4 9 .(2)区域M 为一边长为2的正方形,其面积为4,区域C 的面积为10π,则豆子落在区域M 上的概率为25π.21.(本小题满分12分)从含有两件正品a 1,a 2和一件次品b 的三件产品中,每次任取一件. (1)若每次取后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率; (2)若每次取后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些基本事件是等可能的.用A 表示“取出的两件中恰有一件次品”这一事件,所以A = 错误!.因为事件A 由4个基本事件组成, 所以P (A )=46=23.(2)有放回地连续取出两件,其所有可能的结果为(a 1,a 1),(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,a 2),(a 2,b ),(b ,a 1),(b ,a 2),(b ,b ),共9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B =错误!.事件B 由4个基本事件组成,因而P (B )=49.22.(本小题满分12此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样本中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个数数量分别是 50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2. 则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记“抽取的这2件商品来自相同地区”为事件D ,则事件D 包含的基本事件有 {B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P(D)=4 15,即这2件商品来自相同地区的概率为415.。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
(压轴题)高中数学必修三第一章《统计》测试题(有答案解析)(1)
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:x 16 17 18 19 z50344131由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度5.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .726.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08158.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s9.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,810.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数( )A .40B .45C .48D .5011.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高[)120130,,[)130140,,[]140,150三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[]140,150内的学生中抽取的人数应为________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人. 16.给出下列命题:①若函数()y f x =满足(1)(1)f x f x -=+,则函数()f x 的图象关于直线1x =对称; ②点(2,1)关于直线10x y -+=的对称点为(0,3);③通过回归方程y bx a =+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,2()sin(1)f x x =+是正弦函数,所以2()sin(1)f x x =+是奇函数,上述推理错误的原因是大前提不正确. 其中真命题的序号是__________. 17.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.18.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.19.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.20.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.三、解答题21.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:月份i 7 8 9 10 11 12 销售单价i x (元) 9 9.5 10 10.5 11 8.5 销售量i y (元)111086514y x (2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 22.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量.参考数据:7772111y9.24,t39.75,0.53,7 2.646i i ii i iiy=====⋅≈≈∑∑∑(y-y).参考公式:相关系数()()()()()()11112211,ni i n n nii i i i in ni i ii ii it t y yr t t y y t y t yt t y y======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,ni iiniit t y yb a y btt t==⋅--==-⋅-∑∑.23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x(分钟)时刻的细菌个数为y个,统计结果如下:x12345y23445(Ⅰ)在给出的坐标系中画出x,y的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y关于x的回归直线方程ˆˆˆy bx a=+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni iiniix y nx yx naxb y bx====---∑∑)25.