装校机器人机械手的结构优化设计和可靠性分析

装校机器人机械手的结构优化设计和可靠性分析
装校机器人机械手的结构优化设计和可靠性分析

机械优化设计大作业2011 - 副本

宁波工程学院机械工程学院 机械优化设计大作业 班级 姓名 学号 教师

机械优化设计大作业 1.题目 行星减速器结构优化设计 NGW型行星减速器应用非常广泛。 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高; (2)传动效率高,工作高; (3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 2.已知条件 传动比u=4.64,输入扭矩T=1175.4N.m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02 ?u。 .0 ≤ 弹性影响系数Z E=189.8MPa1/2;载荷系数k=1.05; 齿轮接触疲劳强度极限[σ]H=1250MPa; 齿轮弯曲疲劳强度极限[σ]F=1000MPa; =2.97;应力校正系数Y Sa=1.52; 齿轮的齿形系数Y Fa 小齿轮齿数z取值范围17--25;模数m取值范围2—6。 注: 优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T

3.数学模型的建立 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约 束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z 1ˉ ̄ 太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d 1--太阳轮1的分度圆直径,mm;d 2 --行星轮2的分度圆 直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函数 则为: F(x)=0.19635m2z 1 2b[4+(u-2)2c][1] 式中u--减速器传动比;c--行星轮个数 由已知条件c=3,u=4.64,因此目标函数可简化为: F(x)=4.891x 32x 1 2x 2

机械手,夹持器

2.2.1.1夹紧力计算 手指加在工件上的夹紧力是设计手部的主要依据,必须对其大小、方向、作用点进行分析、计算。一般来说,加紧力必须克服工件的重力所产生的静载荷(惯性力或惯性力矩)以使工件保持可靠的加紧状态。 手指对工件的夹紧力可按下列公式计算: 123N F K K K G ≥ 2-1 式中: 1K —安全系数,由机械手的工艺及设计要求确定,通常取1.2——2.0,取1.5; 2K —工件情况系数,主要考虑惯性力的影响, 计算最大加速度,得出工作情况 系数2K , 20.02/1 11 1.0029.8 a K g =+=+=,a 为机器人搬运工件过程的加速度或减速度的绝对值(m/s ); 3K —方位系数,根据手指与工件形状以及手指与工件位置不同进行选定, 手指与工件位置:手指水平放置 工件垂直放置; 手指与工件形状:V 型指端夹持圆柱型工件, 30.5sin K f θ = ,f 为摩擦系数,θ为V 型手指半角,此处粗略计算34K ≈,如图2.1 图2.1 G —被抓取工件的重量 求得夹紧力 N F , 123 1.5 1.002439.8176.75N F K K K Mg N ==????=,取整为177N 。 2.2.1.2驱动力力计算 根据驱动力和夹紧力之间的关系式:

2sin N Fc F b a = 式中: c —滚子至销轴之间的距离; b —爪至销轴之间的距离; a —楔块的倾斜角 可得2sin 177286sin16195.1534 N F b a F N c ???===o ,得出F 为理论计 算值,实际采取的液压缸驱动力' F 要大于理论计算值,考虑手爪的机械效率η,一般取0.8~0.9,此处取0.88,则: '195.15 221.7620.88 F F N η = = = ,取'500F N = 2.2.1.3液压缸驱动力计算 设计方案中压缩弹簧使爪牙张开,故为常开式夹紧装置,液压缸为单作用缸,提供推力: 2= 4 F D p π 推 式中 D ——活塞直径 d ——活塞杆直径 p ——驱动压力, ' F F =推,已知液压缸驱动力' F ,且'50010F N KN =< 由于' 10F KN <,故选工作压力P=1MPa 据公式计算可得液压缸内径: 25.231D mm === 根据液压设计手册,见表2.1,圆整后取D=32mm 。 表2.1 液压缸的内径系列(JB826-66)(mm )

