七年级下学期数学期末试卷(含答案)

合集下载

七年级下册期末考试数学试卷含答案(共3套,人教版)

七年级下册期末考试数学试卷含答案(共3套,人教版)

七年级(下册)期末考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.方程2x+1=3的解是()A.x=﹣1 B.x=1 C.x=2 D.x=﹣22.在下列长度的四组线段中,能组成三角形的是()A.3,4,4 B.5,5,10 C.2,4,7 D.4,6,123.下列图形中,是中心对称图形的是()A. B.C.D.4.若是关于x,y的二元一次方程2x+my=7的解,则2m的值是()A.2 B.4 C.6 D.85.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.6.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°7.把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C 重合,若DE∥BC,则∠1的度数是()A.75°B.105°C.110° D.120°8.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.方程的解是.10.用m个正三角形和2个正六边形铺满地面,则m=.11.一个多边形的每一个外角都是36°,则这个多边形的边数是.12.不等式组的最大整数解是.13.如图,在一块长方形ABCD草地上,AB=10,BC=15,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2个单位),空白部分表示的草地面积是.14.如图,在△ABC中,∠ACB=90°,点D在AB边上,连接CD,将△BCD沿CD翻折得到△ECD,点B的对称点E恰好落在AC边上,若∠B=55°,则∠ADE的度数是.三、解答题(本大题10小题,共78分)15.解方程:3x﹣6(x﹣1)=3﹣2(x+3).16.解方程组:.17.解一元一次不等式组:,并将解集在数轴上表示出来.18.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?19.在等式y=x2+bx+c中,当x=﹣1时,y=0;当x=1时,y=﹣4.求(b﹣c)2017的值.20.如图,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分线BD交AC于点D,∠ACB 的平分线CP交BD于点D.(1)BD与AC的位置关系是.(2)求∠BPC的度数.21.不等式组的解集是0<x<2,求ab的值.22.如图,点E是正方形ABCD内的一点,将△ADE绕点A顺时针旋转90°至△ABF.(1)直接写出图中一组相等的线段和一组相等的角.(2)若∠ADE=35°,∠DAE=50°,求∠F的度数.(3)若连接EF,则△AEF是三角形.23.探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=°,∴∠A+∠B+∠C+∠D+∠E=°,∴∠A=∠B=∠C=∠D=∠E=°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE+∠E=°.24.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.方程2x+1=3的解是()A.x=﹣1 B.x=1 C.x=2 D.x=﹣2解:移项,得2x=3﹣1,合并同类项,得2x=2,系数化为1,得x=1.故选:B.2.在下列长度的四组线段中,能组成三角形的是()A.3,4,4 B.5,5,10 C.2,4,7 D.4,6,12解:A、3+4>4,能组成三角形,故此选项正确;B、5+5=10,不能组成三角形,故此选项错误;C、4+2<7,不能组成三角形,故此选项错误;D、4+6<12,不能组成三角形,故此选项错误;故选:A.3.下列图形中,是中心对称图形的是()A. B.C.D.解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.4.若是关于x,y的二元一次方程2x+my=7的解,则2m的值是()A.2 B.4 C.6 D.8解:∵是关于x,y的二元一次方程2x+my=7的解,∴2×2+m=7,解得:m=3,则2m=2×3=6;故选C.5.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选D.6.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.7.把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C 重合,若DE∥BC,则∠1的度数是()A.75°B.105°C.110° D.120°解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故选B8.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.方程的解是x=3.解:移项得,x=1,系数化为1得,x=3.故答案为:x=3.10.用m个正三角形和2个正六边形铺满地面,则m=2.解:∵正三角形和正六边形的一个内角分别是60°,120°,而m×60°+2×120°=360°,∴m=2,故答案为:2.11.一个多边形的每一个外角都是36°,则这个多边形的边数是10.解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.12.不等式组的最大整数解是2.解:∵解不等式①得:x>﹣,解不等式②得:x≤2,∴不等式组的解集为﹣<x≤2,∴不等式组的最大整数解为2,故答案为:2.13.如图,在一块长方形ABCD草地上,AB=10,BC=15,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2个单位),空白部分表示的草地面积是130.解:空白部分表示的草地面积是S=10×15﹣2×10=130,故答案为:130.14.如图,在△ABC中,∠ACB=90°,点D在AB边上,连接CD,将△BCD沿CD翻折得到△ECD,点B的对称点E恰好落在AC边上,若∠B=55°,则∠ADE的度数是20°.解:∵∠ACB=90°,∠B=55°,∴∠A=90°﹣55°=35°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=55°,∵∠DEC=∠A+∠ADE,∴∠ADE=55°﹣35°=20°.故答案为:20°.三、解答题(本大题10小题,共78分)15.解方程:3x﹣6(x﹣1)=3﹣2(x+3).解:3x﹣6(x﹣1)=3﹣2(x+3)去括号,3x﹣6x+6=3﹣2x﹣6移项,3x﹣6x+2x=3﹣6﹣6合并同类项,﹣x=﹣9系数化为1,x=9.16.解方程组:.解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.17.解一元一次不等式组:,并将解集在数轴上表示出来.解:由①得,x>﹣1,由②得,x≤4,故此不等式组的解集为:﹣1<x≤4.在数轴上表示为:18.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45.答:这个班有45名学生.19.在等式y=x2+bx+c中,当x=﹣1时,y=0;当x=1时,y=﹣4.求(b﹣c)2017的值.解:由题意,得,解得,(b﹣c)2017=(2﹣1)2017=1.20.如图,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分线BD交AC于点D,∠ACB 的平分线CP交BD于点D.(1)BD与AC的位置关系是互相垂直.(2)求∠BPC的度数.解:(1)∵∠ABC=100°,BD平分∠ABC,∴∠DBC=∠ABC=50°,∴∠BDC=180°﹣∠DBC﹣∠BCD=90°,∴BD⊥AC.故答案为:互相垂直.(2)∵PC平分∠ACB,∠ACB=40°,∴∠BCP=∠ACB=20°,∴∠BPC=180°﹣∠PBC﹣∠BCP=180°﹣50°﹣20°=110°.21.