△-Y型配电变压器单相缺相运行对用户影响 分析及仿真

△-Y型配电变压器单相缺相运行对用户影响 分析及仿真
△-Y型配电变压器单相缺相运行对用户影响 分析及仿真

△-Y型配电变压器单相缺相运行对用户影响分析及仿真

发表时间:2019-09-09T15:57:34.687Z 来源:《基层建设》2019年第16期作者:刘传兴[导读] 摘要:△-Y型配电变压器有比Y-Y型配电变压器更好地限制不平衡三相电流、保持较好的的电压波形以及抑制三次谐波等优点,为此我局以△-Y型配电变压器为主。

摘要:△-Y型配电变压器有比Y-Y型配电变压器更好地限制不平衡三相电流、保持较好的的电压波形以及抑制三次谐波等优点,为此我局以△-Y型配电变压器为主。但同时△-Y型变压器的接线较复杂,高低压相、线电压幅值、相量关系难以简单区分,特别在非正常运行情况下,各量之间的关系更为复杂。本文着重对△-Y型配电变压器非全相运行时的高低压侧各电压之间的变化关系及对用户的影响进行分析,并结合PSCAD仿真验证了结论的真实性。仿真结果表明,我们的分析是正确的,分析结论对配网及低压电网运行有指导意义。关键词:配电变压器;单相缺相运行;用户;影响;PSCAD仿真引言

在10kV配电网中,配电变压器主要通过跌落式熔断器与电网连接。跌落式熔断器在运行中起到开关、隔离、保护的作用,是配电网中常用的经济型的多用途开关设备。运行数据显示,跌落式熔断器常因配变过负荷、不平衡电流、故障、外力破坏等原因而损坏,从而引起配变非全相运行。我局△-Y型配电变压器主要以Dyn11接线为主,配变的非全相运行主要有单相缺相运行(两相运行),两相缺相运行(单相运行)两种,单相运行时配变不形成回路,用户停止供电,在此暂不作讨论。本文着重讨论单相缺相运行的情况下配电变压器高低压侧各电压之间的变化关系及对用户的影响。

1变压器工作原理与连接方式

三相变压器工作原理:变压器的基本工作原理是电磁感应原理。当交流电压加到一次侧绕组后交流电流流入该绕组就产生励磁作用,在铁芯中产生交变的磁通,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中引起感应电动势。这时如果二次侧与外电路的负载接通,便有交流电流流出,于是输出电能。变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。高压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。

2单相缺相运行分析

2.1配电变压器单相缺相运行示意图

图1 配电变压器单相缺相运行示意图

在10kV配电网中,较常用的配电变压器接线方式是△-Y型。为说明△-Y型配电变压器单相缺相运行对用户的影响,分析A相缺相时系统用户侧电压的变化情况。

图2 Dyn11型接线变压器高压侧A相断线示意图

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

配电变压器三相负荷不平衡运行的管理

管理制度参考范本 配电变压器三相负荷不平衡运行的管 理 S a H 撰写人: 部门:___■_! 间:__|1| 摘要:本文主要针对配电变压器三相负荷不平衡 的现状,分析产生的原因,针对原因制定了改善措 施。 关键词:配电变压器三相负荷不平衡运行管理 * 1 / 6 \

碾子山供电局XX区现有配电变压器193台,总容量25305kVA 近几年来,由于配电变压器三相负荷不平衡,运行中出现问题较多,主要表现在:部分变压器运行不经济、变压器故障率高,个别接点频繁过热烧损,个别台 区电压变化大,烧损用户设备。20xx 年,碾子山供电局对XX区所有配电变压器的负荷进行了测量,结果表明,三相电流不平衡度不合格的占35%、不平衡度超过25%的变压器占15%, 最高的达到75%。 1变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 以低压线路增加的损耗,按照三种情况来分析(三相不平衡度为r) : ①一相负荷重、一相负荷轻,第3相为平均负荷: 单位长度线路上的功率损耗为: P1=3I2R+8r2I2R 当三相平衡时,P=3I2R, 两者相比, 规程规定:不平衡度r 应不大于20%,经计算当r=0.2 时, k=1.11,即由于三相不平衡所引起的线损增加11%,当r=100%时, k=3.67 ,测算出线损增加2.67 倍。 ②一相负荷重、两相负荷轻: 则k=1+2r2 当r=200 %,经测算线损增加8倍。 ③一相负荷轻、两相负荷重: 则k=1+20r2 当r=0.2时,k=1.8,计算得三相不平衡所引起的线损增加