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:温度(单位:C︒)212324272932死亡数y(单位:株)61120275777经计算:611266iix x===∑,611336iiy y===∑,()()61557i iix x y y=--=∑,()62184iix x=-=∑,()6213930iiy y=-=∑,()621ˆ236.64iiy y=-=∑,8.0653167e≈,其中ix,iy分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i=.(1)若用线性回归模型,求y关于x的回归方程ˆˆˆy bx a=+(结果精确到0.1);(2)若用非线性回归模型求得y关于x的回归方程0.2303ˆ0.06xy e=,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1ni i i niii v vR v v ==-=--∑∑.26.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.3.D解析:D由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得c 值.【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kx y ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+, 令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.A解析:A 【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误. 【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.5.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=,【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.8.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,1s ==,2s == 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.9.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】先由频率之和等于1得出的值计算身高在的频率之比根据比例得出身高在内的学生中抽取的人数【详解】身高在的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分解析:3 【分析】先由频率之和等于1得出a 的值,计算身高在[)120,130,[)130,140,[]140,150的频率之比,根据比例得出身高在[]140,150内的学生中抽取的人数. 【详解】(0.0050.010.020.035)101a ++++⨯=0.03a ∴=身高在[)120,130,[)130,140,[]140,150的频率之比为0.03:0.02:0.013:2:1= 所以从身高在[]140,150内的学生中抽取的人数应为11836⨯= 故答案为:3 【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.14.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.16.②③【解析】分析:根据函数的周期性可判断①;根据垂直平分线的几何特征可判断②;根据回归直线的实际意义可判断③;根据演绎推理及正弦函数的定义可判断④详解:①若函数满足则函数是周期为2的周期函数但不一定解析:②③ 【解析】分析:根据函数的周期性,可判断① ;根据垂直平分线的几何特征,可判断②;根据回归直线的实际意义,可判断③;根据演绎推理及正弦函数的定义,可判断④.详解:①若函数()y f x =满足()()11f x f x -=+,则函数()f x 是周期为2的周期函数,但不一定具有对称性,①错误;②点()()2,1?0,3确定直线的斜率为1-,与直线 10x y -+=垂直,且中点()1,2在直线10x y -+=上,故点()()2,1?0,3关于直线10x y -+=的对称,②正确; ③通过回归方程ˆˆˆy bx a =+可以估计和观测变量的取值和变化趋势,③正确;④正弦函数是奇函数,()()2sin 1f x x =+是正弦函数,所以()()2sin 1f x x =+是奇函数,上述推理错误的原因是小前提不正确,④错误,故答案为②③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的周期性、点关于直线对称、以及回归分析与“三段论”,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.17.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.18.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果.详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.19.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.20.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.三、解答题21.