不等式组的解集是0<x<2,求ab的值.解:由不等式组得,,∵不等式组的解集是0<x<2,∴,解得,,∴ab=2×(﹣1)=﹣2.22.如图,点E是正方形ABCD内的一点,将△ADE绕点A顺时针旋转90°至△ABF.(1)直接写出图中一组相等的线段和一组相等的角.(2)若∠ADE=35°,∠DAE=50°,求∠F的度数.(3)若连接EF,则△AEF是等腰直角三角形.解:(1)由旋转不变性可知:AE=AF,∠ADE=∠ABF.(2)∵∠EAD+∠ADE+∠E=180°,∠ADE=35°,∠DAE=50°,∴∠E=180°﹣35°﹣50°=95°,由旋转不变性可知:∠F=∠E=95°.(3)连接EF.∵AF=AE,∠EAF=90°,∴△AEF是等腰直角三角形,故答案为等腰直角.23.探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°,∴∠A=∠B=∠C=∠D=∠E=36°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE+∠E=108°.解:探究:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°,∴∠A=∠B=∠C=∠D=∠E=36°;拓展:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°;应用:∠CAD+∠ACE+∠E=180°﹣∠EAD=180°﹣∠B﹣∠D=108°.24.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:a+(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.厦门市七年级下学期期末考试数学试卷一.选择题1.如图1,直线a ,b 被直线c 所截,则2∠的内错角是 A.1∠ B.3∠ C.4∠ D.5∠2.在平面直角坐标系中,点(-1,1)在 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限3.下列调查中,最适合采用全面调查的是A.对厦门初中学生每天的阅读时间的调查B.对厦门端午节期间市场上粽子质量情况的调查C.对厦门周边水质情况的调查D.对厦门某航班的旅客是否携带违禁物品的调查 4.若a b >,则下列结论中,不成立的是 A.11a b +>+ B.22a b> C.2121a b ->- D.11a b ->- 5.下列命题是真命题的是 A.同位角相等 B.两个锐角的和是锐角C.如果一个数能被4整除,那么它能被2整除D.相等的角是对顶角6.实数12a -有平方根,则a 可以取的值为A.0B.1C.2D.37.下面几个数:-1,3.14,0,5π,13,0.2018&&,其中无理数的个数是 A.1 B.2 C.3 D.48.如图2,点D 在AB 上,BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是 A.线段AE 的长度是点A 到直线BE 的距离 B.线段CE 的长度是点C 到直线BE 的距离 C.线段FE 的长度是点F 到直线AC 的距离 D.线段FD 的长度是点F 到直线AB 的距离9.小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系.规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是A.(1500,-1000)B.(1500,1000)C.(1000,-1000)D.(-1000,1000)10.在平面直角坐标系中,点A (a ,0),点B (2a -,0),且点A 在B 的左边,点C (1,-1),连接AC ,BC .若在AB ,BC ,AC 所围成的区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为A.10a -<≤B.01a ≤<C.11a -<<D.22a -<< 二.填空题 11.计算下列各题(1)12-= ;(2)63-÷= ;(3)()22-= ;(4)= ;(5)= ;(6)= . 12.不等式10x +<的解集是 ;13.如图3,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ; 14.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组. 15.在平面直角坐标系中,O 为原点,A (1,0),B (-3,2).若BC OA ∥且2BC OA =.则点C 的坐标是 ;16.已知实数a ,b ,c ,2a b +=,1c a -=,若2a b ≥-,则a b c ++的最大值为 . 三.解答题17.(本题满分8分,其中每小题4分) (1)解方程:241x x -=-(2)解方程组:32321x y x y +=⎧⎨-=⎩18. (本题满分8分)如图4,已知直线AB ,CD 相交于点O .(1)读下列语句,并画出图形:点P 是直线AB ,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E ;(2)请写出第(1)小题图中所有与COB ∠相等的角.19.(本题满分8分)解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出该不等式组的正整数解.20.(本题满分8分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问甲、乙二人各带了多少钱?21.(本题满分8分)关于x ,y 的方程组1331x y mx y m -=+⎧⎨+=+⎩(1)当2y =时,求m 的值;(2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.22.(本题满分9分)根据厦门市统计局公布的2017年厦门市常住人口相关数据显示,厦门常住人口首次突破400万大关,达到了401万人,对从2013年的人口数据绘制统计图表如下:2013、2017年厦门市常住人口中受教育程度情况统计表(人数单位:万人)年份大学程度人数高中程度人数初中程度人数小学程度人数其他人数2013 60 98 103 75 372017 72 105 120 68 36请利用上述统计图表提供的信息回答下列问题:(1)从2013年到2017年厦门市常住人口增加了多少万人?(2)在2017年厦门市常住人口中,少儿(0~14岁)人口约为多少万人?(结果精确到万位)(3)请同学们分析一下,假如从2017年到2021年与从2013年到2017年的人口增长人数相同,而大学程度人数的增长率相同,那么到了2021年厦门的大学程度人数的比例能否超过人口的20%?请说明理由.23.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如下表:大牛(头)小牛(头)总价(元)第一次 4 3 9900第二次 2 6 9000第三次 6 7 8550(1)李大叔以折扣价购买大牛和小牛是第次;(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?24.(本题满分10分)如图5,点E在四边形ABCD的边BA的延长线上,CE与AD交于点F,∠=∠,B DDCE AEF∠=∠.(1)求证:AD BC ∥;(2)如图6,若点P 在线段BC 上,点Q 在线段BP 上,且FQP QFP ∠=∠,FM 平分EFP ∠,试探究MFQ ∠与DFC ∠的数量关系,并说明理由.BPBQ25.(本题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,2a ),点C (12-,1a -),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F .(1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;(2)若点F 刚好落在直线l 上,F 的纵坐标为a b +,点E 落在x 轴上,且三角形MFD 的面积为112,试判断点B 是否是直线l 的“伴侣点”?请说明理由.部分参考答案初中七年级下学期期末考试数学试卷一、选择题共10小题。

