随机过程实验报告

随机过程实验报告
随机过程实验报告

随机过程实验报告

一、实验问题

两赌徒模型

对于上述模型现在假定赌徒甲的对手赌徒乙有N-i的初始财富,N为两个赌徒的总财富。则赌徒甲破产的概率有多大?模拟之。

二、问题分析

该问题实质上为带有两个吸壁的随机游动,我们可以仍可把它看作数学中的一个一维随机游动问题。其马尔可夫链状态空间为{0,1,2,…,N},N为赌徒甲、乙的总财富。类似于赌徒与游戏机模型,我们也可以把财富抽象地看成是一个质点。可知求赌徒甲破产的概率转化为现在的问题就是求质点从i点出发到达0状态先于到达N状态的概率。这里较赌徒与游戏机模型中多出一个条件,即:赌徒甲先于赌徒乙到达0状态。我们不难得到这一模型的解:

三、问题解决

1、先讨论p=q的随机游动情况

对于简单的随机游动,如果从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p,则由计算机可以模拟此情形。

这只是许多模拟结果中的一种。

现在我们假设,有A、B两个赌徒,他们共同用于赌博的财富M=100(元),A、B输赢的概率(即赌博的技巧相同)时,他们破产的概率。假设,共同的财富中A、B分别投入的资金如下表:

运算结果如下:

由上图可知,当赌徒甲、乙输赢的概率相等时,其中一人破产的概率与对方所拥有的财富成正比关系。

这样我们可以得出结论:在两人的赌博游戏中,如果赌徒甲、乙的赌博技术差不多即输赢概率相当的话,那么谁要想最终获胜的最好方法就是多带赌本。

2、下面讨论p!=q时随机游动情况

我们不妨将之具体为p=0.4,q=0.6。用计算机模拟上述数据。

可得图如下:

由上图可知,在每次输赢都为1元时,就算甲90元、乙10元,甲也几乎不可能赢。

如果我们把每次下的赌注加大到5元,修改程序三,模拟之,又可得图如下:

由上图我们可以更清晰地看出:在两人的赌博游戏中,如果赌徒甲的赌博技术比乙的赌博技术差的话,那么甲要想最终获胜就要带比乙多很多的赌本。

四、结果拓展

现实中的赌博还可能有三人、四人甚至更多的人一起进行。下面我们简单地讨论当赌徒输赢概率相等时的二维随机游动。

在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。

我们用计算机模拟出四条用不同颜色画的同一随机游动的轨道。

同一维随机游动的折线图,程序每次运行所得的轨道图是不一样的。五、程序代码

(I)

p=0.5;

y=[0 cumsum(2.*(rand(1,100-1)<=p)-1)]; % n步。plot([0:100-1],y);

(II)

n=100;p0=0.5;

z=zeros(1,9);

A=[10 20 30 40 50 60 70 80 90];

B=[90 80 70 60 50 40 30 20 10];

for i=1:9

w=0;

for j=1:n

s1=A(1,i);s2=B(1,i);

k=0;

while ((s1>0)&(s2>0))

t=rand(1,1);

if t

s1=s1+1;

s2=s2-1;

s1=s1-1;

s2=s2+1;

end

k=k+1;

end

if (s1==0)

w=w+1;

end

end

p=w/n;

z(1,i)=p;

end

z

x=[1 2 3 4 5 6 7 8 9];

bar(x,z),axis([0 10 0 1])(III)

n=100;p0=0.4;

z=zeros(1,9);

A=[10 20 30 40 50 60 70 80 90]; B=[90 80 70 60 50 40 30 20 10]; for i=1:9

w=0;

for j=1:n

s1=A(1,i);s2=B(1,i);

k=0;

while ((s1>0)&(s2>0))

t=rand(1,1);

if t

s1=s1+5;

s2=s2-5;

else

s1=s1-5;

s2=s2+5;

end

k=k+1;

end

if (s1==0)

w=w+1;

end

end

p=w/n;

z(1,i)=p;

z

x=[1 2 3 4 5 6 7 8 9];

bar(x,z),axis([0 10 0 1])(IV)

n=10000;

colorstr=['b''r''g''y'];

for k=1:4

z=2.*(rand(2,n)<0.5)-1;