(1) 3.240ˆyx =-+;(2)可以认为所得的回归直线方程是理想的;(3)该产品的销售单价为7.5元/件时,获得的利润最大. 【分析】(1)计算x 、y ,求出回归系数,写出回归直线方程;(2)根据回归直线方程,计算对应的数值,判断回归直线方程是否理想; (3)求销售利润函数W ,根据二次函数的图象与性质求最大值即可. 【详解】 (1)因为1(99.51010.511)105x =++++=,1(1110865)85y =++++=,所以23925108ˆ 3.2502.5510b -⨯⨯==--⨯,则8( 3.2)00ˆ14a =--⨯=, ∴y 关于x 的回归直线方程为 3.240ˆyx =-+ (2)剩余数据为12月份,此时8.5x =,14y =,现进行检测,当8.5x =时,ˆ 3.28.54012.8y=-⨯+=,则ˆ||12.814 1.22y y -=-=<,所以可以认为所得的回归直线方程是理想的. (3)令销售利润为W ,则22( 2.5)( 3.240) 3.248100 3.2(7.5)80W x x x x x =--+=-+-=--+.∴当7.5x =时,W 取最大值.所以该产品的销售单价为7.5元/件时,获得的利润最大. 【点睛】函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系,如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .22.(1)散点图见解析,y 与t 的线性相关性相当高,理由见解析;(2)0.920.1011 2.02y =+⨯=,2.02万户.【分析】(1)根据表格中对应的t 与y 的关系,描绘散点图,并根据参考数据求r ,说明相关性;(2)根据参考数据求ˆb和ˆa ,求回归直线方程,并令11t =,求y 的预测值.【详解】(1)作出散点图如图所示:由条形图数据和参考数据得()()7722114,0.53iii i t t t y y ===⋅-=⋅-≈∑∑,()()77711139.7549.24 2.79ii i i i i i i tty y t y t y ===⋅--=-=-⨯=∑∑∑,2.790.990.532 2.646r ≈≈⨯⨯.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关性相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由9.24 1.327y ==及(1)得()()()717212.79ˆ0.1028iii i i t t y y b t t==⋅--==≈⋅-∑∑, ˆˆ 1.320.1040.92ay bt =-≈-⨯=,所以,y 关于t 的回归方程为:0.920.10y t =+. 将11t=代入回归方程得:0.920.1011 2.02y =+⨯=,所以预测11月份该省煤改气、煤改电的用户数量达到2.02万户. 【点睛】关键点点睛:本题考查回归直线方程,此类问题的关键是根据参考数据和公式相结合,求ˆb和ˆa ,一般计算量较大,需计算严谨,准确. 23.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况, 其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑。
2023年新教材人教A版高中数学选择性必修第三册7.5正态分布 同步课时练习题含答案解析
7.5 正态分布(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题 1.(2022春·广东潮州·高二统考期末)随机变量ξ服从正态分布()10,4N ξ,则标准差为( ) A .2 B .4C .10D .14【答案】A【分析】根据正态分布中的参数意义可知当差为4,进而可得标准差. 【详解】因为ξ服从正态分布()10,4N ξ可知:方差为4,故标准差为2,2.(2022春·江苏常州·高二统考期中)如图是三个正态分布()~0,0.64X N ,()~0,1Y N ,()~0,4Z N 的密度曲线,则三个随机变量X ,Y ,Z 对应曲线的序号分别依次为( ).A .①②③B .③②①C .②③①D .①③②【答案】A【分析】先利用正态分布求出三个变量的标准差,再利用当σ较小时,峰值高,正态曲线“瘦高”进行判定.【详解】由题意,得()0.8X σ=,()1Y σ=,()2Z σ=,因为当σ较小时,峰值高,正态曲线“瘦高”,且()()()X Y Z σσσ<<, 所以三个随机变量X ,Y ,Z 对应曲线的序号分别依次为①,②,③.3.(2022春·安徽安庆·高二安庆市第二中学校考期末)随机变量X 的概率分布密度函数()()()2212x f x x σ--=∈R ,其图象如图所示,设()2P X p ≥=,则图中阴影部分的面积为( )A .pB .2pC .12p -D .12p -A .两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于0B .若X 是随机变量,则()()()()2121,2141E X E X D X D X +=++=+.C .已知随机变量()0,1N ξ,若(1)P p ξ>=,则(1)12P p ξ>-=-D .设随机变量ξ表示发生概率为p 的事件在一次随机实验中发生的次数,则()14D ξ≤某中学参加网课的100名同学每天的学习时间(小时)服从正态分布()29,1N ,则这些同学中每天学习时间超过10小时的人数估计为( ). 附:随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<<+=,()220.9544P μσξμσ-<<+=. A .12 B .16C .30D .32所以每天学习时间超过10小时的人数为1000.158716⨯≈,6.(2023秋·辽宁营口·高二统考期末)正常情况下,某厂生产的零件尺寸X 服从正态分布()22,N σ(单位:m ),()1.90.1P X <=,则()2.1P X <=( )A .0.1B .0.4C .0.5D .0.9【答案】D【分析】根据正态分布概率的对称性求解. 【详解】因为()()1.9 2.10.1P X P X <=>=, 所以()1.9 2.110.10.10.8P X <<=--=,所以()()()2.1 1.9 2.1 1.90.9P X P X P X <=<<+<=,7.