立体车库的内部机械结构的优化设计

目录 摘要........................................................................Abstract..................................................................... 第一章绪论.............................................................. 1.1 课题的来源及研究的目的和意义...................................... 1.2 机械式停车库.................................................... 1.3 机械优化设计相关知识.............................................. 1.3.1 优化设计概述.................................................. 1.3.2 约束优化方法................................................ 第二章立体车库总体结构的研究............................................. 2.1 机械立体车库的总体结构形式...................................... 2.2 立体车库的总体结构的选择与设计....................................... 2.3 立体车库的存取车方式的总体设计.................................... 2.4 立体车库主体建筑结构的总体设计................................. 第三章固定叉梳的优化设计................................................ 3.1 横移叉梳和固定叉梳结构形式的设计................................... 3.2 固定叉梳的优化设计................................................. 第四章立体车库钢结构骨架的优化设计.................................... 4.1 立体停车库钢结构骨架基本结构的设计................................... 4.2 立体停车库钢结构骨架的模型化..................................... 4.3 钢结构骨架的受力情况............................. 4.4 进行受力分析的基本假设................................... 4.5 钢结构骨架的受力分析............................................. 4.6 钢结构骨架的变形分析........................................... 4.7 结构优化设计模型的建立....................................... 4.8 优化结果及分析........................................................结论.................................................................... 致谢.................................................................... 参考文献(References)................................................

机械结构优化设计作业

甘蔗收获机机械台架虚拟样机 结构优化设计 摘要:结构优化设计就是寻求满足约束条件下的最佳构建尺寸、结构形式以及材料配置方式。利用有限元方法对虚拟样机台架结构进行分析,并采用一阶方法对台架进行优化,预估出经验设计结构上的最危险点,并对结构进行改造和优化,可以保证结构综合应力在材料的许用应力范围内,对结构轻量化,合理分配材料,大大缩短研制周期,降低设计成本,为虚拟样机的创新设计可以提供一种新的设计及优化设计方法。 关键词:甘蔗收获机;优化设计;模态分析;一阶方法 引言:甘蔗作为重要经济作物在全世界范围内广泛种植,中国的种植面积在世界位居第三位,成为我国制糖,轻工,化工和能源的重要原料,对整个国民经济的发展都有重要的地位和作用。甘蔗收获包括切梢、切割、清理和装运等工序,为甘蔗生产过程中劳动强度最大,费工费时,成本最高的一个环节。在我国,甘蔗成产机械化程度低,随着人工收获成本的逐年增加,我国糖业面临着巨大的竞争压力,实现甘蔗收获机械化的要求愈加迫切。随着设计理论与设计理念的发展,对虚拟样机进行优化设计能改进凭经验设计出现的缺陷以及预估结构或机构的最危险点,从而对其进行改造和优化,对设计结果及时进行审查,并及时反馈给设计人员,实现了设计过程中的快速反馈,按照优化后的设计方案进行物理样机研制,可以避开预估的缺陷和危险点,从而使结构更趋于合理,降低了制造成本,大大缩短了设计和产品研制周期,还可以保证将错误消灭在萌芽状态。 虚拟样机技术[ 1]为这类创新产品的开发提供了强有力的手段。甘蔗收割机在工作过程中, 要经历扶蔗、砍蔗、输送、断尾以及剥叶等动作, 承受的都是动态载荷, 而结构的固有频率和振型是承受动态载荷结构设计中的重要参数, 因此本文采用通用有限元分析软件ANSYS对甘蔗收割机机架结构部件进行模态分析, 根据机架结构的低阶模态和振型, 确定对机架结构是进行动力刚度优化还是静力强度优化。 1.机架结构模型建立

机械手夹持器设计说明书

本科毕业设计(论文) 题目:机械手夹持器的设计 ________________________ 英文题目:The design of mec hanical hand gripper 学院:________________________ 专业:________________________ 姓名:________________________ 学号:________________________ 指导教师:________________________ 2015年11月12日