x=[zeros(1,2); cumsum(z')]; col=colorstr(k);

plot(x(:,1),x(:,2),col); hold on

end

grid

随机过程作业

第三章 随机过程 A 简答题: 3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。 3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。 3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系 3-4 高斯过程主要有哪些性质 3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。 3-7 窄带高斯过程的同相分量和正交分量的统计特性如何 3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布 3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。 3-10 写出带限高斯白噪声功率的计算式。 B 计算题: 一、补充习题 3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。 ①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。 ②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。 3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0 ()2 N P ω= 双,通过下图()a 所示的相干解调器。图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。 ②给出0()n t 的噪声自相关函数及其噪声功率值。 3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2 n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()y t ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。假设()c n t 及()s n t 的带宽等于低通滤波器的通频带。 求()u t 和()v t 的平均功率之比。

通信原理作业答案1_2(部分)

通信原理作业答案

第1题 若对某一信号用DSB 进行传输,设加至接收机的调制信号()m t 之功率谱密度为 2()0m m m m m f n f f f P f f f ?≤? =??>? 试求: (1) 接收机的输入信号功率; (2) 接收机的输出信号功率; (3) 若叠加于DSB 信号的白噪声具有双边功率谱密度为 2 n ,设解调器的输出端接有截止频率为m f 的理想低通滤波器,那么,输出信噪功率比是多少? 解: (1) 设DSB 已调信号()()cos DSB c s t m t t ω=,则接收机的输入信号功率为 22 2 22111()()cos ()(1cos 2)()()d 2222 m m i DSB c n f S s t m t t m t ct m t Pm f f ωω+∞ -∞===+===? (2) 相干解调,乘以同频同相的载波信号后,信号为 21 ()cos ()cos ()(1cos )2 DSB c c c s t t m t t m t t ωωω== + 经过低通滤波器后,输出为 1 ()()2 o s t m t = 输出功率为 211 ()428 m m o i n f S m t S === (3) 调制信号频谱在[,]m m f f -上有值,其他频率为零,已调信号在[,]c m c m f f f f ±-±+上有值,其他频率为零,所以解调器前端带通滤波器的通带为[,]c m c m f f f f ±-±+输入噪声功率为 02222 i m m n N f n f = = 经过低通滤波器后白噪声为窄代白噪声,可表示为 ()()sin ()cos s c c c n t n t t n t t ωω=+ 其中(),()s c N t N t 为独立同分布随机过程,均值为零,方差为σ。所以

随机过程作业和答案第三章

第三章 马尔科夫过程 1、将一颗筛子扔多次。记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。 解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。 故X(n)是马尔科夫链。 E={1,2,3,4,5,6} ,其一步转移概率为: P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为 2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。 其一步转移概率为 其中 2、一个质点在直线上做随机游动,一步向右的概率为p , (0

计算机上机实验内容及实验报告要求(完整版)

报告编号:YT-FS-1915-76 计算机上机实验内容及实验报告要求(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

计算机上机实验内容及实验报告要 求(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、《软件技术基础》上机实验内容 1.顺序表的建立、插入、删除。 2.带头结点的单链表的建立(用尾插法)、插入、删除。 二、提交到个人10m硬盘空间的内容及截止时间 1.分别建立二个文件夹,取名为顺序表和单链表。 2.在这二个文件夹中,分别存放上述二个实验的相关文件。每个文件夹中应有三个文件(.c文件、.obj 文件和.exe文件)。 3.截止时间:12月28日(18周周日)晚上关机时为止,届时服务器将关闭。 三、实验报告要求及上交时间(用a4纸打印)

1.格式: 《计算机软件技术基础》上机实验报告 用户名se××××学号姓名学院 ①实验名称: ②实验目的: ③算法描述(可用文字描述,也可用流程图): ④源代码:(.c的文件) ⑤用户屏幕(即程序运行时出现在机器上的画面): 2.对c文件的要求: 程序应具有以下特点:a 可读性:有注释。 b 交互性:有输入提示。 c 结构化程序设计风格:分层缩进、隔行书写。 3.上交时间:12月26日下午1点-6点,工程设计中心三楼教学组。请注意:过时不候哟! 四、实验报告内容 0.顺序表的插入。 1.顺序表的删除。