配电变压器故障分析

配电变压器故障分析 配电变压器在运行过程中,由于安装和管理不当及使用寿命等原因,经常会出现各种故障。 绝缘老化 变压器在正常负载下,绝缘材料使用期限一般在20年左右。当绝缘枯焦、变黑、失去原有的弹性而变得脆弱时,只要绕组稍受振动或绕组间略有相对摩擦,已老化的绝缘就容易损坏,造成匝间或层间短路。由于绝缘老化而引起的事故很多,因此,必须认真监测变压器的负载和油温,不允许超过规定过负载运行,以免加速绝缘老化和缩短变压器的使用寿命。 绝缘油劣化 绝缘油有很好的电气性能和合适的黏度,它能增加绕组相间、层间以及绕组与铁心、外壳之间的绝缘强度,使运行中变压器的绕组、铁心得到冷却;另外,绝缘油能使变压器主绝缘保持原有的化学性能和物理性能,保护金属不受腐蚀。油纸的劣化会导致变压器发生故障。因此,要加强对绝缘油的维护和监视。

(1)严格按规定取样和做试验,发现不合格时应立即处理。 (2)监视变压器的负载和上层油温有无异常。 (3)减少油与空气接触的机会,防止水分渗入。 过电压 过电压一般分外部过电压和内部过电压。外部过电压主要由雷击引起,主要预防措施是安装避雷器;内部过电压是当电力系统中的参数发生变化时,由电磁振荡和积聚引起的,避雷器也能起到防护作用。 绝缘子损坏 因为测试、维护、检修工作不全面而引起的绝缘子损坏占多数。应加强对绝缘子的预防性试验,维护、检修工作人员应严格按照规程操作,防止人为损坏。 引线及绝缘故障 (1)引线连接处焊接不牢或引线与端头处接触不良、端头的螺钉未拧紧,均能引起局部发热而使接点熔毁,造成引线断线。

(2)水分或大量潮气进入变压器内,使绝缘损坏而击穿。 (3)变压器出口处短路,绕组匝间绝缘损坏。 (4)在高压绕组加强段或低压绕组端部处,因线包绝缘膨胀,堵塞油道,使内部绝缘老化而引起匝间短路。 磁路故障 (1)穿心螺杆及夹板碰触铁芯。 (2)硅钢片间绝缘损坏。 (3)铁芯未接地或接地不当。

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

10kV配电变压器引线设备线夹温度异常现象分析及解决措施

10kV配电变压器引线设备线夹温度异常现象分析及解决措施 2014年6月10日

10kV配电变压器引线设备线夹温度 异常现象分析及解决措施 [内容摘要]:本文主要针对XX地区10kV配电变压器运行时引线设备线夹出现的温度异常现象进行初步分析,提出了一些可行的温度异常处理方法和维护手段,可以给运行维护人员在日常巡视变压器时提供参考。 [关键词]:配电变压器设备线夹温度异常解决措施 前言 设备线夹是配电变压器与高低压引线连接的重要连接部件,在变压器长期运行过程中,设备线夹温度异常现象成为了导致配电变压器和线路故障的主要原因之一,设备线夹温度异常容易造成配电变压器引线断线造成线路接地、变压器缺相运行等。本文主要以XX电力公司地区公用配电变压器设备线夹温度异常现象为例,通过认真总结和分析变压器设备线夹温度异常的原因,提出了一些解决措施,为今后在变压器的运行维护人员提供借鉴和参考。 1.配电变压器设备线夹温度异常情况 2013年7月12日-7月15日,配电运检工区运维人员利用红外测温仪对地区公用配电变压器进行红外测温,在测温过程中发现多处配电变压器高低压引线设备线夹发热,如下图所示: 发热部位发热部位图一设备线夹发热139.4摄氏度图二设备线夹发热106.8摄氏度