毕业设计(论文)独创性声明 该毕业设计(论文)是我个人在导师指导下进行的研究工作及取得的研究成果。文中除了特别加以标注和致谢的地方外,不包含其他人或其他机构已经发表或撰写过的研究成果。其他同志对本研究的启发和所做的贡献均已在论文中作了明确的声明并表示了谢意。 作者签名: 日期:年月日 毕业设计(论文)使用授权声明 本人完全了解XX学院有关保留、使用毕业设计(论文)的规定,即:学校有权保留送交毕业设计(论文)的复印件,允许被查阅和借阅;学校可以公布全部或部分内容,可以采用影印、缩印或其他复制手段保存该毕业设计(论文)。保密的毕业设计(论文)在解密后遵守此规定。 作者签名:导师签名:日期:年月日

摘要 本次的设计来源于机械手夹持器设备更新换代基础之上,通过设计出机械手夹持器,从而来满足当今机械手组成部件之一的机械手夹持器各方面性能不足的缺陷。本毕业设计课题来自于企业的生产实际,通过设计出新型机械手夹持器,从而来掌握机械手夹持器的整个设计生产流程,培养工程意识。 我国生产的机械手夹持器从仿制开始起步,近期产品的质量较早期有所提高。但受国产配套件质量及设计水平等的影响,我国目前生产的机械手夹持器的总体水平与进口产品及港口用户的要求仍有较大差距,机械手夹持器的生产也是如此,为满足市场需求,开发出一种新型的机械手夹持器势在必行! 本文运用大学所学的知识,提出了机械手夹持器的结构组成、工作原理以及主要零部件的设计中所必须的理论计算和相关强度校验,构建了机械手夹持器总的指导思想,从而得出了该机械手夹持器的优点是高效,经济,并且安全系数高,对提高机械手的工作效率,减少人工投入,增强夹持质量等等起到了很大的作用的结论。 关键词:机械手夹持器机;高效;人工投入;结论

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

机械结构设计课程教学大纲

《机械结构设计》课程教学大纲 执笔人:陈建毅编撰日期:2009年8月30日 一、课程概述 《机械结构设计》是工业设计专业的职业核心课程(属于B类),它包括理论力学、材料力学和机械设计基础三部分内容。计划时数为68学时,本课程4学分。 通过本课程的学习,使学生掌握工程力学和机械设计有关的基本概念、基本理论和基本方法。会对物体进行正确的受力分析,会分析计算一些简单力学问题。培养学生对工程设计中的强度、刚度和稳定性问题有明确的基本概念,必要的基础知识和比较熟练的计算能力、分析能力和初步的实验分析能力。使学生学会应用工程力学的基本理论和方法分析与解决机械工程中的一些简单实际问题。掌握一般机械中常用机构和通用零件的工作原理、性能特点,及其使用、维护的基础知识。掌握常用机构的基本理论和设计方法,常用零部件失效形式、设计准则和设计方法。在本课程的学习,注意培养学生正确的设计思想和严谨的工作作风。 教学对象:工业设计专业大二上学期的高职学生。 二、教学内容描述 教学内容分成两个模块:工程力学基础和机械设计基础。工程力学主要内容分为静力分析和强度分析;机械设计基础分为机械零件基础、常用机构、机械传动基础。 第一篇工程力学基础 第一章工程力学的基本概念 教学内容: 第一节工程力学与工业设计 第二节工程力学的研究对象与基本内容 第三节工程力学的基本概念 第四节静力学公理 第五节约束与约束反力 第六节分离体与受力图 教学要求:了解力与力系的基本概念,掌握静力学的基本公理和各种常见约束的性质,对简单的物体系统,能熟练地取分离体,画受力图。 第二章构件与产品的静力分析 教学内容: 第一节平面力系的简化与合成 第二节平面力系平衡问题的求解 第三节空间力系简介超静定的概念

