七年级数学从算式到方程说课稿
人教版七年级数学上册第三章《从算术到方程》说课稿

人教版七年级数学上册第三章《从算术到方程》说课稿一. 教材分析《从算术到方程》是人教版七年级数学上册第三章的内容。
这部分教材主要介绍了方程的概念、一元一次方程的解法以及方程的应用。
通过这部分内容的学习,学生能够理解方程的意义,掌握一元一次方程的解法,并能运用方程解决实际问题。
二. 学情分析学生在学习这部分内容时,已经掌握了算术的基本运算能力和逻辑思维能力。
但是,对于方程这一概念,学生可能较为陌生。
因此,在教学过程中,需要引导学生逐渐理解和接受方程的概念,并通过实例让学生感受方程在解决问题中的作用。
三. 说教学目标1.知识与技能目标:学生能够理解方程的意义,掌握一元一次方程的解法,并能运用方程解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流的方式,培养解决问题的能力和团队合作精神。
3.情感态度与价值观目标:学生能够积极参与数学学习,体验数学的乐趣,培养对数学的兴趣。
四. 说教学重难点1.教学重点:方程的概念、一元一次方程的解法以及方程的应用。
2.教学难点:方程的解法以及方程在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学。
六. 说教学过程1.导入新课:通过生活实例引入方程的概念,让学生感受方程在解决问题中的作用。
2.自主学习:学生自主探究方程的定义和特点,理解方程的意义。
3.合作交流:学生分组讨论,分享各自的解题思路和方法,互相学习,共同进步。
4.教师讲解:教师针对学生的讨论情况进行点评,讲解方程的解法和注意事项。
5.课堂练习:学生独立完成练习题,巩固所学知识。
6.应用拓展:学生分组解决实际问题,运用方程进行分析和解答。
7.总结提升:教师引导学生总结本节课所学内容,加深对方程的理解。
七. 说板书设计板书设计如下:•等式 + 未知数 = 方程一元一次方程的解法•步骤:去分母、去括号、移项、合并同类项、化系数为1•实际问题解决八. 说教学评价教学评价采用过程性评价和终结性评价相结合的方式。
3.1《从算式到方程》说课稿

3.1《从算式到方程》说课稿一、教材地位:本节内容是人教版七年级上册3.1中的第一节,前面已经学了有理数,它是为整式的加减做铺垫,整式的加减则是为解方程做预备。
方程也是进一步学习一元一次方程,一元二次方程,二元一次方程,及不等式的基础。
因此在内容上本节主要起着承前启后的作用,可以说是内容上的衔接点。
“数学来源于生活,又应用于生活”,而方程在实际问题中的应用,是中学阶段应用数学知识解决问题的重要开端,也是增强学生学习数学,应用数学的重要题材,是小学与中学解题方法上的分水岭。
所以本节课的学习具有举足轻重的作用。
学生分析:初一的学生已经会用算术方法解题和对方程有初步了解等知识储备,还具有一定的观察、归纳能力,但学生的抽象概括和探索能力相对偏弱一些。
为此制定如下教学目标。
二、教学目标1、了解方程及一元一次方程的基本概念2、会根据具体问题中的相等关系列出方程3、经历从具体问题中的数量关系列出方程的过程,并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。
【围绕以上教学目标,制定下面教学重难点:】三、教学重、难点由于学生在小学已经习惯于用算术方法解决实际问题,对方程不太熟悉,所以为防止学生仍停留在用算式解决实际问题的低层上,确定本节重点为:在建立方程的基础上认识一元一次方程及方程的解。
本节的难点是相等关系的建立。
四、教学内容【设计目的】“兴趣是最好的老师”这节课的首要问题是调动学生的学习兴趣,根据本节内容与现实生活较紧密的特点,调动学生的学习热情.........。
2、引入问题:【问题1:】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地,A,B两地间的路程是多少?(1)如果客车比卡车多行60km,那么走了几小时呢?客车每小时比卡车每小时多行多少km?2小时呢?(2)当客车到达B地时客车比卡车多走多少km?走了多少时间呢?(3)你能用算术的方法算出AB之间的路程了吗?设计目的】让学生尝试用算术方法解决,然后逐步引导学生列出方程,让学生体会列算式是依据问题中的数量关系,算式中只含已知数而不含未知数,列方程也是依据相等关系,但他打破了列式时只能用已知数的限制,进一步体会方程的优越性。
初中七年级上册数学《从算式到方程》教案五篇