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

随机过程上机实验报告讲解.pdf

2015-2016第一学期随机过程第二次上机实验报告 实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方 法,加深对随机过程的理解。 上机内容: (1)模拟随机游走。 (2)模拟Brown运动的样本轨道。 (3)模拟Markov过程。 实验步骤: (1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 ①一维情形 %一维简单随机游走 %“从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p” n=50; p=0.5; y=[0 cumsum(2.*(rand(1,n-1)<=p)-1)]; % n步。 plot([0:n-1],y); %画出折线图如下。

%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。n=50; x=rand(1,n)-1/2; y=[0 (cumsum(x)-1)]; plot([0:n],y);

②二维情形 %在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。例 %子程序是用四种不同颜色画了同一随机游动的四条轨 道。 n=100000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(2,n)<0.5)-1; x=[zeros(1,2); cumsum(z')]; col=colorstr(k); plot(x(:,1),x(:,2),col);

hold on end grid ③%三维随机游走ranwalk3d p=0.5; n=10000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(3,n)<=p)-1; x=[zeros(1,3); cumsum(z')]; col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3),col);

作业答案

作业1 1.什么是白噪声?白噪声有何特点? 答:白噪声是均值为0,自相关函数为冲击响应的随机过程。 白噪声的功率谱为常数。 2. 一个离散时间的随机信号由两个正弦波信号叠加而成,即()x t =1sin()A t ω+ 2cos()B t ω,i ω=2i f π,i =1,2,其中幅值A 和B 为独立的高斯随机变量,具有以下概率密度 221/(2)()a A f a σ-= ,222/(2)()b B f a σ-= 求离散时间信号()x t 为严格平稳随机信号的条件。 解:由于()x t 为两个正弦信号的线性叠加,因此()x t 也是正弦信号。又因为 {()}E x t =1{sin()}E A t ω+ 2{cos()}E B t ω=0 {()}D x t =1{sin()}D A t ω+ 2{cos()}D B t ω=2211sin ()t σω+2 222cos ()t σω 所以,()x t 的概率密度函数可以表示为 2222 21122/2[sin ()cos ()] (,)x t t f x t σωσω-+= 若1σ=2σ=σ,1ω=2ω,则{()}D x t =2 σ 此时的()x t 的概率密度函数可以表示为 22/2(,)x f x t σ-= 因此(,)f x t 将与t 无关,因此()x t 为严格平稳的条件为1σ=2σ,1ω=2ω 作业2 1. 在一个3发射4接收的MIMO 无线通信系统中,系统在白噪声的环境下采用训练序列估计信道00h ,10h 和20h ,其中ij h 表示用户i 的数据发射到天线j 时经过的单径信道,训练序列的块长为16,请用最小二乘估计方法估计这三个信道。 解:信道0H =[00h , 10h , 20h ]T , 第0个用户的发射数据为0X =[0,0x , 0,1x , …0,15x ]T 第1个用户的发射数据为1X =[1,0x , 1,1x , …1,15x ]T 第2个用户的发射数据为2X =[2,0x , 2,1x , …2,15x ]T 则我们在第0个天线处接收到的数据为 0Y =0XH +N 其中X =[0X , 1X , 2X ], N 为白噪声向量 因此最后的0H 的最小二乘估计表达式为 0?H =0+X Y 作业3 1.若一条件概率密度函数为高斯分布,则采用该分布函数所获得的绝对损失型、二次型和

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

自适应控制大作业

自适应控制结课作业 班级: 组员: 2016年1月

目录 1 遗忘因子递推最小二乘法 (1) 1.1最小二乘理论 (1) 1.2带遗忘因子的递推最小二乘法 (1) 1.2.1白噪声与白噪声序列 (1) 1.2.2遗忘因子递推最小二乘法 (2) 2.2仿真实例 (3) 2 广义最小方差自校正控制 (5) 2.1广义最小方差自校正控制 (5) 2.2仿真实例 (6) 3 参考模型自适应控制 (9) 3.1参考模型自适应控制 (9) 3.2仿真实例 (12) 3.2.1数值积分 (12) 3.2.2仿真结果 (12) 参考文献 (16)