机械手夹持器毕业设计

机械手夹持器毕业设计 第二章 夹持器 2.1夹持器设计的基本要求 (1)应具有适当的夹紧力和驱动力; (2)手指应具有一定的开闭围; (3)应保证工件在手指的夹持精度; (4)要求结构紧凑,重量轻,效率高; (5)应考虑通用性和特殊要求。 设计参数及要求 (1)采用手指式夹持器,执行动作为抓紧—放松; (2)所要抓紧的工件直径为80mm 放松时的两抓的最大距离为110-120mm/s , 1s 抓紧,夹持速度20mm/s ; (3)工件的材质为5kg ,材质为45#钢; (4)夹持器有足够的夹持力; (5)夹持器靠法兰联接在手臂上。由液压缸提供动力。 2.2夹持器结构设计 2.2.1夹紧装置设计. 2.2.1.1夹紧力计算 手指加在工件上的夹紧力是设计手部的主要依据,必须对其大小、方向、作用点进行分析、计算。一般来说,加紧力必须克服工件的重力所产生的静载荷(惯性力或惯性力矩)以使工件保持可靠的加紧状态。 手指对工件的夹紧力可按下列公式计算: 123N F K K K G 2-1 式中: 1K —安全系数,由机械手的工艺及设计要求确定,通常取1.2——2.0,取1.5;

2 K—工件情况系数,主要考虑惯性力的影响,计算最大加速度,得出工作情况 系数 2 K, 2 0.02/1 11 1.002 9.8 a K g =+=+=,a为机器人搬运工件过程的加速度或减速度的绝对值(m/s); 3 K—方位系数,根据手指与工件形状以及手指与工件位置不同进行选定, 手指与工件位置:手指水平放置工件垂直放置; 手指与工件形状:V型指端夹持圆柱型工件, 3 0.5sin K f θ =,f为摩擦系数,θ为V型手指半角,此处粗略计算 3 4 K≈,如图2.1 图2.1 G—被抓取工件的重量 求得夹紧力N F, 123 1.5 1.002439.8176.75 N F K K K Mg N ==????=,取整为177N。 2.2.1.2驱动力力计算 根据驱动力和夹紧力之间的关系式: 2sin N Fc F b a = 式中: c—滚子至销轴之间的距离; b—爪至销轴之间的距离; a—楔块的倾斜角 可得 2sin177286sin16 195.15 34 N F b a F N c ??? ===,得出F为理论计 算值,实际采取的液压缸驱动力'F要大于理论计算值,考虑手爪的机械效率η,一

机械结构优化设计

机械结构优化设计 ——周江琛 2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

小型夹持式机械手及手臂设计

1 绪论 1.1课题研究的目的和意义 机器人是人类很早就梦想制造的、具有仿生性且处处听命于人的自动化机器,它可以帮助人类完成很多危险、繁重、重复的体力劳动。机器人技术是现代科学技术高度集成和交融的产物,它涉及机械、控制、电子、传感器、计算机、人工智能、知识库系统以及认识科学等众多学科领域,是当代最具有代表性的机电一体化技术之一。人类文明的发展、科技的进步已和机器人的研究、应用产生了密不可分的关系。为了适应社会的需求,各院校都比较重视机器人技术和控制技术等课程在机械设计及其自动化专业的开设,使培养的学生懂得机器人设计方面的技术。经过40多年的发展,现代机器人技术在工业、农业、国防、航空航天、商业、旅游、医药卫生、办公自动化及生活服务等众多领域获得了越来越普遍的应用。机器人技术不断进步与创新,所到之处使整个制造业乃至整个社会都发生了和正在发生着翻天覆地的变化。机器人是最具代表性的现代多种高新技术的综合体,它可以从某个角度折射出一个国家的科学水平和综合国力。由于社会的需求,造就了一批从事设计、开发和使用机器人的高级人才。而设计和开发的基础,是对机器人机械系统、感知系统和控制系统等的理解和掌握,才能较好的使用其中的资源来进行设计。故此本文介绍了机器人设计的基本理论,讨论了机器人本体基本结构的相关内容,描述了机器人控制器和传感器等的基本原理,然后再介绍机器人轨迹规划和静力分析方面的知识,使学生既懂得怎样设计一个机器人,同时能熟练地运用此设计理论。 机器人技术是现代科学技术高度集成和交融的产物,计算机技术的不断肩部和发展使机器人技术的发展一次次达到一个新的水平。机器人涉及机械、控制、电子、传感器、计算机、知识库系统以及认识科学等诸多学科领域,成为高科技中极为重要的组成部分。人类文明的发展、科技的进步已和机器人的研究、应用产生了不可分的关系。机器人技术是当代最具代表性的机电一体化技术之一。机器人已广泛地应用于工业、国防、科技、生活等各个领域。机器人在现代工业中应用得特别广泛,而其与外界环境直接接触的部分是机械手,它可以代替人手,与外界环境中有毒以及有害的物质直接接触以减少对人

