第二章稳定性

合集下载

2第二章斑块

2第二章斑块
随着斑块面积的增加,物种数量增加到一定程度后不再 增加,说明还与其他因素有关,即岛屿生物地理学。
S=C×AZ lgS=z·(lgA)+lg C
式中:S是物种数,A是岛屿面积,Z、C是常数,Z值多 介于0.18-0.35之间。
种 的 丰 富 度
S=CAZ
面积
从生物多样性保护角度看,斑块面积应该是生物保护设计 中最需要保证的首要因素,一般而言,保护区面积越大, 能够保护与维持的物种数量越多,至少应该遵循最小斑块 面积原则。
当边缘效应为负效应时,小斑块的单位面积上 的能量和营养物质的含量要小一些。
因为大班块的内/缘值大,而小斑块的内/缘值 小。
2)对物种数量的影响
物种多样性与景观斑块大小的关系是生物地理学和生态 学中经久不衰的研究热点之一。
岛屿斑块: 一般地说,物种多样性随着岛屿面积的增加 而增加,两者呈曲线关系。 岛屿斑块物种多样性S = f(+生境多样性,(+ -)干扰, +岛屿斑块面积,-隔离程度,+年龄(演替阶段))
二、斑块形状
斑块的形状对生物流和非生物流有较大影响。主要 作用于生物的扩散和觅食,同时对穿越景观扩散的 动植物至关重要。
在城市环境规划和生态旅游规划时,不同斑块形状 的配置不仅是设计艺术的需要,也是生态学的基本 要求。
对斑块形状的分析,能够揭示物种动态,确定物种 分布是稳定、扩展、收缩、迁移等不同的状态。
干扰分为:单一干扰和慢性干扰(重复干扰,适应、 稳定)。
2 残余斑块(remnant patch)
景观中由于大面积干扰造成的、在局部范围内幸存的 自然或半自然生态系统或其片段。
大面积农田景观中的残余一片森林;火烧迹地上残存的林分;城 市建筑群体中所包围的小块农田或森林,均属残余斑块。

激光原理第二章答案

激光原理第二章答案

第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。

根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。

3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。

则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。

材料化学第二章习题参考答案与解析

材料化学第二章习题参考答案与解析

第二章参考答案1.原子间的结合键共有几种?各自特点如何?2.为什么可将金属单质的结构问题归结为等径圆球的密堆积问题?答:金属晶体中金属原子之间形成的金属键即无饱和性又无方向性, 其离域电子为所有原子共有,自由流动,因此整个金属单质可看成是同种元素金属正离子周期性排列而成,这些正离子的最外层电子结构都是全充满或半充满状态,电子分布基本上是球形对称,由于同种元素的原子半径都相等,因此可看成是等径圆球。

又因金属键无饱和性和方向性, 为使体系能量最低,金属原子在组成晶体时总是趋向形成密堆积结构,其特点是堆积密度大,配位数高,因此金属单质的结构问题归结为等径圆球的密堆积问题.3.计算体心立方结构和六方密堆结构的堆积系数。

(1) 体心立方 a :晶格单位长度 R :原子半径a 34R = 34R a =,n=2, ∴68.0)3/4()3/4(2)3/4(23333===R R a R bccππζ (2)六方密堆 n=64. 试确定简单立方、体心立方和面心立方结构中原子半径和点阵参数之间的关系。

解:简单立方、体心立方和面心立方结构均属立方晶系,点阵参数或晶格参数关系为90,=====γβαc b a ,因此只求出a 值即可。

对于(1)fcc(面心立方)有a R 24=, 24R a =, 90,=====γβαc b a(2) bcc 体心立方有:a 34R = 34R a =; 90,=====γβαc b a(3) 简单立方有:R a 2=, 90,=====γβαc b a74.0)3(3812)3/4(6)2321(6)3/4(633hcp =⋅=⋅R R R R a a c R ππξ=R a a c 238==5. 金属铷为A2型结构,Rb 的原子半径为0.2468 nm ,密度为1.53g·cm-3,试求:晶格参数a 和Rb 的相对原子质量。

解:AabcN nM=ρ 其中, ρ为密度, c b a 、、为晶格常数, 晶胞体积abc V =,N A 为阿伏加德罗常数6.022×1023 mol -1,M 为原子量或分子量,n 为晶胞中分子个数,对于金属则上述公式中的M 为金属原子的原子量,n 为晶胞中原子的个数。