1 遗忘因子递推最小二乘法 1.1最小二乘理论 最小二乘最早的想法是高斯在1795年预测行星和彗星运动轨道时提出来的,“未知量的最大可能的值是这样一个数值,它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小”。这一估计方法原理简单,不需要随机变量的任何统计特性,目前已经成为动态系统辨识的主要手段。最小二乘辨识方法使其能得到一个在最小方差意义上与实验数据最好拟合的数学模型。由最小二乘法获得的估计在一定条件下有最佳的统计特性,即统计结果是无偏的、一致的和有效的。 1.2带遗忘因子的递推最小二乘法 1.2.1白噪声与白噪声序列 系统辨识中所用到的数据通常含有噪声。从工程实际出发,这种噪声往往可以视为具有理想谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。白噪声的数学描述如下:如果随机过程()t ξ均值为0,自相关函数为2()σδτ,即 2()()R ξτσδτ= 式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即 ,0 ()0,0τδττ∞=?=? ≠?,且-()1d δττ∞ ∞ =? 则称该随机过程为白噪声,其离散形式是白噪声序列。 如果随机序列{}()V k 均值为零,且两两互不相关,即对应的相关函数为: 2,0 ()[()()]0,0v n R n E v k v k n n σ?==+=?=? 则这种随机序列称为白噪声序列。其谱密度函数为常数2(2)σπ。白噪声序列的功率在π-到π的全频段内均匀分布。 建立系统的数学模型时,如果模型结构正确,则模型参数辨识的精度将直接依赖于输入信号,因此合理选用辨识输入信号是保证能否获得理想的辨识结果的

实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应 一、实验目的 通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。 二、实验平台 MATLAB R2014a 三、实验要求 (1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布 序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 (2)设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 (3)随机过程x(n)的理论上的功率谱函数为 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。 (4)根据步骤二产生的数据序列x(n)计算相关函数的估计值 与理论值1.1296、-0.666、0.85、0、0、0的差异。 (5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。 (6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率, 观察二者是否基本一致。

四、实验代码及结果 A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 代码实现: 波形图: 分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。 B、设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 代码实现:

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个 任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1)

与无关 (2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立

为多少? 3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。以小时为单位。 则((1))30E N =。 40 30 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= --

C程序设计上机实验报告((完整版))

C语言程序设计上机实验报告 学院:机械工程学院 班级:机自161213 姓名:刘昊 学号:20162181310 实验时间:2017 年3 月6 号 任课老师:张锐

C语言程序设计上机实验报告 实验一 一、实验名称: C 程序的运行环境和运行C程序的方法 二、实验目的:了解在 程序 C 编译系统上如何编辑、编译、连接和运行一个 C 三、实验内容: (1). (2). (3). 输入并运行一个简单的C程序。 设计程序,对给定的两个数求和。 设计程序,对给定的两个数进行比较,然后输出其中较大的数。 四、源程序代码: 代码1: 运行结果1:

程序分析1: 该程序用来判断所输入的整数是否为一个素数,如果一个数能被除了 1 和它本身整除,还能被其它数整除,那么它就不是一个素数,因此,用for 循环来进行整除过程的简写。 代码2: 运行结果2:

程序分析2: 简单的使用printf() 和scanf() 函数进行简单的数据运算。代码3: 运行结果3:

程序分析3: 使用if 语句进行判断。 五.实验总结 C语言程序设计上机实验报告 实验二 一、实验名称:顺序结构程序设计 二、实验目的:正确使用常用运算符(算术运算符、赋值运算符)的用法, 熟练掌握算术运算符及其表达式,逻辑运算符和逻辑表达式。 三、实验内容: (1). 编写程序,实现小写字母转大写。

(2). 编写程序,实现输入两个不同类型数据后,经过适当的运算(加、减、乘、除)后输出。 (3). 编写程序,计算三角形面积、立方体的体积和表面积、圆的面积和周长。 (4). 编写程序,实现单字符getchar 和putchar 输入输出。 (5). 编写程序,实现十进制、八进制、十六进制不同数制的输出。 四、源程序代码 代码1: 运行结果1: 程序分析1:

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

最新现代流动测试技术大作业

现代流动测试技术 大作业 姓名: 学号: 班级: 电话: 时间:2016

第一次作业 1)孔板流量计测量的基本原理是什么?对于液体、气体和蒸汽流动,如何布置测点? 基本原理:充满管道的流体流经管道的节流装置时,在节流件附近造成局部收缩,流速增加,在上下游两侧产生静压差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。公式如下: 4v q d π α== 其中: C -流出系数 无量纲 d -工作条件下节流件的节流孔或喉部直径 D -工作条件下上游管道内径 qv -体积流量 m3/s β-直径比d/D 无量纲 ρ—流体的密度Kg/m3 测量液体时,测点应布置在中下部,应为液体未必充满全管,因此不可以布置的太靠上。 测量气体时,测点应布置在管道的中上部,以防止气体中密度较大的颗粒或者杂质对测量产生干扰。 测量水蒸气时,测点应该布置在中下部。 2)简述红外测温仪的使用方法、应用领域、优缺点和技术发展趋势。 使用方法:红外测温仪只能测量表面温度,无法测量内部温度;安装地点尽量避免有强磁场的地方;现场环境温度高时,一定要加保护套,并保证水源的供应;现场灰尘、水汽较大时,应有洁净的气源进行吹扫,保证镜头的洁净;红外探头前不应有障碍物,注意环境条件:蒸汽、尘土、烟雾等,它阻挡仪器的光学系统而影响精确测温;信号传输线一定要用屏蔽电缆。 应用领域:首先,在危险性大、无法接触的环境和场合下,红外测温仪可以作为首选,比如: 1)食品领域:烧面管理及贮存温度 2)电气领域:检查有故障的变压器,电气面板和接头 3)汽车工业领域:诊断气缸和加热/冷却系统 4)HVAC 领域:监视空气分层,供/回记录,炉体性能。 5)其他领域:许多工程,基地和改造应用等领域均有使用。 优点:可测运动、旋转的物体;直接测量物料的温度;可透过测量窗口进行测量;远距离测量;维护量小。 缺点:对测量周围的环境要求较高,避免强磁场,探头前不应有障碍物,信号传输线要用屏蔽电缆,当环境很恶劣时红外探头应进行保护。 发展趋势:红外热像仪,可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。便携化,小型化也是其发展趋势。 3)简述LDV 和热线的测速原理及使用方法。

随机实验报告

随机信号实验报告 课程:随机信号 实验题目:随机过程的模拟与特征估计 学院: 学生名称:

实验目的: 1.学会利用MATLAB模拟产生各类随即序列。 2.熟悉和掌握随机信号数字特征估计的基本方法。 实验内容: 1.模拟产生各种随即序列,并画出信号和波形。 (1)白噪声(高斯分布,正弦分布)。 (2)随相正弦波。 (3)白噪声中的多个正弦分布。 (4)二元随机信号。 (5)自然信号:语音,图形(选做)。 2.随机信号数字特征的估计 (1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。 (2)各估计量性能分析(选做) 实验仪器: PC机一台 MATLAB软件 实验原理:

随机变量常用到的数字特征是数字期望值、方差、自相关函数等。相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。 1.均值:m x(t)=E[X(t)]=;式中,p(x,t)是X(t)的 一维概率密度。m x(t)是随机过程X(t)的所有样本函数在 时刻t的函数值的均值。在matlab中用mea()函数求均值。 2.方差:(t)=D[X(t)]=E[];(t)是t的确定 函数,它描述了随机过程诸样本函数围绕数学期望m x(t) 的分散程度。若X(t)表示噪声电压,则方差(t)则 表示瞬时交流功率的统计平均值。在matlab中用var()函 数求均值。 3.自相关函数:Rx(t1,t2)=E[X(t1)X(t2)];自相关函数就是用来描 述随机过程任意两个不同时刻状态之间相关性的重要数 字特征。在matlab中用xcorr()来求自相关函数。 4.在matlab中可用函数rand、randn、normr、random即可生成 满足各种需要的近似的独立随机序列。 实验步骤: (一)大体实验步骤 (1)利用MATLAB编写程序。 (2)调试程序。