发热部位 发热部位 图三设备线夹发热138摄氏度图四设备线夹发热117摄氏度在此次红外测温过程中共检测变压器52台,其中检测到配电变压器高低压引线设备线夹发热多达10多处,其中温度最高达150摄氏度。根据XX电力公司红外检测诊断工作条例,对所测设备、数据进行统计分析,对照XX电力公司电流致热设备缺陷诊断判据,对所测温度异常点进行缺陷分类如下: 表一电流致热设备缺陷诊断判据 表二变压器设备线夹发热统计表 (续表见下页)

配电变压器检修方法

第二节检修项目 一、大修项目: 1、拆卸各附件吊芯或吊罩。 2、绕组、引线及磁屏蔽装置的检修。 3、分接开关的检修 4、铁芯、穿芯螺丝、轭梁、压钉及接地片的检修。 5、油箱、套管、散热器、安全气道和油枕的检修。 6、冷却器、油泵、风扇、阀门及管道等附属设备的清扫检修。 7、变压器油保护装置:净油器、呼吸器、油枕胶囊、压力释放器的试验、检查、检修。 8、瓦斯断电器、测温计的检修及校验。 9、必要时变压器的干燥处理。 10、全部密封垫的更换和组件试漏。 11、高空瓷瓶清扫检查。 12、变压器的油处理。 13、进行规定的测量及试验。 14、消缺工作。 15、高压试验。 二、小修项目: 1、外壳及阀门的清扫,处理渗漏油。 2、检查并消除已发现缺陷。 3、清扫检查套管,校紧各套管接线螺栓。 4、油枕及各油位计的检查。 5、呼吸器、净油器检查,必要时更换矽胶。 6、冷却器潜油泵、散热风扇的检修。 7、检查各部接头接触情况;检查各部截门和密封垫。 8、瓦斯断电器、温度计的检修。 9、检查调压装置、测量装置及控制箱,并进行调试。 10、取油样分析及套管、本体调整油位。 11、油箱及附件清扫、油漆。 12、进行规定的测量及试验。 13、高空瓷瓶清扫检查。 14、高压试验。 第二章大修前的准备工作 变压器是发电厂的主要设备之一,对变压器的解体大修,应做到应修必修、修必修好。必须认真执行全面质量标准,认真执行作业指导书,并做好四项工作: 1、大修计划和准备。 2、大修现场管理和现场记录及作业指导书。 3、检查验收、落实各项质量标准。 4、大修总结和技术记录。 一、大修前落实组织及技术措施: 1、制订大修的项目和进度 2、编写大修的项目和进度。 3、编写大修的安全、技术、组织措施。 4、各方案交由有关方面人员讨论,明确各自的职责及任务,并做好大修前的准备工作。

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

变压器的常见故障与处理

变压器的常见故障与处理 5.8 变压器的常见故障及处理 5.8.1 绝缘降低:变压器在运行中,往往会出现绝缘降低的现象。绝缘降低最基本的特点,是绝缘电阻下降,以致造成运行泄露电流增加,发热严重,温升增高,从而进一步促进绝缘老化。若延续下去,后果非常严重,绝缘下降的原因之一就是绝缘受潮;原因之二是绝缘老化,一些年久失修的老变压器,最容易出现这类故障;原因之三是油质劣化,绝缘性变差。 5.8.2 温升过高:温升过高最明显的象征是,电流表指针超过了预定界限,变压器发热和油面上升,严重时保护装置动作,切断电器。温升过高原因有: 1.电流过大,负荷过重,超过变压器容量允许限度 Y/Y0-12连接的变压器,但三相负荷不平衡时会发生过热。变压器可能断线,如在接线时对外一相断线,则对内绕组有环流通过,将发生局部过负荷,变压器夹紧螺栓松脱,磁阻增大,无功负荷增大,在同样有功负荷时产生过流。绕组反接,造成运行时反电势不足,而产生过电流。变压器带负荷投入也会发生过电流。 2.通风不良更多知识可关注微信公众号:AZPT991 变压器表面积尘,变压器风道阻塞,风叶片损坏,风扇电动机转速降低,环境温度升高等,是造成通风不良原因的主要原因。应针对上述各种情况分别加以处理。如果环境温度过高,应加强通风或降低变压器负荷。 3.变压器内部的损坏 如线圈损坏,短路,油质不良等。应当针对损坏情况进行修理。 (1)油面不正常:油面也由油枕上的油位指示计进行观察。正常情况下,指示计指在零位上下±25℃的范围以内。若超过此限度,即为不正常运行。 (2)油面变化的情况有两种:一种是油面升高,这主要是伴随温升的增加而产生。此时可针对温升情况加以处理。当油面高出规定的油面时,应当放油。另一种是油面降低。这就要检查是否有漏油处,如有漏油处要进行堵塞。 (3)备用的变压器,还应检查是否由于油凝固所制,这时需要让它带负荷运行,进行观察。若油面较定油面显著降低时,应当加油,且油质油温要符合标准。4.声响异常 (1)变压器运行正常时是发出连续匀称的嗡嗡声。各型变压器声音大小不一。变