(2022·高二课时练习)4月23日为世界读书日,已知某高校学生每周阅读时间(单位:h )()8,4XN ,则下列说法错误的是( )A .该校学生每周平均阅读时间为8hB .该校学生每周阅读时间的标准差为2C .若该校有10000名学生,则每周阅读时间在46h 的人数约为2718D .该校学生每周阅读时间低于4h 的人数约占2.28% ()8,4N 知)100.6826≤≈46h 的人数约占(62P X -≤,所以C 错误;0.95442.28%=从N (90,2σ),若()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为( )A .5B .10C .15D .30则可估计该班体能测试成绩低于85分的人数为500.210⨯=人, 9.(2022春·山西忻州·高二统考期末)随机变量X 服从正态分布()2,N μσ,且(1)(5)P X P X >-=<,则下列说法一定正确的是( )A .3μ=B .2μ=C .3σ=D .2σ=分)服从正态分布()285,N σ,且(8387)0.3,(7883)0.26P P ξξ<≤=<≤=,则(78)P ξ≤=( )A .0.03B .0.05C .0.07D .0.0911.(2022春·江苏苏州·高二校考期末)在网课期间,为了掌握学生们的学习状态,某省级示范学校对高二一段时间的教学成果进行测试.高二有1 000名学生,某学科的期中考试成绩(百分制且卷面成绩均为整数)Z 服从正态分布()282.5,5.4N ,则(人数保留整数) ( )参考数据:若20.682 7220.954 5()()()Z N P Z P Z μσμσμσμσμσ<≤≈<≤≈~,,则-+,-+,330.997 3()P Z μσμσ<≤≈-+.A .年级平均成绩为82.5分B .成绩在95分以上(含95分)人数和70分以下(含70分)人数相等C .成绩不超过77分的人数少于150D .超过98分的人数为1 【答案】ABD【分析】根据正态分布的概念可知A 对,根据对称性可知B 对,根据3σ原则和曲线的对称性即可求解C,D.【详解】由()282.5,5.4N Z ~,可知82.5, 5.4μσ==,所以平均分为82.5μ=,故A 对.12.(2022春·重庆沙坪坝·高二重庆八中校考期末)已知121,X N σ~,220,Y N σ~,则下列结论中正确的是( )A .若12σσ=,则()()10P X P Y >>>B .若12σσ=,则()()101P X P Y >+>=C .若12σσ>,则()()0211P X P Y ≤≤<-≤≤D .若12σσ>,则()()0101P X P Y ≤≤>≤≤13.(2022春·云南昭通·高二校联考期末)设随机变量()2,X N μσ,X 的正态密度函数为()22x f x -,则μ=______.14.(2023秋·河南南阳·高二统考期末)已知随机变量ξ服从正态分布()210,N σ,若()310.5P a ξ≤+=,则实数=a ______.【答案】3【分析】由正态分布曲线的特点可知,得正态曲线关于10x =对称,且100.5PX ≤=(),结合题意得到a 的值.【详解】随机变量ξ服从正态分布()210,N σ,正态曲线关于10x =对称,且100.5PX ≤=(), 由()310.5P a ξ≤+=,可知3110a +=,解得3a =.15.(2022春·重庆·高二校联考阶段练习)已知随机变量X 服从正态分布()2,N μσ,若()260.6P X <<=,()60.2P X ≥=,则μ=______. 【答案】4【分析】先求出()2P X ≤的概率,然后根据正态分布的特征求解即可. 【详解】解:由题意得:∵()()()()2162610.60.20.26P X P X P X P X ≤=-≥-<<=--==≥ ∴2与6关于x μ=对称 ∴4μ=.16.(2023秋·安徽宿州·高二安徽省泗县第一中学校考期末)某学校高二年级有1500名同学,一次数学考试的成绩X 服从正态分布()2110,10N .已知(100110)0.34P X <≤=,估计高二年级学生数学成绩在120分以上的有__________人.17.(2023秋·辽宁葫芦岛·高二葫芦岛第一高级中学校考期末)随机变量X 服从正态分布,即()10,9X N ~,随机变量23Y X =-,则()E Y =__________,()D Y =__________. 【答案】 17 36【分析】首先根据正态分布的知识得()(),E X D X ,然后可得答案. 【详解】因为()10,9X N ~,所以()()10,9E X D X ==,因为23Y X =-,所以()()2320317E Y E X =-=-=,()()436D Y D X ==, 五、解答题18.(2023秋·河南南阳·高二统考期末)某车间生产一批零件,现从中随机抽取10个,测量其内径的数据如下(单位:mm ):192,192,193,197,200,202,203,204,208,209.设这10个数据的均值为μ,标准差为σ. (1)求μ和σ;(2)已知这批零件的内径X (单位:mm )服从正态分布()2,N μσ,若该车间又新购一台设备,安装调试后,试生产了5个零件,测量其内径(单位:mm )分别为:181,190,198,204,213,如果你是该车间的负责人,以原设备生产性能为标准,试根据3σ原则判断这台设备是否需要进一步调试?并说明你的理由. 参考数据:若()2,XN μσ,则:()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈,()330.9974P X μσμσ-<≤+≈,40.99740.99≈. (200,36N )200180.9974+≈所以五个零件的内径中恰有1态分布()2N 500,5(单位:g ).(1)求正常情况下,任意抽取一包白糖,质量小于485g 的概率约为多少?。
新素养同步人教B高中数学必修第三册练习:第七章 章末综合检测七 含解析