河南省郑州市巩义市2022-2023学年七年级下学期期末数学试题(含答案)

河南省郑州市巩义市2022-2023学年七年级下学期期末数学试题(含答案)

期末质量检测试卷七年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.9的平方根是( ) A .3±B .3−C .3D .812.点()3,2P −在( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.在227,,π,2023这五个数中无理数的个数为( ) A .2B .3C .4D .54.对于二元一次方程组127y x x y =−⎧⎨−=⎩①②,将①式代入②式,消去y 可以得到( )A .217x x −+=B .227x x −−=C .17x x ++=D .227x x −+= 5.一个容量为60的样本中,最大数是123,最小数是41,取组距为10,则可以分成( )A .10组B .9组C .8组D .7组6.如图AD BC ⊥于点D ,6AB =,9AC =,5AD =,点P 是线段BC 上的一个动点,则线段AP 的长度不可能是( )A .5.5B .7C .8D .4.57.番茄是我们常见的一种蔬菜,取5个大小均等的番茄放在同一简易天平秤,如图,则一个番茄的重量大约是( )A .30B .35C .40D .458.已知点Q 的坐标为()2,3−,点P 的坐标为()22,5a a +−,若直线PQ y ⊥轴,则点P 的坐标为( )A .()2,5−B .()2,2C .()6,3−D .()14,3−−9.已知,直线m n ∥,将一副三角板按如图所示的方式放置,直角顶点D 在直线m 上,30F ∠=︒,另一直角三角板一直角边与直线n 重合,45C ∠=︒,若BC EF ∥,则MDE ∠=( )A .10°B .15°C .20°D .30°10.电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少,另外三个群,狗的数量多且数量相同.问:应该如何分?刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.请算一算这个问题一共有多少种正确答案( ) A .12B .24C .50D .99二、填空题(每小题3分,共15分)11.如图,利用工具测量角,得到130∠=︒,所使用的数学知识是______.122______12. 13.写出一个二元一次方程,使这个方程与3x y −=所组成的方程组的解为2x y a =⎧⎨=⎩,这个方程可以是______.14.老李承包了村里两个鱼池,为了比较A 、B 两鱼池中鱼的数目,老李从两鱼池中各捞出200条鱼,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,老李再从A 、B 两鱼池中各捞出200条鱼,发现其中有记号的鱼分别是8条、15条,可以初步估计鱼数目较多的是鱼池______.(填A 或B )15.新定义:对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]2.32=,[]33=,[]2.53−=−,如果[]12x −=−,则实数x 的取值范围是______.三、解答题(共75分)16.(10分)(13−−(2)解不等式组:()311112x x x x −<+⎧⎪⎨+−≥⎪⎩,请利用数轴求不等式组的解集.17.(8分)已知71a +的立方根是12,82a b +−的平方根是2±. (1)求a ,b 的值.(2)求833a b −++的平方根.18.(9分)已知2x =,4y =;3x =,1y =;都是关于x ,y 的二元一次方程10ax by +=的解. (1)求a ,b 的值;(2)当x 为何值时,y 的值小于0.19.(9分)2023年“诗乡巩义·经典诵读”全民阅读暨“4·23”世界读书日活动启动以来,某校“综合与实践”活动小组为了解全校2700名学生的读书情况,随机抽取了若干名学生进行了调查,统计他们上一周末课外阅读时长t (单位:小时),并根据收集到的数据,整理后绘制了下列不完整的图表:请你根据图表中提供的信息,解答下面的问题:(1)在调查活动中,该“综合与实践”活动小组调查方式是______(填写“普查”或“抽样调查”); (2)该“综合与实践”活动小组抽取的学生有______人,扇形统计图中,4~6小时时间段对应扇形的圆心角的度数是______;(3)请补全频数分布直方图;(4)请通过计算估计该校上一周学生周末课外阅读时长大于6小时的人数.20.(9分)如图,已知BD 平分ABC ∠,过点A 作AC AB ⊥交BC 于点C ,点D 为角平分线BD 上的一点,连接AD .(1)若390C ∠+∠=︒,求证:AD BC ∥. (2)在(1)的条件下,28C ∠=︒,求D ∠的度数.21.(10分)如图,三角形ABC 内任意一点()00,P x y ,经平移后对应点为()0005,5P x y +−,将三角形ABC 作同样的平移得到三角形A B C ''',其中点A ',B ',C '分别为点A ,B ,C 的对应点.(1)请在所给的坐标系中画出三角形A B C ''',并写出A ',B ',C '的坐标; (2)求四边形AA B B ''的面积;(3)点D 为y 轴上一点,若三角形ACD 的面积为三角形A C D ''的面积的2倍,请直接写出点D 的坐标.22.(10分)端午节来临,李老师在超市购买了两种粽子礼盒.已知购买3盒红枣粽子与4盒蛋黄粽子所需款数相同;购买1盒红枣粽子和2盒蛋黄粽子共需100元. (1)求这两种粽子礼盒的单价;(2)李老师用不足300元购买了两种粽子礼盒共8盒,其中一盒红枣粽子内有10个,一盒蛋黄粽子内有6个,若他将粽子分给55名学生和10名任课教师,每人至少能拿到一个粽子,请根据以上信息,求李老师的购买方案及所花款数? 23.(10分)综合与实践 问题背景:数学课上,同学们以“长方形纸带的折叠”为主题开展数学活动,已知长方形纸带的边AD BC ∥,AB CD ∥,90A B C D ∠=∠=∠=∠=︒,点B '为线段AD 上一动点()AB AB '≥,将纸片折叠,使点B 和点B '重合,产生折痕EF ,点E 是折痕与边AD 的交点,点F 是折痕与边BC 的交点.动手操作:(1)如图1,若点E 与点A 重合时,则AFB ∠的度数为______. 实践探究:(2)如图2,移动点B ',其余条件不变.①小静发现图中无论点B '如何移动,A EB B FC '''∠=∠始终成立,请说明理由;②小东发现折叠后所形成的角,只要知道其中一个角的度数,就能求出其它任意一角的度数,若60A B E ''∠=︒,求B EF '∠的大小.期末质量检测七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)1-5ADADB6-10DBCBA二、填空题(每小题3分,共15分)11.对顶角相等(同角的邻补角相等);12.>;13.1x y +=(等等);14.A ;15.10x −≤<三、解答题(共75分)16.解:(1(3336−−=−−−=(2)解:解不等式①,得2x <,解不等式②,得1x ≤− 把不等式①和②的解集在数轴上表示∴不等式组的解集为1x ≤− 17.解:(1)∵71a +的立方根是12,82a b +−的平方根是2±. ∴1718824a ab ⎧+=⎪⎨⎪+−=⎩,解得:18a =−,7b =; (2)当18a =−,7b =时,183********a b ⎛⎫−++=−⨯−+⨯+= ⎪⎝⎭,则25的平方根是5±. 18.(1)解:∵2x =,4y =;3x =,1y =;都是关于x ,y 的二元一次方程10ax by +=的解.∴2410310a b a b +=⎧⎨+=⎩,解之得31a b =⎧⎨=⎩(2)由(1)可知310x y +=,所以103y x =−, 若要是y 的值小于0,即1030x −<,解之得103x >. 19.(1)抽样调查;(2)300,108°;(3)如图(4)13521927001485300++⨯=(人)答:估计该校上一周学生周末课外阅读时长大于6小时的人数有1485人. 20.(1)证明:∵AC AB ⊥,∴90CAE ∠=︒即390CAD ∠+∠=︒ 又∵390C ∠+∠=︒,∴DAC C ∠=∠,∴AD BC ∥ (2)∵28C ∠=︒,390C ∠+∠=︒,∴362∠=︒ 又∵AD BC ∥,∴362ABC ∠=∠=︒,2D ∠=∠ 又∵BD 平分ABC ∠,∴12312ABC ∠=∠=︒,∴31D ∠=︒. 21.(1)三角形A B C '''如图所示,()0,4A '−,()3,0B ',()5,3C '−(2)四边形AA B B ''的面积11892552343522=⨯−⨯⨯⨯−⨯⨯⨯= (3)()0,10D −或()0,2−22.解:(1)设红枣粽子礼盒的单价为x 元,蛋黄粽子礼盒的单价为y 元,由题意得:342100x y x y =⎧⎨+=⎩解之得4030x y =⎧⎨=⎩∴红枣粽子礼盒的单价为40元,蛋黄粽子礼盒的单价为30元. (2)设李老师的购买红枣粽子礼盒a 盒,购买蛋黄粽子礼盒()8a −盒,由题意得,()()40308300106865a a a a +−<⎧⎪⎨+−≥⎪⎩,解之得6144a a <⎧⎪⎨≥⎪⎩∴1464a ≤<,∴a 可取5. ∴李老师的购买红枣粽子礼盒5盒,购买蛋黄粽子礼盒3盒,共花费290元. 23.(1)45°(2)①∵A E B F ''∥,∴A EB EB F '''∠=∠,∵AD BC ∥,∴B FC EB F ''∠=∠,∴A EB B FC '''∠=∠.②90A B F ''∠=︒,60A B E ''∠=︒,∴30EB F A B F A B E '''''∠=∠−∠=︒ 由①知30B FC A EB '''∠=∠=︒,由折叠可知BFE EFB '∠=∠ 又∵180BFE EFB B FC ''∠+∠+∠=︒,即230180BFE ∠+︒=︒∴75BFE ∠=︒,又∵AD BC ∥,∴B EF BFE '∠=∠,∴75B EF BFE '∠=∠=︒。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩(考试时间:120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y轴的距离是___________.15.已知二元一次方程2x-3y=6,用关于x的代数式表示y,则y=______.16.已知:如图,AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是___________.17.若y同时满足y+1>0与y-2<0,则y的取值范围是.三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤)18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。

北京市大兴区2022-2023学年七年级下学期期末数学试卷(含答案)

北京市大兴区2022-2023学年七年级下学期期末数学试卷(含答案)

北京市大兴区2022-2023学年七年级下学期期末数学试卷2023.06考生须知1.本试卷共4页,共三道大题,28道小题.满分100分.考试时间120分钟-2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用28铅笔作答,其他题用黑色字迹签字笔作答.s.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分〉第1-8题均有四个选项,符合题意的选项只有一个.l在平丽直角坐标系x Oy中,下列各点在第二象限的是(A.(1,4) s.(-1,4) c.(-1,-4) o.(1,-4)2.若α<b,则不列不等式中成立的是〈〉A.a-5>b-5B.7+a>7+b2 2.C.-2α>-2bD.-a>-b3 33下列调查中,适宜采用全面调查的是(A了解某班学生的身高情况B.调查春节联欢晚会的收视率c.调查菜批次汽车的抗撞击能力D了解某种电灯泡的使用寿命4一个不等式组中的两个不等式的解集在数轴上的表示如图所示,则这个不等式组的解袋为(」�-2 -1 03A.-1 豆x < 2B.-1 < x < 2C.-l<x豆2D.无解5.下列说法中错误的是(A.5的平方根是./5B.-1的立方根是1C.2是4的一个平方根D.16的算术平方根是4l x=l6.已知{是关于x,y的二元一次方程似-y=l的一个解,那么。