110kV变压器缺相运行的分析

110kV 变压器缺相运行的分析 摘 要:用对称分量法和过电压理论分析中性点不接地110kV Yd11变压器高压侧单相断线时低压侧电压、电流特征,并找出其规律,得出结论,为调度人员及时根据故障现象特征隔离故障点,调整运行方式,从而确保了地区电网供电的质量和可靠性。 关键词:变压器 缺相运行 1. 引 言 县级电网的110kV 变电所大多为终端变电所,110kV 变压器大多处于中性点 不接地运行状态,当110kV 线路单相断线时,线路保护和变压器保护不会动作,但10kV 侧电压、电流异常,有些特征类似10kV 单相接地。本文主要分析了110kV 线路单相断线时变压器10kV 侧电压、电流的特征,帮助运行、调度人员及时对运行异常定性和排除。 2. 模型与参数 2.1 模型 图(1) 110kV 线路单相断线系统模型 线路中间A 相QK 断线,断口两端距离较近,即Zqk ≈0 2.2序网图 图(2)序网图 参数:U qk ∣0∣=E ,Z (0)= ∞, Z (1)=Z (2)=j (X1+X2+X3+X4+X D )=j X ,电压基准值为E 。 3. 线路电流计算 注:正常运行中三相电流大小为 。单相断线后,健全两相电流方向相反且比正常时略

小。 4. 断口电压 4.1断口QK三序电压为 4.2 A相断口电压为 5. F1母线(110kV母线)电压的计算 5.1 F1母线三序电压 5.2 F1母线三相电压 6. F2母线(10kV母线)电压的分析计算 6.1 F1母线三相电压近似值 一般情况下,X4 + X ≈X,于是有 D 即,110kV母线电压健全相仍保持正常状态。后续计算以该近似进行。 6.2 F1母线、F2母线三序电压关系 6.2.1正序、负序电压 由于变压器为Y/Δ,d11接线,所以对于正序、负序分量有 6.2.2 零序电压 1)F2母线零序电压的产生 由于变压器110kV侧中性点不接地,零序阻抗∞,零序电流为0,零序电压通过高低压绕组间电容和低压侧三相对地电容所组成的电容传递回路传递至10kV侧,使10kV侧三相出现相同的零序传递电压Ua0,Ub0,Uc0。如图(3)。