章末综合检测(七)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若α的终边过点(2sin 30°,-2cos 30°),则sin α的值为( ) A.12 B .-12C .-32D .-33解析:选C.2sin 30°=1,-2cos 30°=-3, 所以x =1,y =-3,r =x 2+y 2=2,所以sin α=y r =-32.故选C.2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C.15D.35解析:选B.因为sin α=55,所以sin 2α=15,cos 2 α=1-sin 2 α=45,所以sin 4 α-cos 4 α=(sin 2α+cos 2α)(sin 2α-cos 2α)=15-45=-35.故选B.3.已知函数y =f (x )=2sin 2x ,则函数的图像的一条对称轴方程是( ) A .x =π B .x =-π C .x =π2D .x =-π4解析:选D.由2x =π2+k π(k ∈Z )可得,x =π4+k π2(k ∈Z ),当k =-1时,x =-π4.故选D.4.已知函数y =2cos x 的定义域为[π3,4π3],值域为[a ,b ],则b -a 的值是( )A .2B .3 C.3+2D .2 3解析:选B.根据函数y =2cos x 的定义域为[π3,4π3],故它的值域为[-2,1],再根据它的值域为[a ,b ],可得b -a =1-(-2)=3.故选B.5.对于函数y =sin ⎝⎛⎭⎫132π-x ,下面说法中正确的是( ) A .函数是最小正周期为π的奇函数 B .函数是最小正周期为π的偶函数 C .函数是最小正周期为2π的奇函数 D .函数是最小正周期为2π的偶函数 解析:选D.y =sin ⎝ ⎛⎭⎪⎫13π2-x =sin ⎣⎢⎡⎦⎥⎤6π+⎝ ⎛⎭⎪⎫π2-x =sin ⎝ ⎛⎭⎪⎫π2-x =cos x .所以T =2π且为偶函数.6.已知f (sin x )=x ,且x ∈⎣⎡⎦⎤0,π2,则f ⎝⎛⎭⎫12的值等于( ) A .sin 12B.12 C .-π6D.π6解析:选D.因为f (sin x )=x ,且x ∈⎣⎢⎡⎦⎥⎤0,π2,所以求f ⎝⎛⎭⎫12,即解sin x =12,且x ∈⎣⎢⎡⎦⎥⎤0,π2,所以x =π6,故选D.7.已知sin ⎝⎛⎭⎫α+π2=13,α∈⎝⎛⎭⎫-π2,0,则tan α等于( )A .-2 2B .2 2C .-24D.24解析:选A.sin ⎝ ⎛⎭⎪⎫α+π2=cos α=13.因为α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α=-1-cos 2 α=-223,所以tan α=sin αcos α=-2 2. 8.将函数y =sin x 的图像上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20解析:选C.由题意可得,y =sin x ――→向右平移π10个单位y =sin ⎝⎛⎭⎪⎫x -π10――→横坐标伸长2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10. 9.同时具有性质“(1)最小正周期是π;(2)图像关于直线x =π3对称;(3)在⎣⎡⎦⎤-π6,π3上单调递增”的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6B .y =cos ⎝⎛⎭⎫2x +π3C .y =sin ⎝⎛⎭⎫2x -π6D .y =cos ⎝⎛⎭⎫2x -π6解析:选C.由(1)知T =π=2πω,ω=2,排除A.由(2)(3)知x =π3时,f (x )取最大值,验证知只有C 符合要求.10.已知α∈(0,π2),且4tan(2π+α)+3sin(6π+β)-10=0,-2tan(-α)-12sin(-β)+2=0,则tan α的值为( )A .-3B .3C .±3D .不确定解析:选B.将条件化为⎩⎪⎨⎪⎧4tan α+3sin β-10=0,①2tan α+12sin β+2=0.②由①×4-②得14tan α-42=0, 所以tan α=3.故选B.11.如图为函数f (x )=M sin(ωx +φ)(M >0,ω>0,π2≤φ≤π)的部分图像,若点A ,B分别为函数f (x )的最高点与最低点,且|AB |=5,那么f (-1)=( )A .2 B. 3 C .- 3D .-2解析:选A.由题图,可知M =2,f (0)=1, 即2sin φ=1,解得sin φ=12,又因为π2≤φ≤π,所以φ=5π6.又A ,B 两点是函数图像上的最高点和最低点,设A (x 1,2),B (x 2,-2), 由题意知|AB |=5,即(x 2-x 1)2+(-2-2)2=5,解得|x 2-x 1|=3.由题图,可知A ,B 两点横坐标之差的绝对值为最小正周期的一半,即|x 2-x 1|=T2,而T=2πω,故πω=3,解得ω=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +5π6,故f (-1)=2sin ⎝ ⎛⎭⎪⎫-π3+5π6=2sin π2=2,故选A.12.已知函数f (x )=2sin(ωx +φ)(x ∈R ),其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:选A.由函数的周期可得ω=13,故f (x )=2sin ⎝⎛⎭⎫13x +φ,又f ⎝ ⎛⎭⎪⎫π2=2sin ⎝⎛⎭⎫16π+φ=2,解得16π+φ=2k π+π2⇒φ=2k π+π3(k ∈Z ),又-π<φ≤π,故φ=π3,因此f (x )=2sin ⎝ ⎛⎭⎪⎫13x +π3.即当x ∈[-2π,0],13x +π3∈⎣⎢⎡⎦⎥⎤-π3,π3,函数在区间[-2π,0]上为增函数,故选A.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.函数y =25-x 2+log 3sin(π-x )的定义域为________. 解析:因为y =25-x 2+log 3sin(π-x )=25-x 2+log 3sin x ,所以要使函数有意义,则⎩⎪⎨⎪⎧25-x 2≥0,sin x >0,所以⎩⎪⎨⎪⎧-5≤x ≤5,2k π<x <2k π+π(k ∈Z ).所以-5≤x <-π或0<x <π.答案:[-5,-π)∪(0,π)14.