的值是([y=-2A.3B.lC.-1D.-37.如图,由ABIICD可以得到的结论是(〉DBA.Ll=L2B.Ll=L4C.L'2=L'3D.L'3=L'4)是平面直角坐标系xOy中的两点,当线段AB的长度最小时,a的值为(〉8.A( a,O),B(3,4A.-4B.-3C.4 0.3二、填空题(本题共16分,每小题2分〉9.把方程4x-y =3改写成用含X的式子表示Y的形式为y=·10.i:.'.�nx,y是有理数,且满足在古+(y-3)2=0,贝Jx+y的值为一一一-I I.“两直线平行,同位角相等”这个命题的题设是·12.写出-个比./2,大且比./ls小的瞅一一一13 ../16的算术平方根是·14.点P(-5,4)至1]15虫日图,点E在AB上,只需添加一个条件即可证明ABIICD,这个条件是·(写出一个即可)E Bc D16.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为X,乙数为Y,贝l j可列方程组为·三、解答题(本题共68分,第17-23题每小题5分,第24,25题6分,第26-28题每小题7分〉17.计算:11-'131+口+../l6.lx+2v=O18.解方程组:4, [2x-2y=9.[2x -(x -2)>4, 19解不等式组:�1+2x 1-三二x -1l 3AD I! B E-L'B+L'BCD=180 ,L'B=L'D.求证:三20.已知:如阁,A/乙问nst 市比‘1 L'B+L'BCD=l80·.ABIICD <〉(填推理的依据〉.:.LDCE=L'B (_一一一_)(填推理的依据〉.LB=LD,又:.LDCE=LD.:.ADI! BE <〉(填推理的依据〉.21如圈,在平面豆角坐标系x 向P中,三角形A BC 三个顶点的坐标分别是A(-2,3),B (-3,0).C(-1,-1). 将三角形ABC 向右平移4个单位叫后得到三角形A ’B'C'x r .:::r :.::r .•”:J .f ··1:::r .:::1 1J/M '.f*T••i =I H?f1J ttLJ (I)点A ,A ’之间的距离是:(2)请在图中画出三角形A ’B ’C ’.22.下图是某公园的部分景点示意图,若假山的坐标为(2,4),凉亭的坐标为(-2,3)根据上述坐标,建立平而直角坐标系,并写出牡丹园的坐标.1······· ·.…-J 他寸,「.J .. →…· .. ……湾尸’「」一-……川J N叩……………J · .. -斗,J .. J .. J d 同·.. J.. u.. ·卜·卜’中分4··~··心’尸·卜’卜’h h r ··…··←CD 平分L A CB,DEII BC,LAED=80.求23.已知:如阁,点D,E 分别是线段AB,AC 上的点,LEDC 的度数c24.某校七年级组织600名学生参加了一次诗词知识大赛赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中40名学生的成绩(单位:分〉作为样本,并对样本的数据进行了整理,得到下列不完整的统计图表:B 成绩分组频数60,, x<?O6 7。

河南省漯河市舞阳县2022-2023学年七年级下学期期末数学试题(含答案)

河南省漯河市舞阳县2022-2023学年七年级下学期期末数学试题(含答案)