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

35kV变压器缺相运行的分析

35 kV变压器缺相运行的分析 摘要:用对称分量法来分析不同接线组别的变压器高压侧缺相运行时其低压侧电压反映的不同情况,并找出其规律,得出结论,为调度人员及时根据故障现象特征隔离故障点,调整运行方式,从而确保了地区电网供电的质量和可靠性。 关键词:变压器;缺相运行;接线组别;对称分量法 如皋是一个以农业为主的县级市,35 kV变电 所共有14座,其中有2座是农村小型变电所,主变 高压侧采用高压熔丝保护,而其余35 kV 变电所为 了节约投资和减少设备故障几率,大部分35 kV母 线均未安装电压互感器。因此,当高温高负荷期或 雷雨季节,主变一相熔丝熔断或35 kV线路缺一相 运行时,经过接线组别均为Yd11的主变和YY0的 电压互感器变换后,在10 kV母线反映出异于正常 运行时的故障现象。此现象与10 kV母线电压互感 器高压熔丝熔断有点相似,容易引起调度人员误判 断而延误了事故处理时间。 35 kV线路缺相运行或主变高压熔丝熔断一相, 虽在一般情况下没有危险的大电流和高电压产生, 但输送给用户的却是不合格的电能,因此,需调度 人员根据故障现象快速判断,隔离故障点并调整运 行方式;同时及时通知设备主人有针对性地进行查 寻并相应地处理故障。 为了调度人员能够根据10 kV母线电压情况, 很快区分出是主变高压侧缺相运行还是电压互感器 高压熔丝熔断(因电压互感器也属变压器,只是和 一般主变接线组别有所不同),对在生产过程中运用 较多的接线组别Yd11和YY0的变压器进行了分析 研究。 1 Yd11变压器高压缺相运行 以35 kV江安变为例,正常运行时,35 kV石江 线供江安变全所负荷,35kV龙常线作备用,并启用 35 kV备用电源自投装置。其主接线图如图1所示。 其中,江安变2台主变接线组别均为Yd11,10 kV母线电压互感器接线组别为YY0,表示运行状 态,表示开关在热备用状态。若35 kV石江线B相 断线,假设变压器为无损耗变压器,正常运行时高 压侧相电压值为U A,低压侧电压值为U a,则当35 kV 石江线B相断线后,变压器高压侧 ? B I=0,根据戴 维宁定理,则 ? A I=- ? C I。根据变压器的接线组别, 变压器连接方式如图2所示。 运用对称分量法进行分析,将 ? A I, ? B I, ? C I分解 成3组对称分量,即正序分量电流C1 B1 A1 ? ? ? , ,I I I;负 序分量的电流C2 B2 A2 ? ? ? , ,I I I;零序分量电流C0 B0 A0 ? ? ? , ,I I I;设 ? A I=00 ∠ A则, ? B I=0; ? C I=0 180 ∠ A 则0 C 2 B A A130 3 1 ∠ = ) + + (? = ? ? ? ? A I I I I 3 3 α α 式中; + = 2 3 j 2 1 - α; - = 2 3 j 2 1 - 2 α C B 2 A A130 3 1 ∠ = ) + + (? = ? ? ? ? A I I I I 3 3 α α 3 1 = ) + + (? = ? ? ? ? C B A I I I I AO 同理 B1 90 - A I∠ = ? 3 3 ;0 B2 90 - A I∠ = ? 3 3 ; ? B0 I=0 C1 150 - A I∠ = ? 3 3 ;0 C2 150 - A I∠ = ? 3 3 ; ? C0 I=0 假设变压器高压侧绕组为纯感抗,数据为j1,其电流、电压相量图如图(3)所示。 因变压器接线组别为Yd11,无零序电压与电流,在正序电压作用下,低压侧相电压相量则超前高压相应相电压30o,在负序电压作用下,低压侧相电压相量则滞后高压相应相电压30o。则低压侧各相电压相量图如图4所示。

配电变压器常见故障分析(正式版)

文件编号:TP-AR-L5164 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 配电变压器常见故障分 析(正式版)

配电变压器常见故障分析(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声

音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

配电变压器运行管理制度

配电变压器运行管理制度 1.总则 1.1为加强配电变压器的运行管理及结合我分公司的实际情况,特制定本制度。 1.2本制度适用某某供电分公司直属各供电所所辖配电变压器的运行管理。 2.配电变压器运行管理 2.1配电变电器应严格按《电力变压器运行规程》执行。新装或更换的配变必须是低耗节能型变压器,严格控制高耗能变压器投入运行,对现有高损配变应作出规定逐年更换,运行的配变应定期进行试验,试验由运行管理部门负责,用户配变由用户委托电力部门试验。 2.2根据我县气候环境,配变投入运行时,必须附有完整的附属设备,如吸潮剂、高低压避雷器、防盗帽、温度计、防污闪帽。 2.3配电变压器低压中性点及外壳,中性线必须可靠接地,公用(未装保安器)配变在主干线上每隔一公里支线始端,楼房进户前应进行重复接地,并充分利用自然接地体,其接地电阻应符合规程要求。 2.4配变要经常保持器身清洁,在严重污秽地区运行的变压器,每季清扫一次,其它地区每年清扫一次。 2.5配变各密封部件,不得有渗漏油现象,发现渗漏油要及时处理,使配变经常处于一类设备下运行。 2.6配变的油位,必须符合要求,不得过高或过低。 2.7用户变压器发生故障又没有能力维修的。可委托电力部