机械设备可靠性分析论文

机械设备可靠性分析摘要:机械的可靠性设计在机械设计中具有重要的作用,它对机械是否能够稳定的工作起决定性的作用。本文主要介绍了机械可靠性设计的特点,机械可靠性设计的流程,以及在机械可靠性设计中的常用的可靠性分析方法和设计技术,最后结合最近的机械可靠性的发展,介绍了机械可靠性设计的发展趋势,从而对可靠性技术在机械领域的应用和发展有一个全面的、客观的认识。 引言:随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 正文:机械产品的可靠性要受到诸多因素的影响,从产品的设计、制造、试验,到产品使用和维护,都会涉及到可靠性间题,也就是说它贯穿于产品的整个寿命周期之内。如何使产品在整个寿命周期内失效率最小,有效度高,维修性好,经济效益大,经济寿命长,是我们对产品进行可靠性设计的根本目的。机械产品的可靠性设计并不是一种崭新的设计方法, 而是在传统机械设计的基础上引入以概率论和数理统计为基础的可靠性设计方法。这样的设计可以更科学合理地获得较小的零件尺寸、体积和重量, 同时也可使所设计的零件具有可预测的寿命和失效率, 从而使产品的设计更符合工程实际。 目前在机械工程中可靠性设计主要应用在产品的设计、制造、使用和维修等方面。现代生产的经验表明,在设计、制造和使用的三个阶段中,设计决定了产品的可靠性水平,即产品的固有可靠性,而制造和使用的任务是保证产品可靠性指标的实现。可靠性试验数据是可靠性设计的基础,但是试验不能提高产品的可靠性,只有设计才能决定产品的固有可靠性。图1所示为三者的关系。 图1 机械产品与可靠性关系框图 机械产品的设计,它包括整机产品的设计和零部件的设计。整机产品可将其作为一个系统进行设计,设计的方式主要有两种,第一种是根据零部件的可靠性预测结果,计算产品系统的可靠性指标,这就是系统的可靠性预测,其结果满足指标要求即可。如果不能满足要求,就要按第二种方式