2022~2023学年下学期期末考试试卷(Y )七年级数学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟,闭卷考试,请将答案直接写在试卷或答题卡上.2.答卷前请将密封线内的项目填写清楚;使用答题卡时,请认真阅读答题须知,并按要求去做.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.二元一次方程x +2y =6的一个解是()A .22x y =⎧⎨=⎩B .23x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .26x y =⎧⎨=⎩2.不等式410x -<的解集是()A .4x >B .4x <C .14x >D .14x <3.为了解我县2023年参加中考的4964名学生的身高情况,抽查了其中300名学生的身高进行统计分析.下列叙述正确的是()A .4964名学生是总体B .从中抽取的300名学生的身高是总体的一个样本C .每名学生是总体的一个个体D .样本容量是300名学生4.下列说法正确的是()A .-9的立方根是-3B .7±是49的平方根C .有理数与数轴上的点一一对应D 95.在某次考试中,某班级的数学成绩统计图如图所示,下列说法中错误的是()A .得分在70~80分之间的人数最多B .该班总人数为40人C .得分在90~100分之间的人数最少D .不低于60分为及格,该班的及格率为80%6.若a >b ,则下列四个选项中一定成立的是()A .22a b +>+B .33a b->-C .44a b <D .11a b -<-7.已知12x y =⎧⎨=⎩和23x y =⎧⎨=-⎩都满足方程y kx b =-,则k b 、的值分别为()A .5,5--B .5,7--C .5,3D .5,78.把不等式组321132x xx x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为()A .B.C.D .9.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A .8374x yx y+=⎧⎨-=⎩B .8374x y x y -=⎧⎨+=⎩C .8374x y x y+=⎧⎨+=⎩D .8374x y x y-=⎧⎨-=⎩10.已知关于x 的不等式组0320x a x -≥⎧⎨-≥⎩的整数解共有5个,则a 的取值范围是()A .3a ≤-B .43a -<≤-C . 3.53a -<≤-D .342a -<<二、填空题(每小题3分,共15分)11.随着我国科学技术的不断发展,科学幻想变为现实.图1是我国自主研发的某型号战斗机模型,全动型后掠翼垂尾是这款战斗机的亮点之一.图2是垂尾模型的示意图,现测量垂尾模型的外围得如下数据:①BC =8,②CD =2,③∠C =60°,④∠D =135°,⑤∠ABC =120°,垂尾模型要求的位置标准之一是AB CD ∥,则选择数据**可判断模型位置是否达标(只填序号).12.已知,a b为两个连续的整数,且a b <<,则23a b -=**.13.不等式组24691x x +>⎧⎨->⎩的解集为**.14.若方程组321431x y m x y m +=+⎧⎨+=-⎩的解满足x y >,则m 的取值范围是**.15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于点D ,若点()(),3,,5B m C n -,()6,0,9A BC =,则AD =**.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程组:(1)3231x y x y -=⎧⎨+=⎩(2)()35362236x y x y x y⎧-=-⎪⎨-+-=-⎪⎩17.(8分)解不等式或不等式组:(1)13132x x --≥+(218.(9分)解不等式组()3223118x x x x -⎧+≥⎪⎨⎪-->-⎩,在数轴上表示出解集,并写出该不等式组的非负整数解.19.(9分)已知关于,x y 的二元一欢方㮻组233741x y m x y m +=+⎧⎨-=+⎩.且0x y +<.(1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围;(3)化简:m m +-.20.(10分)某校为了解某年级学生一分钟跳绳情况,对该年级全体共360名学生进行一分钟跳绳测试,并把测得的数据分成四组,绘制成未完成的频数表和频数分布直方图(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表组别(次)频数100~13048130~16096160~190a 190~22072(1)求a 的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.21.(10分)围棋,起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史.中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋.已知购买4副象棋和4副围棋共需220元,购买5副象棋和3副围棋共需215元.(1)求象棋和围棋的单价;(2)学校准备购买象棋和围棋总共120副,围棋的数量不少于40副,且不多于象棋数量,总费用可以是3500元吗?22.(10分)如图,点D 为射线CB 上一点,且不与点B 、C 重合,DE AB ∥交直线AC 于点E ,DF AC ∥交直线AB 于点F .画出符合题意的图形,猜想∠EDF 与∠BAC 的数量关系,并说明理由.23.(11分)如图1,在四边形ABCD 中,AB DC ∥,AD BC ∥,点E 在AB 边上,DE 平分∠ADC .(1)分别延长DE、CB交于点M,∠DAB与∠CMD的平分线AN、MN交于点N,若∠ADE的度数为56°,求∠N的度数;(2)如图2,已知DF⊥BC交BC边于点G,交AB边的延长线于点F,且DB平分∠EDF,若∠BDC<45°,试比较∠F与∠EDF的大小,并说明理由.2022~2023学年下学期期末考试七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案ADBBDABCBB二、填空题(每小题3分,共15分)题号1112131415答案③⑤31<x <8m >-6163三、解答题(本大题共8个小题,满分75分)16.(1)3231x y x y -=⎧⎨+=⎩①②3⨯+①②得:510x =,解得:2x =,把2x =代入①得:23y -=,解得:1y =-,则方程组的解为21x y =⎧⎨=-⎩.(2)方程组整理得:3412x y x y -=⎧⎨-=-⎩①②,①-②得:5y =,把5y =代入①得:8x =,则方程组的解为85x y =⎧⎨=⎩.17.(1)13132x x --≥+去分母,得()()21336x x -≥-+,去括号,得22396x x -≥-+,移项,合并同类项得1x -≥-,系数化为1,得1x ≤.(2)解:()365243123x x x x ⎧+≥-⎪⎨--<⎪⎩①②由①得:8x ≤,由②得:3x >-,则不等式组的解集为38x -<≤.18.解不等式322x x -+≥.得x ≤1,解不等式3(x -1)-1>x -8,得x >-2.所以,原不等式组的解集是-2<x ≤1,在数轴上表示如图:故不等式组的非负整数解为0和1.19.(1)2337,41,x y m x y m +=+⎧⎨-=+⎩①②由②得41x m y =++,③把③代入①得()241337m y y m +++=+,解得1y m =-+.把1y m =-+代入③得32x m =+.∴方程组的解为32,1.x m y m =+⎧⎨=-+⎩(2)∵0x y +<,∴3210m m +-+<,∴32m <-.(3)∵32m <-.∴)m m m m +-=----=.20.(1)()360489672144a =-++=.(2)补全频数分布直方图如图:(3)该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比为72100%20%360⨯=,21.(1)设象棋单价是x 元.围棋的单价是y 元,根据题意得4422053215x y x y +=⎧⎨+=⎩,解得25,30.x y =⎧⎨=⎩答:象棋的单价是25元,围棋的单价是30元.(2)设购买象棋m 副,则购买围棋(120-m )副,由题意得解得12040,120,m m m -≥⎧⎨-≤⎩60≤m ≤80,令()25301203500m m +-=,解得20m =,不符合6080m ≤≤,所以总费用不能是3500元.22.当点D 在线段CB 上时,如图①,∠EDF =∠BAC .理由:∵DE AB ∥(已知),∴∠1=∠BAC (两直线平行,同位角相等).∵DF AC ∥(已知),∴∠EDF =∠1(两直线平行,内错角相等).∴∠EDF =∠BAC (等量代换).当点D 在线段CB 的延长线上时,如图②,∠EDF +∠BAC =180°.理由:∵DE AB ∥(已知)∴.∠EDF +∠F =180°(两直线平行,同旁内角互补).∵DF AC ∥(已知),∴∠F =∠BAC (两直线平行,内错角相等).∴∠EDF +∠BAC =180°(等量代换).23.(1)过点N 作NF AD ∥,∴AD BC NF ∥∥,∵∠ADE =56°,DE 平分∠ADC ,AD BC ∥,∴∠ADC =112°,∠DMB =∠ADE =56°,∵AB DC ∥,∴∠DAB =180°-∠ADC =68°,∵AN 平分∠DAB ,MN 平分∠CMD ,∴∠DAN =∠NAE =34°,∠DMN =∠CMN =28°,∥∥,∠ANF=∠DAN=34°,∠MNF=∠CMN=28°,∵AD BC NF∴∠ANM=∠ANF+∠MNF=62°;(2)∵DF⊥BC,∴∠BGF=90°,∥.∴∠ADF=∠BGF=90°,∵AD BC∥,∴∠CDF=∠F,∵CD AB设∠EDB=∠BDF=x,∠CDF=∠F=y,∴∠EDF=2x,∴∠ADE=∠EDC=2x+y,∵∠ADF=∠ADE+∠EDF,∴2x+y+2x=90°,∴y=90°-4x,∴∠F-∠EDF=y-2x=90°-4x-2x,∵∠BDC<45°,∴x+y<45°,∴x+90°-4x<45°,解得:x>15°,∴6x>90°,∴∠F-∠EDF=90°-6x<0,∴∠F<∠EDF.。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

苏科版七年级下册数学期末测试题(含答案)

苏科版七年级下册数学期末测试题(含答案)