随机过程作业

第三章随机过程作业 1.设A、B是独立同分布的随机变量,求随机过程的 均值函数、自相关函数和协方差函数。 2.设是独立增量过程,且,方差函数为。记随机过程 ,、为常数,。 (1)证明是独立增量随机过程; (2)求的方差函数和协方差函数。 3.设随机过程,其中是相互独立的随机变量且均值为0、 方差为1,求的协方差函数。 4.设U是随机变量,随机过程. (1) 是严平稳过程吗为什么 (2) 如果,证明:的自相关函数是常数。 5.设随机过程,其中U与V独立同分布 。 (1) 是平稳过程吗为什么 (2) 是严平稳过程吗为什么 6.设随机变量的分布密度为, 令, 试求的一维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令 试求:的一维分布函数 8.设随机过程, 其中是相互独立的随 机变量 , 且, 试求的均值与协方差函数 . 9.设其中为常数 , 随机变量 , 令 , 试求 :和 。 10.设有随机过程,并设x是一实数,定义另一个随机过程 试证的均值和自相关函数分别为随机过程的一维和二维分布函数。11.设有随机过程,,其中为均匀分布 于间的随机变量,即试证: (1)自相关函数 (2)协相关函数 12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作 一个单位距离的随机游动。若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即

,且各次游动是相互统计独立的。经过n 次游动,质点所处的位置为。 (1)的均值; (2)求的相关函数和自协方差函数和。 13.设,其中服从上的均匀分布。试证 : 是宽平稳序列。 14.设其中服从上的均匀分布. 试 证 :既不是宽平稳也不是严平稳过程 . 15.设随机过程和都不是平稳的,且 其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证 是平稳过程。 16.设是均值为零的平稳随机过程。试 证 : 仍是一平稳随机过程 , 其中为复常数,为整数。 17.若平稳过程满足条件,则称是周 期为的平稳过程。试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。

随机过程第一次大作业(THU)

基于主成分分析的人脸识别 目录 基于主成分分析的人脸识别 (1) 1 引言 (2) 1.1 PCA简介 (2) 一、主成分的一般定义 (3) 二、主成分的性质 (3) 三、主成分的数目的选取 (4) 1.2 人脸识别概述 (4) 2 基本理论及方法 (5) 3 人脸识别的具体实现 (6) 3.1 读入图像数据库 (6) 3.2 计算特征空间 (7) 3.3 人脸识别 (9) 4 对实验算法的综合评价 (11) 5 结论 (11) 6、参考文献 (11) 7、附录 (12) 1、代码说明: (12) 2、实验感想 (12) 摘要:本文利用基于主成分分析(Principal ComponentAnalysis,PCA)进行人脸识别。该过程主要分为三个阶段,第一个阶段利用训练样本集构建特征脸空间;第二个阶段是训练阶段,主要是将训练图像投影到特征脸子空间上;第三个阶段是识别阶段,将测试样本集投影到特征脸子空间,然后与投影后的训练图像相比较,距离最小的为识别结果。本方法具有简单、快速和易行等特点,能从整体上反映人脸图像的灰度相关性具有一定的实用价值。 关键词:人脸识别;PCA;识别方式

1 引言 PCA 是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合,根据矩阵的行数与列数的区别于差异,PCA 又可以划分为D —PCA (Distributed PCA [1]和C —PCA (Collective PCA )[2]。 1.1 PCA 简介 PCA 方法,也被叫做特征脸方法(eigenfaces),是一种基于整幅人脸图像的识别算法,被广泛用于降维,在人脸识别领域也表现突出。一个N ×N 的二维脸部图片可以看成是N 的一个一维向量,一张112×92的图片可以看成是一个10,304维的向量,同时也可以看成是一个10,304维空间中一点。图片映射到这个巨大的空间后,由于人脸的构造相对来说比较接近,因此,可以用一个相应的低维子空间来表示。我们把这个子空间叫做“脸空间”。PCA 的主要思想就是找到能够最好地说明图片在图片空间中的分布情况的那些向量。这些向量能够定义“脸空间”,每个向量的长度为N ,描述一张N ×N 的图片,并且是原始脸部图片的一个线性组合。对于一副M*N 的人脸图像,将其每列相连构成一个大小为D=M*N 维的列向量。D 就是人脸图像的维数,也即是图像空间的维数。设n 是训练样本的数目;X j 表示第j 幅人脸图像形成的人脸向量,则所需样本的协方差矩阵为: S r =1()()N T j i j x u x u =--∑ (1) 其中u 为训练样本的平均图像向量: u =1 1n j j x n =∑(2) 令A=[x 1-u x 2-u ……x n -u],则有S r =AA T ,其维数为D*D 。