门,电力部门要及时处理。 2.8经常监视负荷的变化尽量保持三相负荷的平衡,三相负荷的不平衡最高不得大于25%,若超过此范围,其用电负荷应进行调整。 2.9要定期进行电压的监测,保证其出口电压。对没有电压监测点的,要每季上报一次电压的情况。 2.10 10KV配变应每年按照评级标准进行设备的评级工作,保证配变的完好率。 3.配变应县挂的标记 3.1安全用电警告标志。 3.2按有关规定评定设备的等级,悬挂类别牌。 4.配变的预防性试验 配变应根据规程要求进行试验,公用配变每一年进行一次,试验不合格者必须退出运行。要做好试验记录和试验周期的安排用户的配变由用户委托电力部门进行试验及时处理缺陷,凡试验不合格或不按期预试者,应退出运行。

配电变压器常见故障分析论文

配电变压器常见故障分析(论文)

————————————————————————————————作者:————————————————————————————————日期:

№配电变压器常见故障分析 年月日

配电变压器常见故障分析 摘要 电力行业,是一门影响国计民生。随着和谐社会的发展与进步,电能使用量电网维护管理工作的也越来越显得重要。配电变压器作为电网中的核心部件,更应该注意日常的维护及管理,这样才能够更好的确保电网的正常运行。在进行配电变压器的运行维护的过程中需要清楚配电变压器经常出现的故障,并能够找出解决的办法,为电网的安全、正常的工作提供前提条件。本文对配电变压器事故率高的现象,着重分析了配电变压器烧坏的几种主要原因,提出了具体的防范措施,为防止发生配电变压器烧毁故障提供借鉴。 关键词:配电变压器日常故障原因分析运行维护

目录 摘要 (1) 引言 (3) 第一章原因分析 (4) 1.1 变压器铁芯多点接地 (4) 1.1.1 变压器铁芯接地原因 (4) 1.1.2 变压器铁芯硅钢片短路 (4) 1.2 变压器绝缘性能降低 (4) 1.2.1 变压器电流激增 (4) 1.2.2 绕组绝缘受潮 (4) 1.3 变压器无载调压开关 (5) 1.3.1 分接开关裸露受潮 (5) 1.3.2 高温过热 (5) 1.3.3 本身缺陷 (6) 1.3.4 外部人为原因 (6) 1.4 雷击与谐振 (6) 1.4.1 雷击过电压 (6) 1.4.2 系统发生铁磁谐振 (6) 1.5 一/二次熔体选择不当 (7) 1.6 二次侧短路 (7) 1.7 其它 (7) 第二章防范措施 (8) 2.1 投运前检测 (8) 配电变压器投运前必须进行现场检测,其主要内容如下。 (8) 2.2 运行中注意事项 (9) 结论 (9) 参考文献 (10) 致谢 (10)