2020-2021学年七年级(下)期末数学试卷一、精心选一选(每小题2分,共16分)1.如图所示,AP平分∠BAC,点M,N分别在边AB,AC上,如果添加一个条件,即可推出AM=AN,那么下面条件不正确的是()A.PM=PN B.∠APM=∠APN C.MN⊥AP D.∠AMP=∠ANP 2.下列所给的四组条件中,能作出唯一三角形的是()A.AB=2cm,BC=6cm,AC=3cm B.BC=3cm,AC=5cm,∠B=90°C.∠A=∠B=∠C=60°D.AB=4cm,AC=6cm,∠C=30°3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E4.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去5.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A.50°B.65°C.70°D.80°6.边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF 的周长为奇数,则DF的值为()A.3B.4C.3或5D.3或4或57.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为()A.0.5cm B.1cm C.1.5cm D.2cm8.下列命题中,说法不正确的有()个.①形状相同的两个三角形全等;②两边和一角对应相等的两个三角形全等;③周长相等的两个等腰三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.A.4个B.3个C.2个D.1个二、细心填一填(每小题2分,共20分)9.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.10.如图,两个三角形全等,根据图中所给条件,可得∠α=°.11.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.12.如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,则图中的全等三角形共有对.13.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是°.14.如图,AB=AC,∠BAC=90°,BD⊥AE于点D,CE⊥AE于点E,若BD=2,CE=3,则四边形CBDE的面积是.15.如图,在由6个相同的小正方形拼成的网格中,∠2﹣∠1=°.16.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠DCE=55°,则∠APB的度数为.17.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为.18如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.三、耐心解一解(本大题共64分)19已知:如图,DE⊥AC,BF⊥AC,AD=BC,AF=CE,求证:AD∥BC.20如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D,过点作DE⊥AB于点E(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠ABC=65°,求∠CBD的度数.22已知:如图AD、A′D′分别为钝角△ABC和钝角△A′B′C′的边BC、B′C′上的高,且AB=A′B′,AD=A′D′请你补充一个条件(只需写出一个你认为适当的条件)使得△ABC≌△A′B′C′,并加以证明.23如图,在△ABC中,AB=AC=4,∠B=∠C=50°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=120°时,∠EDC=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.24如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.25如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于E,点F在边AC 上,连接DF.(1)求证:AC=AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n的代数式表示).参考答案与试题解析一.选择题(共8小题)1.如图所示,AP平分∠BAC,点M,N分别在边AB,AC上,如果添加一个条件,即可推出AM=AN,那么下面条件不正确的是()A.PM=PN B.∠APM=∠APN C.MN⊥AP D.∠AMP=∠ANP 【分析】根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△APM≌△APN即可.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,A、由∠BAP=∠CAP,PM=PN,AP=AP,不能判定△APM≌△APN,∴不推出AM=AN,故选项A符合题意;B、由∠BAP=∠CAP,AP=AP,∠APM=∠APN,能判定△APM≌△APN(ASA),∴AM=AN,故选项B不符合题意;C、由∠BAP=∠CAP,AP=AP,MN⊥AP,能判定△APM≌△APN(ASA),∴AM=AN,故选项C不符合题意;D、由∠BAP=∠CAP,AP=AP,∠AMP=∠ANP,能判定△APM≌△APN(AAS),∴AM=AN,故选项D不符合题意;故选:A.2.下列所给的四组条件中,能作出唯一三角形的是()A.AB=2cm,BC=6cm,AC=3cm B.BC=3cm,AC=5cm,∠B=90°C.∠A=∠B=∠C=60°D.AB=4cm,AC=6cm,∠C=30°【分析】根据三角形三边的关系对A进行判断;根据全等三角形的判定方法对B、C、D 进行判断.【解答】解:A、因为AB+AC<BC,三条线段不能组成三角形,所以A选项不符合题意;B、BC=3cm,AC=5cm,∠B=90°,根据“SAS”可判断此三角形为唯一三角形,所以B选项符合题意;C、利用∠A=∠B=∠C=60°不能确定三角形的大小,所以C选项不符合题意;D、利用AB=4cm,AC=6cm,∠C=30°可画出两三角形,所以D选项不符合题意.故选:B.3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.4.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去【分析】可以采用排除法进行分析从而确定最后的答案.【解答】解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.5.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A.50°B.65°C.70°D.80°【分析】根据SAS证明△ADC与△AEB全等,利用全等三角形的性质和三角形内角和解答即可.【解答】解:在△ADC与△AEB中,,∴△ADC≌△AEB(SAS),∴∠B=∠C,∠AEB=∠ADC,∵∠BAC=70°,∠C=30°,∴∠AEB=∠ADC=180°﹣∠BAC﹣∠C=180°﹣70°﹣30°=80°,∴∠BMC=∠DME=360°﹣∠AEB﹣∠ADC﹣∠BAC=360°﹣80°﹣80°﹣70°=130°,∴∠BMD=180°﹣130°=50°,故选:A.6.边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF 的周长为奇数,则DF的值为()A.3B.4C.3或5D.3或4或5【分析】根据三角形的三边关系求得AC的范围,然后根据全等三角形的对应边相等即可求解.【解答】解:AC的范围是2<AC<6,则AC的奇数值是3或5.△ABC和△DEF全等,AB与DE是对应边,则DE=AB=2,当DF=AC时,DF=3或5.当DF=BC时,DF=4.故选:D.7.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为()A.0.5cm B.1cm C.1.5cm D.2cm【分析】先利用等角的余角相等得∠CAD=∠BCE,则可根据“AAS”证明△ACD≌△CBE,所以AD=CE=2,CD=BE=0.5,然后计算CE﹣CD即可.【解答】解:∵BE⊥CE,AD⊥CE,∴∠ADC=∠CEB,∵∠ACB=90°,即∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE=2,CD=BE=0.5,∴DE=CE﹣CD=2﹣0.5=1.5(cm).故选:C.8.下列命题中,说法不正确的有()个.①形状相同的两个三角形全等;②两边和一角对应相等的两个三角形全等;③周长相等的两个等腰三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.A.4个B.3个C.2个D.1个【分析】利用全等三角形的判定定理分别判断后即可确定正确的选项.【解答】解:①形状、大小完全相同的两个三角形全等,原命题是假命题;②两边和其夹角对应相等的两个三角形全等,原命题是假命题;③周长相等的两个等腰三角形不一定全等,原命题是假命题;④有两角及其中一角的角平分线对应相等的两个三角形全等,是真命题;故选:B.二.填空题(共9小题)9.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=1.【分析】根据全等三角形的对应边相等分别求出x、y,计算即可.【解答】解:∵两个三角形全等,∴x=6,y=5,∴x﹣y=6﹣5=1,故答案为:1.10.如图,两个三角形全等,根据图中所给条件,可得∠α=60°.【分析】根据全等三角形的对应边相等、对应角相等,可知道∠α=60°,做题时要找准对应角.【解答】解:左边的三角形中,b所对的角为180°﹣65°﹣55°=60°,两个三角形全等中,相等的边是对应边,两三角形中,长度为b的边是对应边,它们对的角是对应角,∴∠α=60°故答案为:60.11.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是BC=EF.【分析】求出AC=DF,根据平行线的性质得出∠BCA=∠EFD,根据全等三角形的判定得出即可.【解答】解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.12.如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,则图中的全等三角形共有4对.【分析】根据题目条件,全等三角形有:△ABO≌△ACO,△AEC≌△ADB,△AEO≌△ADO,△BEO≌△CDO共4对.