随机过程作业

南昌航空大学硕士研究生2009 / 2010学年第一学期考试卷 1. 求随机相位正弦波()cos()X t a t ωθ=+,(,)t ∈-∞+∞,的均值函数,方差函数和自相关函数。其中θ是在(-л,л)内均匀分布的随机变量 2.()X t 是泊松过程,求出泊松过程的均值函数(),X m t 方差函数()X D t ,相关函数(,)X R s t 协方差函数(,)X B s t . 3.设顾客到达商场的速率为2人/分钟,求: (i)在10分钟内顾客达到数的均值; (ii) 在10分钟内顾客达到数的方差; (iii)在10分钟内至少一个顾客达到的概率; (iv)在10分钟内到达顾客不超过3人的概率。(12分)

4.利用重复抛掷硬币的实验定义一个随机过程cos ,(){ 2,, t X t t π=出现正面,出现正面, (,)t ∈-∞+∞ 求:(i)()X t 的一维分布函数1(,),(,1);2F x F x (ii)()X t 的二维分布函数121(,,1);2F x x (iii)()X t 的均值函数(),(1),X X m t m 方差函数(),(1)X X D t D .(16分) 5.设移民到某地区的居民户数是一泊松过程,平均每周有2户定居,如果每户的人口数是随机变量,一户4口人的概率是1/6,一户3口人的概率是1/3,一户2口人的概率是1/3,一户1口人的概率是1/6,并且

每户的人口数是相互独立的,求2周内移民到该地区的人口数的期望和方 6.设{,1}n X n ≥为有限齐次马尔可夫链,其初始分布和概率转移矩阵为 01 {},1,2,3,4.4 i p P X i i ==== 11114444111144441111444411114444?? ? ? ? ? ? ? ? ? ??? , 求(i)201{4|1,14}P X X X ==<<,(ii) 21{4|14}P X X =<<(12分) 7.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。又设今天下雨明天也下雨的概率为0.7,今天无雨明天有雨的概率为0.4,规定有雨的天气状态为0,无雨的天气状态为1.求周一下雨周四也下雨的概率。 8.设{1,2,3,4}I =,其一步转移概率矩阵为:

随机过程2016作业及答案3

1.Players A and B take turns in answering trivia questions, starting with player A answering the ?rst question. Each time A answers a question, she has probability p 1 of getting it right. Each time B plays, he has probability p 2 of getting it right. (a)If A answers m questions, what is the PMF of the number of questions she gets right? The r.v.is Bin(m,p 1),so the PMF is m k p k 1(1 p 1)m k for k 2{0,1,...,m }.(b)If A answers m times and B answers n times,what is the PMF of the total number of questions they get right (you can leave your answer as a sum)?Describe exactly when/whether this is a Binomial distribution. Let T be the total number of questions they get right.To get a total of k questions right,it must be that A got 0and B got k ,or A got 1and B got k 1,etc.These are disjoint events so the PMF is P (T =k )=k X j =0?m j ◆p j 1(1 p 1)m j ?n k j ◆p k j 2(1 p 2)n (k j )for k 2{0,1,...,m +n },with the usual convention that n k is 0for k >n . This is the Bin(m +n,p )distribution if p 1=p 2=p ,as shown in class (using the story for the Binomial,or using Vandermonde’s identity).For p 1=p 2,it’s not a Binomial distribution,since the trials have di ?erent probabilities of success;having some trials with one probability of success and other trials with another probability of success isn’t equivalent to having trials with some “e ?ective”probability of success.(c)Suppose that the ?rst player to answer correctly wins the game (with no prede-termined maximum number of questions that can be asked).Find the probability that A wins the game. Let r =P (A wins).Conditioning on the results of the ?rst question for each player,we have r =p 1+(1 p 1)p 2·0+(1 p 1)(1 p 2)r, which gives r =p 11 (1 p 1)(1 p 2)=p 1p 1+p 2 p 1p 2 .1 SI 241 Probability & Stochastic Processes, Fall 2016 Homework 3 Solutions 随机过程2016 作业及答案

相关文档
最新文档