飞机的稳定性和操纵性汇总

飞机的稳定性和操纵性汇总

飞机重心范围的确定

飞机的重心前限

重心前移,飞机的纵向静稳定性提高,操纵性 能变坏,纵向平衡变差。 从飞机纵向平衡和纵向操纵性能的要求对飞机 重心最靠前的位置进行了限制。 重心后移,飞机的纵向稳定性减小,飞机对操 纵的反应变灵敏。 从飞机的纵向静稳定性和操纵灵敏度的要求对 飞机重心最靠后的位置进行了限制。
荷兰滚
飞机的横侧向扰动运动 及影响稳定性的因素


飞机的侧向静稳定性和方向静稳定性大小 比例搭配,对飞机横侧向动稳定性有着重 要的影响。 影响因素


侧向静稳定性——机翼上反角和后掠角。 方向静稳定性——垂尾面积及到飞机重心的力 臂。

偏航阻尼器——用在大型高速运输机上, 防止荷兰滚
4.7 飞机的横侧向操纵性
空气动力学基础(ME、AV)
第一章 第二章 第三章 第四章 大气物理学 空气动力学 飞行理论 飞机的稳定性和操纵性
第4章 飞机的稳定性和操纵性



4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
飞机运动参数 飞机稳定性和操纵性的基本概念 飞机的纵向稳定性 飞机的纵向操纵性 飞机的横侧向静稳定性 飞机的横侧向动稳定性 飞机的横侧向操纵性 飞机主操纵面上的附设装置

滚转角γ

空速向量相对机体的方位

速度轴系或风轴系OVXVYVZV XV沿飞行速度方向,气动阻力沿XV负向。YV在飞 机对称面内且与飞行速度垂直。
迎角和侧滑角

迎角α

空速向量在飞机对称面Oxtyt上的投影与机体 坐标系纵轴Oxt之间的夹角。规定投影线在Oxt 轴下方时为正。 空速向量与飞机对称面Oxtyt之间的夹角。规 定空速向量偏向右侧时为正(向右侧滑为正)。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。

第二章 蛋白质不稳定性

第二章  蛋白质不稳定性

叠结构决定于3个因素: 1、与溶剂分子(一般为水)的相互作用; 2、溶剂的pH和离子组成; 3、蛋白质的氨基酸序列。 前两个因素的影响明确、易理解,而氨基酸 序列的作用则不那么直觉。实际上,一级结构便于 序列上相邻部分之间短程相互作用的形成,也便 于相隔部分之间长程相互作用的出现,虽然蛋白 质分子的整个结构出看起来像是无组织的随机排 列,然而其结构中无例外地有多种力处于精细的 平衡之中,正是它决定了蛋白质的独特构象。
二、蛋白质结构中影响稳定性的重要因素
(二)范德华力(范德华相互作用): 广义的范德华力包括3种较弱的作用力,即: 定向效应:发生在极性分子或极性基团之间,它是永 久偶极间的静电相互作用,氢键可被认为属于这种范 德华力; 诱导效应:发生在极性物质与非极性物质之间,这是 永久性偶极与由它诱导而来的诱导偶极之间的静电相 互作用; 分散效应:是在多数情况下起主要作用的范德华力, 它是非极性分子或基团间仅有的一种范德华力,即狭 义的范德华力,通常所说的范德华力指的就是这种作 用力。它是瞬时偶极间的相互作用,偶极方向是瞬时 变化的。
二、蛋白质结构中影响稳定性的重要因素
稳定蛋白质三维结构的作用力主要是一 些所谓的弱的相互作用或称非共价键或 次级键,包括:氢键、范德华力、疏水 作用和盐键(离子键)。此外,共价二 硫键在稳定某些蛋白质的构象方面也起 着重要作用。 这几种作用力的键能(断裂该键所需的 能量)都是较低的。
二、蛋白质结构中影响稳定性的重要因素
主要原因是蛋白质本身具有易于聚集沉 淀的性质,或表达产物周围的物理环境(如 温度、离子组成)不适或某些折叠辅助因子 (分子伴侣)的作用。
五、包含体的形成与性质
现代研究表明:在大多数情况下,包含体 的形成是蛋白质过量表达的结果,而与蛋 白质的种类和表达系统无关,即包含体的 形成与其相对分子质量、疏水性以及折叠 途径等内在性质没有必然的联系。换句话 说,对于任何蛋白质和任何表达系统,在 过量表达的情况下都可能形成包含体。 蛋白质的折叠复性和包含体的形成为动力 学竞争的结果。

浙教版九年级科学下册第二章知识点详尽版

浙教版九年级科学下册第⼆章知识点详尽版九下第⼆章知识点详尽版第⼀节:种群与⽣物群落⼀.物种:⼀个物种就是⼀群⽣物,它们的形态、结构相似,并能相互交配⽽⽣育⼦孙后代。