做题时要从已知开始结合判定方法逐个验证,做到由易到难,不重不漏.【解答】解:①在△AEO与△ADO中∵CE⊥AB于点E,BD⊥AC于点D,AO平分∠BAC,∴∠AEO=∠ADO=90°,∠EAO=∠DAO∵AO=AO∴△AEO≌△ADO(AAS)∴AE=AD,OE=OD;②在△OBE与△OCD中∵∠OEB=∠0DC=90°,∠EOB=∠DOC,OE=OD∴△OBE≌△OCD(AAS)∴OB=OC,BE=DC,∠B=∠C;③在△ABO与△ACO中∵AE=AD∴AB=AC∵AB=AC,AO=AO,BO=CO∴△ABO≌△ACO(SSS)④在△AEC与△ADB中∵∠AEC=∠ADB=90°,AC=AB,AE=AD∴△AEC≌△ADB(HL)所以共有四对全等三角形.13.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是86°.【分析】根据全等三角形的性质得到∠DFE=∠ACB=43°,根据三角形的外角性质计算,得到答案.【解答】解:∵△ABC≌△DEF,∴∠DFE=∠ACB=43°,∵∠AMF是△MFC的一个外角,∴∠AMF=∠DFE+∠ACB=86°,故答案为:86.14.如图,AB=AC,∠BAC=90°,BD⊥AE于点D,CE⊥AE于点E,若BD=2,CE=3,则四边形CBDE的面积是.【分析】证明△ABD≌△CAE得到AD=CE=3,BD=AE=2,然后根据梯形的面积公式计算.【解答】解:∵BD⊥AE,CE⊥AE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE=3,BD=AE=2,∴四边形CBDE的面积=×(2+3)×(2+3)=.故答案为.15.如图,在由6个相同的小正方形拼成的网格中,∠2﹣∠1=90°.【分析】连接AC,利用全等三角形的性质解答即可.【解答】解:如图所示:由图可知△ACD与△ECD全等,∴∠BAC=∠2,∴∠2﹣∠1=90°,故答案为:90.16.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠DCE=55°,则∠APB的度数为55°.【分析】先证明△ACD≌△BCD得到∠D=∠E,再利用三角形内角和得到∠DPE=∠DCE=55°,然后根据对顶角相等得到∠APB的度数.【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.17.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为7.【分析】利用已知条件证明△ADE≌△ADC(SAS),得到ED=CD,从而BC=BD+CD =DE+BD=5,即可求得△BDE的周长.【解答】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6﹣4)+5=7.故答案为:718如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.【考点】全等三角形的判定.【专题】图形的全等.【答案】见试题解答内容【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【解答】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.19已知:如图,DE⊥AC,BF⊥AC,AD=BC,AF=CE,求证:AD∥BC.【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【答案】证明见解析过程.【分析】利用HL证明Rt△ADE≌Rt△CBF,得到∠DAE=∠BCF,然后根据平行线的判定定理证明即可.【解答】证明:∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∵DE⊥AC,BF⊥AC,∴∠AED=∠BFC=90°,在Rt△ADE和Rt△CBF中,,∴Rt△ADE≌Rt△CBF(HL),∴∠DAE=∠BCF,∴AD∥BC.20如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D,过点作DE⊥AB于点E(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【考点】角平分线的性质;作图—复杂作图.【专题】作图题;几何直观.【答案】(1)作图见解析部分.(3)3cm.【分析】(1)根据要求作出图形即可.(2)利用三角形的面积公式求出DE,再利用角平分线的性质定理求解即可.【解答】解:(1)如图,射线AD,DE即为所求.(2)∵S△ABD=•AB•DE=15cm2,AB=10cm,∴DE=3(cm),∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE=3(cm).21如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠ABC=65°,求∠CBD的度数.【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【答案】25°.【分析】利用HL证明Rt△BCE≌Rt△CBD,根据全等三角形的性质得出∠ABC=∠ACB =65°,再根据直角三角形的两锐角互余即可得解.【解答】解:∵CE⊥AB,BD⊥AC,∴△BCE和△CBD是直角三角形,在Rt△BCE和Rt△CBD中,,∴Rt△BCE≌Rt△CBD(HL),∴∠ABC=∠ACB,∵∠ABC=65°,∴∠ACB=65°,∴∠CBD=90°﹣∠ACB=25°.22已知:如图AD、A′D′分别为钝角△ABC和钝角△A′B′C′的边BC、B′C′上的高,且AB=A′B′,AD=A′D′请你补充一个条件(只需写出一个你认为适当的条件)使得△ABC≌△A′B′C′,并加以证明.【考点】全等三角形的判定.【答案】见试题解答内容【分析】根据全等三角形的判定方法添加缺少的条件即可,方案有多种.【解答】解:可添条件:BC=B'C'.证明:∵AB=A′B′,AD=A′D′,∠ADB=∠A′D′B′=90°,∴在Rt△ADB和Rt△A′D′B′中,,∴Rt△ADB≌Rt△A′D′B′(HL),∴∠B=∠B′,∵BC=B′C′,AB=A′B′,∴在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).还可添加:DC=D′C′,或∠ACB=∠A'C′B',或AC=A′C′,或∠BAC=∠B′A′C′.故答案为:BC=B'C'(答案不唯一).23如图,在△ABC中,AB=AC=4,∠B=∠C=50°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=120°时,∠EDC=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.【考点】全等三角形的判定;等腰三角形的性质.【专题】图形的全等;推理能力.【答案】(1)10°,小;(2)DC=4.理由见解答.【分析】(1)利用平角的定义计算∠EDC的度数,几何图形可判断点D从B向C运动时,∠BDA逐渐变小;(2)先证明∠CDE=∠BAD,而∠B=∠C,则CD=BA=4时,可根据“ASA”判定△ABD≌△DCE.【解答】解:(1)∠EDC=180°﹣∠BDA﹣∠ADE=180°﹣120°﹣50°=10°;点D从B向C运动时,∠BDA逐渐变小;故答案为10°,小;(2)当DC等于4时,△ABD≌△DCE.理由如下:∵∠ADC=∠B+∠BAD,即∠ADE+∠CDE=∠B+∠BAD,而∠B=∠ADE=50°,∴∠CDE=∠BAD,在△ABD和△DCE中,,∴△ABD≌△DCE(ASA).24如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【答案】(1)证明见解析过程;(2)AC⊥MC且AC=MC,理由见解析过程.【分析】(1)根据SAS证明△BDE≌△ADC,再根据全等三角形的性质即可得解;(2)根据SAS证明△BFE≌△CFM,得到∠CBE=∠BCM,BE=MC,由(1)得∠CBE =∠CAD,BE=AC,即得AC=MC,再利用直角三角形的两锐角互余得出AC⊥MC.【解答】(1)证明;∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BDE与△ADC中,,∴△BDE≌△ADC(SAS),∴BE=AC;(2)解:AC⊥MC且AC=MC,理由如下:∵F为BC中点,∴BF=CF,在△BFE与△CFM中,,∴△BFE≌△CFM(SAS),∴∠CBE=∠BCM,BE=MC,由(1)得:∠CBE=∠CAD,BE=AC,∴∠CAD=∠BCM,AC=MC,∵∠CAD+∠ACD=90°,∴∠BCM+∠ACD=90°,即∠ACM=90°,∴AC⊥MC,∴AC⊥MC且AC=MC.25如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于E,点F在边AC 上,连接DF.(1)求证:AC=AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n的代数式表示).【考点】列代数式;全等三角形的判定与性质;角平分线的性质.【专题】线段、角、相交线与平行线;图形的全等;推理能力.【答案】(1)证明见解析过程;(2)∠B+∠AFD=180°,理由见解析过程;(3)(m ﹣n).【分析】(1)由于DE⊥AB,那么∠AED=90°,则有∠ACB=∠AED,联合∠CAD=∠BAD,AD=AD,利用AAS即可证明△ACD≌△AED,再根据全等三角形的性质即可得解;(2)由△ACD≌△AED,证得DC=DE,然后根据HL判定Rt△CDF≌Rt△EDB,得到∠CFD=∠B,再根据邻补角的定义等量代换即可得解;(3)由AC=AE,CF=BE,根据AB=AE+BE,AC=AF+CF即可得解.【解答】(1)证明:∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AC=AE;(2)解:∠B+∠AFD=180°,理由如下:由(1)得:△ACD≌△AED,∴DC=DE,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴∠CFD=∠B,∵∠CFD+∠AFD=180°,∴∠B+∠AFD=180°;(3)解:由(2)知,Rt△CDF≌Rt△EDB,∴CF=BE,由(1)知AC=AE,∵AB=AE+BE,∴AB=AC+BE,∵AC=AF+CF,∴AB=AF+2BE,∵AB=m,AF=n,∴BE=(m﹣n).。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。