机械结构优化设计分析

机械结构优化设计分析 摘要:机械结构优化设计具有综合性和专业性的特点,在设计过程中涉及方面很多,对设计人员的综合素质很高。因此,本文就结合实际情况,如何做好机械结构优化设计展开论述。 关键词:机械结构;设计流程;优化设计 一、机械设计的流程 机械的设计是开发和研究重要组成部分。设计人员在设计过程中,要提高自身设计水平,加快技术创新,为社会发展设计出质量优良的生产和机械。第一,要确立良好的设计目标。机械设计与开发要满足实际需要,能够发挥其自身的功能。第二,要严格遵守设计标准和要求,对具体的内容进行提炼,从而有效的设计任务和目标。第三,在承接设计任务书以后,要坚持合适的原则,明确设计责任;还要组织设计方案,对设计方案进行讨论,重视设计样品机械的关键环节和重要步骤,从而形成最初的设计。第四,要组建优秀的项目团队,对方案进行深入讨论,不断优化设计方案,控制方案变更。第五,要组织专家对设计图纸进行严格的审核,保证设计质量,在图纸完成交付以后,要针对存在的问题做好记录,为以后设计提供借鉴和帮助。第六,在机械创建完成后,要做好机械的验收,设计师要对机械进行检查,保证在发现问题能够及时有效的解决,只有在质量验收合格后,才能进行最后的交付使用。第七,在进行机械安装过程中,设计人员要在安装现场进行全程的监督和控制,做好技术指导。第八,为了保证机电和安装质量,要进行生产鉴定和调试,根据机械使用的效果进行合理的评价和鉴定。在以上设计流程中,缺一不可,需要设计人员不断提高自身设计水平,采用先进的设计理念,保证设计质量。 二、机械设计过程中需要注意的问题 为了保证机械设计质量,设计人员要不断总结经验教训,根据实际情况,树立质量第一的理念,实现机械结构的优化设计。 (一)在机械制造阶段,设计水平直接影响到预期的效果,甚至导致机械不能正常投入使用。因此,在设计过程中,设计人员要与制造人员进行协调,多深入生产现场,认真听取制造工人和设计人员的意见、建议,不断优化机械结构,提高机械的精密度。

小型上下料机械手的设计-毕业设计

1 前言 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。 它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

机械可靠性设计发展及现状.docx

机械可靠性设计发展及现状 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的关于将来安全相关技术发展备选课题,在可靠性领域中把机械可靠性作为三大课题( 另外两个是加速试验和软件可靠性) 之一。机械可靠性试验技术是机械可靠性技术中一个关键的问题,因此被广泛关注。 机械可靠性试验的发展 自1946 年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题开始引起学术界和工程界的普遍关注与重视。上世纪60 年代,对机械可靠性问题引起了各国广泛重视并开始对其进行了系统研究,其中美国、前苏联、日本、英国等国家对机械产品可靠性进行了深入研究,并在机械产品可靠性理论研究和实际应用方面取得了相当进展: 1.1.20世纪40年代,德国在V-1火箭研制中,提出了火箭系统的可靠性等于所有元器件可靠度乘积的理论,即把小样本问题转化为大样本问题进行研究。 1.2.1957年6月4日,美国的“电子设备可靠性顾问委员会”发布了《军用电子设备可靠性报告》,提出了可靠性是可建立的、可分配的及可验证的,从而为可靠性学科的发展提出了初步框架。 1.3.3.20世纪50年代至60年代,美国、苏联相继把可靠性应用于航天计划,于是机械系统的可靠性研究得到发展,如随机载荷下机械结构和零件的可靠性,机械产品的可靠性设计、试验验证等。 1.4.日本于20世纪50年代后期将可靠性技术推广到民用工业,设立了可靠性研究机构和可靠性工程控制小组,大大提高了日本产品的可靠度。 NASA 在六十年代中期便开始了机械部件的应力验证和利用应力强度干涉模型进行可靠性概率设计的研究。1974年美国和日本成立了结构可靠性分析方法研究组,澳大利亚、瑞典

毕业设计---机械手夹持器设计

目录 摘要……………………………………………………………………………..…. .I 绪论 (1) 第1章夹持器 (2) 1.1 夹持器设计的基本要求 (2) 1.2 夹持器结构设计 (2) 第2章腕部 (14) 2.1 腕部设计的基本要求 (14) 2.2 具有一个自由度的回转缸驱动的典型腕部结构 (14) 2.3 腕部结构计算 (16) 第3章伸缩臂设计 (27) 3.1伸缩臂设计基本要求 (27) 3.2方案设计............................................................ ............. . (28) 3.3伸缩臂机构结构设计 (30) 致谢 (40) 参考文献 (41) 摘要:本设计要求“以质量求发展,以效益求生存”,在保证零件加工质量的前提下,提高了生产率,降低了生产时间,是国内外现代机械加工工艺的主要发展方面方