⼆.种群:⽣活在⼀定区域内的同种⽣物个体的总和,叫做种群。

1.⼀定空间(⼀个区域):⼩则如⽥地、池塘,⼤则如草原、海洋。

2.同种⽣物(⼀个物种):有⼤⼩、年龄、雌雄,它们都属于同⼀个物种,能相互交配繁育后代。

3.个体的总和(⼀群个体)三.种群特征单位空间内某种群的个体数量1.种群密度不同种群在同⼀环境下种群密度差异很⼤,同⼀种群的种群密度也不是固定不变的调查⽅法:标志重捕法2.出⽣率与死亡率:决定种群⼤⼩和密度的直接因素⼀个种群中各年龄期个体数⽬的⽐例增长型:种群中幼年个体很多,⽼年个体很少3.年龄组成类型稳定型:种群中各年龄期个体数⽬的⽐例适中衰退型:种群中幼年个体很少,⽼年个体很多意义:预测种群的发展趋势4.性别⽐例四.种群的数量变化1.包括增长、波动、稳定、下降等条件:⾷物、空间充裕、⽆敌害等理想条件2.“J”型曲线公式:Nt=N0λt特点:种群数量连续增长,⽆K值原因:因⽣活条件有限⽽使种内⽃争加剧;以该种群⽣物为⾷的捕⾷者3.“S”型曲线数量的增加特点:不能连续增长,达最⼤值(K值)后停⽌增长,有的在K值左右保持相对稳定出⽣率与死亡率⽓侯、⾷物4.决定因素捕⾷者、竞争者迁⼊与迁出⼈类的活动5.研究的意义:合理利⽤和保护野⽣⽣物资源;防治害⾍五.⽣物群落1群落概念:在⼀定⾃然区域内,相互间有直接或间接关系的各种⽣物的总和植物的分层:主要与光照有关垂直结构:明显的分层现象2群落结构动物的分层:受植物分层的制约⽔平结构:因地形、光照、湿度不同,不同地段分布着不同的种群3群落演替:随时间推移,⼀个群落被另⼀个群落代替的过程,分初级演替和次级演替第⼆节⽣态系统的结构⼀.基本⽹络1.⾮⽣物的物质和能量(必备成分):阳光、热能、空⽓、⽔分、⽆机盐等。

第二章 仪器精度理论

第二章仪器精度理论第一节概念辨析1、分辨力:显示装置能有效辨别的最小示值;分辨率:最小分辨力与量程的比值大小2、示值误差:测量仪器的示值与对应输入量真值之差3、重复性:相同测量条件下,短时间内重复测量同一个被测量,仪器示值的分散程度4、复现性:在变化的测量条件下,同一被测量的测量结果的稳定程度5、鉴别力:仪器感受微小量的敏感程度6、灵敏度:仪器输出的变化与对应输入变化之比7、稳定性和漂移:稳定性是指仪器保持其计量特性随时间恒定的能力;漂移是指仪器计量特性的慢变化8、测量误差:(1)随机误差:数值的大小和方向没有一定的规律,但总体服从统计规律;(2)系统误差:数值大小和方向恒定不变或随一定的规律变化;(3)粗大误差:超出规定条件所产生的误差,应剔除误差的表示方法:(1)绝对误差:测量值与真值之差;(2)相对误差:绝对误差与被测量真值的比值;1.引用误差:绝对误差的最大值与仪器示值范围的比值;②额定相对误差:示值绝对误差与示值的比值9、精度:精度是误差的反义词,精度的高低是用误差来衡量的。

误差越大,精度越低,反之越高(1)正确度:系统误差大小的反映,表征测量结果稳定接近真值的程度(2)精密度:随机误差大小的反映,表征测量结果的一致性或误差的分散系(3)准确度:系统误差和随机误差两者的综合反映,即正确度和精密度的结合10、示值范围(量程)和测量范围11、通常希望仪器的输入输出为一种特定的线性关系,如果仪器实际特性与规定特性不一致,就会产生非线性误差第二节仪器误差的来源与性质一、原理误差:采用近似的理论、数学模型、机构等近似处理所造成,只与仪器的设计有关,与制造使用无关例1、激光光束在传播中是高斯光束,不是球面波。

在用应用光学理论设计时,按球面波计算,带来原理误差例2、A/D 转换器的产生了量化误差(1)原理误差的分类:理论误差、方案误差、技术原理误差、机构原理误差、零件原理误差、电路系统原理误差原理误差的特点:它是产生在仪器设计过程中,是固有误差,从数学特征看,它是系统误差(2)减小原理误差的原则为:把原理误差控制在允许的范围内,简化结构、简化工艺、简化计算、降低成本(3)减小或消除原理误差影响:①补偿法:建立原理误差的数学模型,用微机在测量中加以补偿②调整法:正弦误差、正切误差,如有机构的情况下,可以通过调整机构的某些环节来减小原理误差。