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

配网缺相运行引起电压异常事故分析与处理

配网缺相运行引起电压异常事故分析与处理 发表时间:2016-12-12T15:14:41.743Z 来源:《基层建设》2016年20期作者:曾伟龙[导读] 摘要:快速发展的社会经济和以及飞速发展的科技水平,极大的提高了人们的生活水平,在这种背景下,电力用户更加要求电力系统运行具有可靠性高的特点。 广东电网有限责任公司惠州惠东供电局广东惠州 516000摘要:快速发展的社会经济和以及飞速发展的科技水平,极大的提高了人们的生活水平,在这种背景下,电力用户更加要求电力系统运行具有可靠性高的特点。开关非全相及线路断线等引起的缺相运行现象就是配网缺相运行,经常导致过电压、谐振,导致电网电压异常甚至破坏设备绝缘,造成设备损毁。所以,在运行调度中对断线故障分析和处理是否合理、正确具有重要意义。本文配网缺相后系统产生 电压异常的原因进行了简要分析,并与运行过程中实际发生的问题相结合,对缺相运行导致电压异常事故的分析和处理过程进行阐述,以便为运行调度中的处理事故措施提供借鉴和参考。关键词:配网缺相运行;电压异常;事故分析;处理 1、前言 日益扩大的各级配网现状以及用户对提高可靠性供电的要求,使得电网运行的主要目标之一就是保障配网的运行安全,这对配网事故处理和调度的要求就更高。为了将可靠性供电的目标得以实现,城市配网中越来越广泛使用绝缘导线及电缆,但绝缘导线在遭受雷击时存在因灭弧困难而容易断线的问题。在小电流接地系统中,电压会因线路缺相运行导致异常,更可能导致受电变压器因过电压损毁。缺相运行引起过电压原理的分析,对过电压的防治很有必要。 2、配网缺相运行对电压的影响 本文主要是讨论小电流接地系统的配网,即中性点不接地、中性点经高电阻接地系统或经消弧线圈接地。尽管配网线路缺相运行情况在实际系统中十分复杂,影响电网电压的程度也有所不同,但总结下来主要有两大类:单相运行、两相运行,另外两相运行还包含两相运行断开相侧接地、断开相系统无接地、断开相系统负荷侧接地。 2.1单相运行 单相运行如图1所示,缺相线路系统侧对地电容至断开点由CAds、CBds、CCds表示;三相对地电容系统侧(除线路运行缺相外)由CAs、CBs、CCs表示;因为电源与相间电容并联,其对结果影响极小可以忽略;线路缺相运行相间电容由CAB、CBC、CAC表示;缺相线路负载侧对地电容至断开点由CAdl、CBdl、CCdl表。可以把DK至O点端口等效成一个阻抗,单相运行将导致中心点电压偏移。 图1,系统单相运行示意图 2.2两相运行 两相运行系统示意图如图2所示,若两相运行且断开相的负载侧接地,就相当于将Cdl短路;若两相运行且断开相系统侧接地,就相当于将Cds+Cs进行短路。如果系统在两相运行状态,尤其是负载侧或系统侧接地,就会导致铁磁谐振现象,导致系统过电压,对电网设备油气是配电变压器的安全造成威胁,容易造成设备损毁或设备绝缘损坏。 图2,两相运行系统示意图 3、单相运行实例分析 3.1事故过程分析 某110kV变电所10kVI段母线B相打出接地信号,自动化系统显示10kVI段三相电压分别为UA=9.8kV、UB=1kV、UC=10.2kV。试将10kV甲线路出线开关拉开后,10kVI段母线A相打出接地信号,自动化系统显示10kVI段电压三相电压分别为UA=0.8kV、UB=10.8kV、UC=10.5kV;将10kV甲线路出线开关合上后,恢复为成B相接地情况。该10kV甲线有分支较多,电缆线路部分很多。为使故障位置能够清楚的确认,检查所内设备没有接地情况之后,拉开10kV甲线路,并试拉其它线路,发现A相接地情况没有消失。通过对线路进行寻线,B相接地点在10kV甲线路一支线上被找到,检查变电所10kV甲线路出线间隔时发现带电显示器在A相线路侧有显示。 3.2事故处理分析 对上述事故现象及结果检查结合上文分析可以对事故进行判别,事故原因为:10kVI段母线B相打出接地信号;10kV甲线路B相单相接地;试拉10kV甲线路时,A相开关未拉开,不平衡的三相对地电容导致中性点偏移,造成了“虚幻”接地假象,而通过上文分析可得知,当ZDKO较小时,中性点电压偏移相反与A相电压方向,而且幅值相近于A相电压幅值,所以10kVI段母线A相对地电压比较小,近似于零,另外两相是线电压。 4、两相运行实例探讨 4.1事故过程分析 图3为是某110kV变电所接线示意图

相关文档
最新文档