向之一。手指加在工件上的夹紧力是设计手部的主要依据,通过对其大小、方向、作用点进行分析、计算。机械手能否准确夹持工件,把工件送到指定位置,不仅取决与机械手定位精度(由臂部和腕部等运动部件确定),而且也与手指的夹持误差大小有关。手腕部件设置在手部和臂部之间,它的作用主要是在臂部运动的基础上进一步改变或调整手部在空间的方位,以扩大机械手的动作范围,并使机械手变得更灵巧,适应性更强。机械产品设备的经济性包括设计制造的经济性和使用的经济性。机械产品的制造成本构成中材料费、加工费占有很大的比重,设计时必须给予充分注意。将机械设计课程中学到的基本设计思想贯穿到设计中。该工艺与夹具设计结果能应用于生产要求。 关键词:夹持器液压缸伸缩臂 绪论 加工工艺及夹具毕业设计是对所学专业知识的一次巩固,是在进行社会实践之前对所学各课程的一次深入的综合性的总复习,也是理论联系实际的训练。 机械夹具已成为机械加工中的重要装备。机械夹具的设计和使用是促进生产发展的重要工艺措施之一。随着我国机械工业生产的不断发展,机床夹具的改进和创造已成为

机械结构分析与课程设计说明书

机械结构分析与设计课程设计 设计说明书 设计题目设计一级直齿圆柱齿轮 学生姓名学号 班级 专业 分院 指导教师 完成时间

目录 分析和拟定传动方案 (1) 电动机的选择 (3) 计算传动装置的运动和动力参数 (4) 传动件的设计计算 (5) 轴的设计计算 (8) 滚动轴承的选择及计算 (9) 键联接的选择及校核计算 (9) 联轴器的选择 (10) 减速器附件的选择 (11) 润滑与密封 (14) 参考文献 (14) 设计小结 (14)

分析和拟定传动方案 1.1设计背景: 机器通常由原动机,传动装置和工作机三部分组成。传动装置用来传递原 动机的运动和力,变换其运动形式以满足工作机的需要,是机器的重要组 成部分。传动装置的传动的传动方案是否合理将直接影响机器的工作性 能、重量和成本。合理的传动方案除了满足工作机的功能外,还要求结构 简单、制造方便、成本低廉、传动效率高和使用维护方便。拟定一个合理 的传动方案,除了综合考虑工作装置的载荷、运动及机器的其他要求外, 还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。 (1) 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大, 但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传动 的转矩,减少带传动的结构尺寸。 (2) 链传动平稳性差,宜布置在低速级。 (3) 斜齿轮传动较直齿轮传动平稳,相对应用于高速级。 综上各条件考虑宜选用带传动和齿轮传动 1.2原始数据: (1) 工作装置的阻力 W F =5500N (2) 工作装置的线速度 W V =1.35s m (3) 输送机滚筒直径 D=250mm (4) 卷筒效率 w =0.98 二、电动机的选择 2.1 选择电动机的类型 按工作要求和条件选取Y 系列一般用途的全封闭自扇冷笼型三相异步电 动机 2.2 选择电动机的功率

机械原理课程设计 )

机械原理课程设计说明书 设计题目:机械手设计 专业班级:机械设计制造及其自动化一班学号: 姓名: 指导教师: 设计日期:2012年6月

设计任务书 (3) 1执行机构的选择 (4) 1.1升降、摆动、伸缩机构的选择 (5) 1.2 升降机构、伸缩机构 (6) 1.3夹持机构的选择 (7) 2传动方案的确定 (8) 2.1 传动类型的确定及传动简图 (8) 2.2 确定总传动比 (8) 3电动机的确定 (9) 3.1 电动机容量的确定 (10) 3.2 电动机转速的确定 (11) 4总体方案的确定 (12) 4.1 机械手系统运动简图 (12) 4.2 机械手运动循环图 (12) 5凸轮尺寸设计 (11) 6设计体会与小结 (15) 7参考文献 (16)