将cos 0,cos 12,cos 1,cos 30°按从小到大的顺序排列为________.解析:因为0<12<π6<1,cos x 在(0,π)上是减函数.所以cos 0>cos 12>cos 30°>cos 1.答案:cos 1<cos 30°<cos 12<cos 015.已知tan θ=2,则4sin θ-2cos θ5cos θ+3sin θ=________.解析:原式=4tan θ-25+3tan θ=611.答案:61116.函数f (x )=sin(ωx +φ)(ω>0,φ∈[0,2π)的部分图像如图所示,则f (2 016)=________.解析:由题图可知,T4=2,所以T =8,所以ω=π4.由点(1,1)在函数图像上,可得f (1)=sin ⎝ ⎛⎭⎪⎫π4+φ=1,故π4+φ=2k π+π2(k ∈Z ), 所以φ=2k π+π4(k ∈Z ),又φ∈[0,2π),所以φ=π4.故f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4,所以f (2 016)=sin ⎝⎛⎭⎪⎫2 016π4+π4 =sin ⎝ ⎛⎭⎪⎫504π+π4=sin π4=22.答案:22三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知α是第三象限角,且f (α)=sin (-α-π)cos (5π-α)tan (2π-α)cos ⎝⎛⎭⎫π2-αtan (-π-α).(1)化简f (α);(2)若tan(π-α)=-2,求f (α)的值.解:(1)f (α)=sin α·(-cos α)·(-tan α)sin α·(-tan α)=-cos α.(2)由已知得tan α=2,sin αcos α=2,sin α=2cos α,sin 2α=4cos 2α,1-cos 2α=4cos 2α,cos 2α=15.因为α是第三象限角, 所以cos α<0, 所以cos α=-55,所以f (α)=-cos α=55. 18.(本小题满分12分)已知函数f (x )=2cos ⎝⎛⎭⎫π3-2x . (1)若f (x )=1,x ∈⎣⎡⎦⎤-π6,π4,求x 的值;(2)求f (x )的单调递增区间.解:(1)根据题意知cos ⎝ ⎛⎭⎪⎫π3-2x =12,所以π3-2x =2k π±π3(k ∈Z ).又x ∈⎣⎢⎡⎦⎥⎤-π6,π4,所以x =0.(2)易知2k π≤π3-2x ≤2k π+π(k ∈Z ),解得-k π-π3≤x ≤-k π+π6(k ∈Z ),即k π-π3≤x ≤k π+π6(k ∈Z ),从而f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).19.(本小题满分12分)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图像的一个对称中心是⎝⎛⎭⎫π8,0.(1)求φ;(2)求函数y =f (x )的单调递增区间.解:(1)因为⎝ ⎛⎭⎪⎫π8,0是函数y =f (x )的图像的对称中心,所以sin ⎝ ⎛⎭⎪⎫2×π8+φ=0,所以π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).因为-π<φ<0, 所以φ=-π4.(2)由(1)知φ=-π4,因此y =sin ⎝⎛⎭⎪⎫2x -π4,由题意得,2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),即k π-π8≤x ≤k π+3π8(k ∈Z ),所以函数y =sin(2x -π4)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).20.(本小题满分12分)已知x ∈⎣⎡⎦⎤-π3,2π3.(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.解:(1)因为y =cos x 在⎣⎢⎡⎦⎥⎤-π3,0上为增函数,在⎣⎢⎡⎦⎥⎤0,2π3上为减函数,所以当x =0时,y 取最大值1;x =2π3时,y 取最小值-12.所以y =cos x 的值域为⎣⎡⎦⎤-12,1. (2)原函数化为y =3cos 2x -4cos x +1, 即y =3⎝⎛⎭⎫cos x -232-13, 由(1)知,cos x ∈⎣⎡⎦⎤-12,1, 故y 的值域为⎣⎡⎦⎤-13,154. 21.(本小题满分12分)设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图像如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π2,π2时,求f (x )的取值范围.解:(1)由图像知,A =2, 又T 4=5π6-π3=π2,ω>0, 所以T =2π=2πω,得ω=1.所以f (x )=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=2k π+π2(k ∈Z ), 即φ=π6+2k π(k ∈Z ),又因为-π2<φ<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6.(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎡⎦⎤-32,1,即f (x )∈[-3,2].22.(本小题满分12分)已知函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x ),并说明函数y =sin x 的图像经过怎样的变换可得到y =f (x )的图像?(2)若函数f (x )满足方程f (x )=a (0<a <1),求此方程在[0,2π]内的所有实数根之和. 解:(1)因为T =2×⎝ ⎛⎭⎪⎫7π12-π4=2π3,所以ω=2πT =3.