1个B。

2个C。

3个D。

4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。

原点B。

x轴上C。

y轴上D。

x轴上或y轴上3.不等式组2x-1>1。

4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。

图形的平移是指把图形沿水平方向移动B。

“相等的角是对顶角”是一个真命题C。

平移前后图形的形状和大小都没有发生改变D。

“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。

1500B。

1000C。

150D。

5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。

①③④B。

①②③C。

①②④D。

②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。

8.-364的绝对值等于______。

9.不等式组{x-2≤x-1>的整数解是______。

10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。

11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。

某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。

12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。

则老师知道XXX与XXX之间的距离是______。

13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。

14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其他10个小长方形高之和的1/4,且样本容量是60,则中间一组的频数是______。

三、解答题15.计算:$3-9+3-2$。

答案:$-5$。

16.解方程组:begin{cases}2x-4y=8 \\x+2y=-4end{cases}改写为标准形式:begin{cases}x-2y=4 \\x+2y=-4end{cases}将第一个方程乘以2,得到 $2x-4y=8$,与第二个方程相加消去 $y$,得到 $3x=4$,解得 $x=\frac{4}{3}$,代入第一个方程解得 $y=-\frac{1}{3}$。

因此,方程组的解为$\left(\frac{4}{3},-\frac{1}{3}\right)$。

17.解不等式 $\frac{1-x}{37}\leq \frac{20}{37}$,并把它的解集表示在数轴上。

移项得到 $\frac{x}{37}\leq \frac{16}{37}$,乘以37得到$x\leq 16$。

因此,不等式的解集为 $(-\infty,16]$。

18.已知:如图,$AB\parallel CD$,$EF$交$AB$于$G$,交$CD$于$F$,$FH$平分$\angle EFD$,交$AB$于$H$,$\angle AGE=50^\circ$,求$\angle BHF$的度数。

答案:$\angle BHF=65^\circ$。

根据题目条件,可以得到如下的图形:由于$AB\parallel CD$,所以XXX又因为$FH$平分$\angle EFD$,所以$\angle EHF=\angle FHD$,$\angleECF=\angle FHD$。

因此,$\angle AEF=\angle EHF$,$\angle EAF=\angle FHD$,XXX所以,$EF=AE$,$\angleEFA=\angle HEF$,XXX$。

又因为$\angle AGE=50^\circ$,$\angle EAF=\angle FEA$,所以$\angle AEF=\angle EAF+\angle EFA=2\angleEAF=100^\circ$,$\angle EAF=50^\circ$。

因此,$\angleHEF=50^\circ$,$\angle BHF=180^\circ-\angle HBE-\angleHEF=180^\circ-130^\circ=50^\circ$。

20.对于$x,y$定义一种新运算“$\varphi$”,$x\varphiy=ax+by$,其中$a,b$是常数,等式右边是通常的加法和乘法运算。

已知$3\varphi 5=15$,$4\varphi 7=28$,求$1\varphi1$的值。

根据定义,$3\varphi 5=3a+5b=15$,$4\varphi7=4a+7b=28$。

解这个方程组得到 $a=2$,$b=3$。

因此,$1\varphi 1=2+3=5$。

21.已知一个正数的平方根是$m+3$和$2m-15$。

1)求这个正数是多少?设这个正数为$x$,则有$\sqrt{x}=m+3$,$\sqrt{x}=2m-15$。

因此,$m+3=2m-15$,解得$m=18$。

代入任意一个式子,得到$\sqrt{x}=21$,因此$x=441$。

2)$m+5$的平方根又是多少?sqrt{m+5}=\sqrt{(m+3)+2}=\sqrt{\sqrt{x}+2}=\sqrt{23}$。

22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗。

水果店老板把售价至少定为多少,才能避免亏本?设售价为$p$元/千克,则水果店的成本为$4.5$元/千克,考虑到损耗,实际成本为$5$元/千克。

因此,要避免亏本,售价应该不低于成本,即$p\geq 5$元/千克。

24.1) 三角形OAB如下图所示。

image.png](/upload/image_hosting/edz1p9l9.png)2) 三角形OAB的底边OA的长度为4,高为1,所以面积为2平方单位。

3) 对于任意一点P(x,y),经过平移后得到的点为P1(x+4,y-3)。

根据平移的性质,三角形OAB平移后得到的三角形O1A1B1如下图所示:image.png](/upload/image_hosting/9g9z7qk3.png)因为平移是沿着横坐标和纵坐标分别移动,所以O1的坐标为(-4,0),A1的坐标为(-6,3),B1的坐标为(-2,2)。

25.1) 设A种纪念品每件x元,B种纪念品每件y元,则由题意可得以下两个方程组。

2x+3y=9505x+6y=800解得x=200,y=150,所以A种纪念品每件需要200元,B种纪念品每件需要150元。

2) 设A种纪念品购进a件,B种纪念品购进b件,则有以下不等式。

200a+150b≥7500200a+150b≤7650化简得4a+3b≥150,4a+3b≤153.因为a和b都是整数,所以可以列出a和b的取值范围:0≤a≤38,0≤b≤51所以共有39×52=2028种进货方案。

3) 在每种进货方案中,计算出销售A种纪念品和B种纪念品的件数,然后计算出获得的利润,最后比较得出最大利润。

这里不再赘述具体的计算过程。

26.1) ∠APB=∠PAC+∠PBD,因为l1∥l2,所以∠PAC=∠PBD,所以∠APB=2∠PAC或2∠PBD。

2) 不发生。

3) 当P在CD延长线上时,有∠APB=∠PAC+∠PBD,因为∠PAC=∠PBD,所以∠APB=2∠PAC或2∠PBD;当P在CD延长线的外侧时,有∠APB=180°-∠PAC-∠PBD,因为∠PAC=∠PBD,所以∠APB=180°-2∠PAC或180°-2∠PBD。

19.解:解不等式2x+1>-3,得x>-2;解不等式x-1≤8-2x,得x≤3.因此原不等式组的解集为-2<x≤3.在数轴上表示略。

20.解:因为DE∥CF,∠D=30°,所以∠DCF=∠D=30°(两直线平行,内错角相等)。

又因为∠BCF=∠DCF+∠BCD=30°+40°=70°。

又因为AB∥CF,所以∠B+∠BCF=180°(两直线平行,同旁内角互补),所以∠B=180°-70°=110°。

四。

解答题(每小题7分,共28分)21.解:(1)建立直角坐标系(2分);(2)市场(4,3),超市(2,-3)(2分);(3)图略(3分)。

22.评分标准:(1)3分,(2)、(3)各2分,满分7分。

(1)频数(国家个数)D:1,C:13.6,A:26,D:40≤x<50 2,B:1,AC:50≤x<60,B:,B:60≤x<70.(2)图②(或扇形统计图)能更好地说明一半以上国家的学生成绩在60≤x<70之间。

(3)图①(或频数分布直方图)能更好地说明学生成绩在70≤x<80的国家多于成绩在50≤x<60的国家。

23.解:设七年(1)班和七年(2)班分别有x人、y人参加“光盘行动”,根据题意,得到方程组:x+y+8=128,x-y=10.解得x=65,y=55.因此七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”。

24.评分标准:每个横线1分,满分7分。

1)∠BFD,两直线平行,内错角相等;∠BFD,两直线平行,同位角相等。

(2)对顶角相等,∠D,内错角相等,两直线平行。

五.解答题(每小题10分,共20分)25.解:(1)设XXX生产1件A产品需要xmin,生产1件B产品需要ymin。

根据题意得到方程组:x+y=35,2y=85,3x+2y=110.解得x=15,y=20.因此XXX生产1件A产品需要15min,生产1件B产品需要20min。

(2)总成本=1556元+1978.4元=3534.4元。

解题过程:首先,根据题意列出不等式组:x+2(100-x)<=1624x+3(100-x)<=340化XXX:x<=-38x<=40x是整数,因此38<=x<=40根据不等式组解得x的取值范围为38~40.接着,根据不同的x值,列出三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个;方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个。

最后,根据做横式纸盒的数量m,列出长方形纸板的需求量公式:a=3m+4(162-2m)化XXX:290<3m+4(162-2m)<306解得68.4<m<71.6根据题意列出不等式组:x+2(100-x)<=1624x+3(100-x)<=340简化后得到:x<=-38x<=40由此可以得到x的取值范围为38~40.根据不同的x值,可以列出三种生产方案:方案一:制作38个竖式纸盒和62个横式纸盒;方案二:制作39个竖式纸盒和61个横式纸盒;方案三:制作40个竖式纸盒和60个横式纸盒。

相关文档
最新文档