稳定与降解(第二章)1(四川大学,高分子材料),

含不饱和二烯类的橡胶比饱和聚合物的耐氧 化性差很多。 原因:烯丙基氢和苯甲基氢离解键能(活化 能)小于乙烯基氢和苯基氢。其离解后自由 基由于与π电子体系的共轭,处于相对稳定状 态。
依此类推,不饱和结构对α氢原子的反应 性有明显的活化效应。 其它不饱和官能团如羰基、腈基也有此现 象。
(2)支化结构
引发
增长
终止
① 当氧浓度达到空气中的浓度或更高时,R· 和 氧的结合速率非常快,[R· <<[ROO· ] ]. 因此,ROO· 的双基耦合终止占绝对优势。 引发速率等于中止速率(到达稳态)时,可 得稳态时ROO· 的浓度。
氧化速率v : 仅取决于链增长的第一个反应。
OX
可见: 氧浓度大于或等于空气中的氧浓度时,氧化
实际发生的聚合物热降解介于该两种 类型之间。
3. 主链不断裂的小分子消除反应
由侧基的消除引起聚合物的降解; 最后才引起主链断裂和全面降解。
【例】PVC的热降解
特点:可以从分子链任何部位无规消除
热降解

热降解的类型
解聚反应 (拉链降解) 无规断链反应 低分子量聚合物 聚合物相对分子 量迅速下降,而聚 合物质量基本不变 产生大量的低分 子挥发,聚合物质 量则迅速损失 主链不断裂的小分子 消除反应 形成小分子, 但不是单体 侧基的消除
反应速率与氧浓度无关;
② 氧浓度很低时,[R· ]>>[ROO· ],氧化反应速 率决定于R· 与氧的反应速率。 终止反应中R· 的双基耦合终止占绝对优势, 稳态时:
氧化速率可表示为:
可见: 氧浓度很低时,氧化反应速率与氧浓度有关;
2. 影响热氧降解的因素:
聚合物的热氧稳定性主要受聚合物结构因 素(内因)的影响。 (1)聚合物的饱和程度

系统稳定性设计:确保系统的稳定性和可靠性

系统稳定性设计:确保系统的稳定性和可靠性第一章:引言1.1 问题的背景在当今数字化时代,各种系统的应用越来越广泛,比如操作系统、数据库系统、网络系统等等。

这些系统的稳定性和可靠性对于用户和企业来说至关重要。

如果系统经常出现故障或不稳定,将会导致严重的经济损失和用户流失。

因此,设计一个稳定和可靠的系统是非常重要的。

1.2 目标与意义本文旨在探讨如何设计稳定的系统,以确保系统的稳定性和可靠性。

通过分析系统设计中的关键要素和策略,提供一些实用的建议和指导,帮助开发人员和系统管理员更好地设计和维护系统。

第二章:系统稳定性的关键要素2.1 硬件硬件是系统稳定性的基础。

选择合适的硬件设备是确保系统稳定性的重要一步。

首先要考虑的是硬件的可靠性和性能。

选择具有高可靠性和性能的硬件设备,可以有效减少硬件故障导致的系统崩溃。

另外,还需要考虑硬件的容错性和扩展性,以应对故障和系统需求的变化。

2.2 软件软件是系统稳定性的另一个重要因素。

选择合适的软件平台和工具是确保系统稳定性的关键。

首先要考虑的是软件的稳定性和安全性。

选择经过充分测试和验证的软件,可以减少软件漏洞和错误导致的系统崩溃。

另外,还需要考虑软件的兼容性和可维护性,以便后续的系统更新和维护工作。

2.3 系统架构系统架构是系统稳定性的基石。

一个良好的系统架构应该具备高可用性、容错性和可扩展性。

首先要考虑的是系统的可用性。

通过设计冗余和负载均衡机制,可以确保系统在一个组件或节点故障的情况下仍然可用。

另外,还需要考虑系统的容错性和可扩展性,以应对故障和系统需求的变化。

第三章:系统稳定性的设计策略3.1 容错设计容错设计是确保系统稳定性的重要策略之一。

容错设计可以在系统出现故障时保持系统的可用性。

容错设计包括冗余设计、备份设计和故障转移设计等。

通过在系统中引入冗余组件和备份数据,可以在一个组件或数据出现故障时自动切换到备用组件和数据,从而保持系统的正常运行。

3.2 负载均衡设计负载均衡设计是确保系统稳定性的另一个重要策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档