又sin ⎝⎛⎭⎪⎫3π4+φ=1,所以3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,所以φ=-π4,所以y =f (x )=sin ⎝⎛⎭⎪⎫3x -π4.y =sin x 的图像向右平移π4个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x -π4的图像,再将y =sin ⎝ ⎛⎭⎪⎫x -π4的图像上的所有点的横坐标缩短为原来的13倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫3x -π4的图像.(2)因为f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4的最小正周期为2π3,所以f (x )=sin ⎝⎛⎭⎪⎫3x -π4在[0,2π]内恰有3个周期,所以sin ⎝ ⎛⎭⎪⎫3x -π4=a (0<a <1)在[0,2π]内有6个实数根,从小到大设为x 1,x 2,x 3,x 4,x 5,x 6,则x 1+x 2=π4×2=π2,x 3+x 4=⎝ ⎛⎭⎪⎫π4+2π3×2=11π6, x 5+x 6=⎝ ⎛⎭⎪⎫π4+2π3×2×2=19π6, 故所有实数根之和为π2+11π6+19π6=11π2.。
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45- 3.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .4.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( )A .i -B .iC .1D .1-6.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( )A .(),0-∞B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭7.用一个平面去截正方体,则截面不可能是( ) A .正三角形B .正方形C .正五边形D .正六边形8.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<<D .{|1e}AB x x =-<<9.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-10.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( ) A .1B .2C .3D .511.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 12.51(1)x x-+展开项中的常数项为 A .1B .11C .-19D .51二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第二周周测题内容:必修3及三角一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选择一个符合题目要求的选项)1.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则两数之和等于5的概率为 A.31 B.61 C.91 D.121 2.样本4,2,1,0,-2的标准差是A.1B.2C.4D.523.用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a “第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是 A .61,61,61 B. 61,51,61 C. 31,61,61 D. 31,31,61 4.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数2434395163若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是 A.y=x+6 B.y=-x+42C.y=-2x+60D.y=-3x+785. 一批热水器共偶98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽出一个容量为14的样本,那么甲、乙两厂各抽得的热水器的台数是 A .甲厂9台,乙厂5台 B. 甲厂8台,乙厂6台 C. 甲厂10台,乙厂4台 D. 甲厂7台,乙厂7台6.在长为10 cm 的线段AB 上任取一点C ,并以线段AC 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2 之间的概率为 A.103 B.51 C.52 D.547.考虑一元二次方程x 2+mx+n=0,其中m 、n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为 A.3619 B.187 C.94 D.36178、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > x B. x > cC. c > bD. b > c二.填空题(本大题共6小题,每小题5分,共30分, 答案须填在题中横线上)9、有一个圆内接正三角形,随机向圆面上投一镖中圆面, 那么镖落在三角形内的概率为____________.10.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性相同,则“小燕比 (第8题图) 小明先到校,小明又比小军先到校”的概率为____________. 11.如图给出的算法流程图中,输出的结果s=___________. 12.若数据12356,,,,a a a a a 这6个数据的平均数为x -, 方差为0.20,则 (第11题图) 数据12356,,,,a a a a a ,x -这7个数据的方差是____________13.某篮球运动员在一个赛季的40场比赛 中得分的茎叶图如图所示,则中位数与众数 分别为14.某校对高三年级的学生进行体检,现将高三男生的体重(kg)数据进行整理后分成五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为 是 否 开输入x=a b 输出结x=b x=c否 是三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:x 2345 6y 2.2 3.8 5.5 6.57.0(1)求x,y;(2)如果x与y具有线性相关关系,求出线性回归方程;(3)估计使用年限为10年时,维修费用约是多少?16.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403 397 390 404 388 400 412 406品种乙419 403 412 418 408 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?17.某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充..至3件,否则不.进货..,将频率视为概率。