设计任务书 1)设计的目的 械设计课程设计是为机械类专业和近机械类专业的学生在学完机械设计及同类课程以后所设置的实践性教学环节,也是第一次对学生进行全面的,规范的机械设计训练。其主要目的是: a)培养学生理论联系实际的设计思想,训练学生综合运用机械设计课 程和其他选修课程的基础理论并结合实际进行分析和解决工程实际问题 的能力,巩固、深化和扩展学生有关机械设计方面的知识。 b)通过对通用机械零件、常用机械传动或简单机械设计,使学生掌握 一般机械设计的程序和方法,树立正面的工程大合集思想,培养独立、 全面、科学的工程设计能力。 c)课程设计的实践中对学生进行设计基础技能的训练,培养学生查阅 和使用标准规范、手册、图册及相关技术资料的能力以及计算、绘 图、数据处理、计算机辅助设计等方面的能力。 2)设计的任务 械设计械手从工件架上抓起工件,然后送人工作台进行加工。机械手完成以下动作: a)水平面内转30度,上升100mm,前进50mm; b)机械手的夹持器还有夹紧和放松动作。 3)原始数据 机械手工作频率:20r/min 升降0.3kw,摆动0.1kw,伸缩0.1kw,夹持0.2kw。 4)设计内容 a)原动方案的选择和确定 b)传动方案的分析和拟定 c)电动机的选择 d)绘制运动简图和运动循环图 e)机构的设计 f)设计计算说明书的整理和编写 g)总结和答辩

机械可靠性设计

基于鞍点估计的机械零部件可靠性灵敏度分析 摘要 对机械结构来说,可靠性指标一般随材料特性、几何参数、工作环境等不确定性因素变化而减弱,所以结构的可靠度、灵敏度就显得尤为重要,对机械零部件可靠性灵敏度的分析也是亟不可待。 本文利用鞍点估计技术可以无限逼近非正态变量空间中线性极限状态函数概率分布的特点,能有效解决统计资料或实验数据较少而难以确定设计变量的分布规律的问题。将可靠性设计理论、灵敏度分析技术与鞍点逼近理论相结合,以前面可靠性数学模型为基础,系统地推导了基于鞍点估计的可靠性灵敏度公式,讨论了基于鞍点估计法的机械零部件可靠性灵敏度计算问题,为进一步分析机械零部件的可靠性稳健设计奠定了理论基础。 关键词:不确定性鞍点灵敏度可靠性 第一章绪论 1.1机械可靠性设计理论研究进展 很早以来人们就广泛采用“可靠性”这一概念来定性评价产品的质量问题,这只是靠人们的经验评定产品可靠还是不可靠,并没有一个量的标准来衡量;从基于概率论的随机可靠性到基于模糊理论的模糊可靠性再到非概率可靠性以及最近提出的结构系统概率-模糊-非概率混合可靠性,表明定量衡量产品质量问题的理论方法从产生到现在已有了长足的发展;对于复杂结构的复杂参数由单纯的概率非概率可靠性分析方法发展到可靠性灵敏度分析的各种分析方法,使得这一理论日续丰富和完善,并深入渗透到各个学科和领域。可靠性当今已成为产品效能的决定因素之一,作为一个与国民经济和国防科技密切相关的科学,未来的科技发展中也必将得到广泛的研究和应用。 20世纪初期把概率论及数理统计学应用于结构安全度分析,已标志着结构可靠性理论研究的初步开始。20世纪40年代以来,机械可靠性设计理论有了长足的发展,目前为止己

相关文档
最新文档