(Ⅰ)求当天商品不进货...的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的可能的值及其相应的概率18.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1、2、3、4、5。
现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5 fa0.20.45bc(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件;求a 、b 、c 的值。
(其中a+0.2+0.45+b+c=1)(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件记为x 1、x 2、x 3,等级系数为5的2件记为y 1、y 2。
现从这五件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。
19.在△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,23.B C b a == (Ⅰ)求cos A 的值; (Ⅱ)cos(2)4A π+的值.20.在ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I )求角C 的大小; (II )求3sin cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小.高二数学第二周测题答案1.解析:问题属古典概型.基本事件数为36,两数之和等于4的事件含有基本事件数为6.所以,所求的概率为61. 答案:B 2.答案:B2])12()10()11()12()14[(5122222=--+-+-+-+- 3.C4.解析:得y=-2x+60. 答案:C5. 选(B)6.解析:点C 位于距离点A5 cm 与7 cm 之间,由几何概型得P=102=51. 答案:B7.解析:由方程有实根知:m 2≥4n. 由于n ∈N *,故2≤m≤6.骰子连掷两次并按先后所出现的点数考虑,共有6×6=36种情形. 其中满足条件的有:①m=2,n 只能取1,计1种情形; ②m=3,n 可取1或2,计2种情形; ③m=4,n 可取1或2、3、4,计4种情形;④m=5或6,n 均可取1至6的值,共计2×6=12种情形. 故满足条件的情形共有1+2+4+12=19(种). 答案:A 8、A9.提示:问题属几何概型,所求的概率等于三角形的面积除以圆的面积. 答案:π433 10.解析:将3人排序共包含6个基本事件,由古典概型得P=61. 答案:61 图2答案:2112 0.213.解析:众数是23,排列数据得中位数也是23.14..解析:据题意得第二小组的频率为1-(0.25+0.20+0.10+0.05)=0.4,且其频数为400,设高三年级男生总数为n ,则有400n=0.4,∴n =1000,体重正常的学生所占的频率为第二和第三小组频率之和,即0.2+0.4=0.6. 答案:60015.解:(1)x =2+3+4+5+65=4. y =2.2+3.8+5.5+6.5+7.05=5.(2)b ^=5152215()iii ii x yx yxx ==--∑∑=112.3-5×4×590-5×42=1.23,a ^=y -b ^x =5-1.23×4=0.08.所以线性回归方程为y ^=1.23x +0.08.(3)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用10年时,维修费用约为12.38万元. 16.品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.17.解析:(I )P (“当天商店不进货”)=P (“当天商品销售量为0件”)+P (“当天商品销售量1件”)=153202010+=。
(II )由题意知,X 的可能取值为2,3.51(2)("")204P x P ====当天商品销售量为1件; (3)("")+("")+("1953")++2020204P x P P P ====当天商品销售量为0件当天商品销售量为2件当天商品销售量为3件 18.本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想,。
解:(I )由频率分布表得0.20.451,a b c ++++=即a+b+c=0.35,因为抽取的20件日用品中,等级系数为4的恰有3件,所以30.15,20b == 等级系数为5的恰有2件,所以20.120c ==,从而0.350.1a b c =--= 所以0.1,0.15,0.1.a b c ===(II )从日用品1212,,,x x y y 中任取两件,所有可能的结果为:12131112232122313212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}x x x x x y x y x x x y x y x y x y y y ,设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”,则A 包含的基本事件为:12132312{,},{,},{,},{,}x x x x x x y y 共4个,又基本事件的总数为10,故所求的概率4()0.4.10P A == 19.本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。