初中七年级上册数学《从算式到方程》教案五篇最好的一种教学,牢牢记住学校教材和实际经验二者相互联系的必要性,使学生养成一种态度,习惯于寻找这两方面的接触点和相互的关系。
今天小编为大家整理了一份初中七年级上册数学《从算式到方程》教案,供大家阅读参考。
初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)÷2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
从算式到方程说课

本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元一次方
程和找相等关系列方程。通过对这一部分内容的学习,使学生认识到方程是更方 便、更有力的数学工具,从算术方法到代数方法是数学的进步,让学生充分感受 到方程作为刻画现实世界有效模型的意义,体会列方程中蕴涵的“数学建模思
检验方程的解 练习:x=2和x=-2哪个是方程
1 2
3 4
x 1 1 .5 2 x
11 2
的解?
将x=2代入方程右边得
,代入方程左边得
左边不等于右边,则x=2不是该方程的解 5 5 将x=2代入方程右边得 ,代入方程左边得
2
2
左边等于右边,则x=-2是该方程的解
我思考 我成功
想”。
2、学生情况分析
本课要理解掌握一元一次方程的概念及列 方程,学生具有会用算术解题和对方程有初步了 解等知识储备,还须具有一定的观察、归纳、探索 能力. 根据学生数学基础较好,以上所须基本都 已具备,但学生的抽象概括、探索能力稍微偏弱 一些,探索精神和学习毅力不足.
3、教材重点、难点分析
知道什么是方程,一元一次方程,使学生理解问题情 境,探究情境中包含的数量关系,最终用方程来描 述和刻画事物间的相等关系。
( 公交时间 )-( 地铁时间 )=2
表示为:
x 14
x 42
2
地铁到达B站时地铁比公 交多走 2 14 28 km 2 14 走了 1h
42
x 42
两地之间的路程
1 42 42 km
二、自学指导
独立完成
回到过去
明晰概念
含有未知数的等式叫做方程. 练习:判断哪些是方程?
七年级上册数学人教版 第3章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程说课稿【教案】

3.1.1 一元一次方程目标预设一、知识与能力能让学生弄清方程、方程的解、解方程的含义,会检验一个数是否为某个一元一次方程的解。
二、过程与方法经历从特殊到一般,从具体到抽象的过程。
三、情感态度与价值观通过一系列生动有趣的问,培养学生敢于面对挑战和勇于克服困难的意志。
重点:方程的解的概念。
难点:方程的解的概念。
教学准备:课件(或相应图片)预习导学:根据下列问,设未知数列方程:①一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?②用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5 倍。
问长方形的长、宽各是多少?③某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?(小组讨论,代表发言,学生点评)。
教学过程:一、创设情景,谈话导入列方程是解决问的重要方法,利用方程可以解出未知数,从方程1700+150x=2450,你能估算出x的值吗?(先独立思考,然后小组交流)二、精讲点拨,质疑问难1、方程:含有未知数的等式叫做方程。
(5x-7=8,5,-7,8O 已知数,x为未知数)2、方程的解:能使方程左右两边的值相等的未知数的值叫做方程的解。
只含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程解的过程。
4、一般地,要检验某个值是否为方程的解,可以用这个值代入方程,看方程左右两边的值是否相等。
三、课堂活动,强化训练例1、判断下列各式是不是方程,如果是,指出已知数和未知数:如果不是,说明为什么?① 5-2x=1 ② y 2+2=4y-1③ x-2y=6 ④ 2x2+5x-8⑤ 3×2=1 ⑥ (x-1)(x+2)(x+1)=0⑦ 1+x=x+1 ⑧ x =-2(畅所欲言,学生点评,得出结论)例2、根据下列条件列出方程:① 某数比它的16554大 ; ② 某数的51比某数小3;③ 某数比它的两倍小3; ④ 某数比它的相反数大2;⑤ 某数的4倍与3 的差,等于某数的31;⑥ 某数与1的和乘以它与1的差,其积等于1。
七年级数学从算式到方程说课稿

书山有路勤为径,学海无涯苦作舟
七年级数学从算式到方程说课稿
为了帮助各位老师能够有效地上好每节课,小编整理了这篇七年级数学从算式到方程说课稿,希望可以帮助到大家!
从算式到方程说课稿
一、教材分析
(一)教材的地位和作用
方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.
(二)教学内容
从算式到方程新教材与原教材的显着区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.
书中自有黄金屋,书中自有颜如玉。
初一数学《从算式到方程》教案范文集锦
初一数学《从算式到方程》教案范文集锦初一数学《从算式到方程》教案范文一教学目标1.知识与技能(1)通过观察,归纳一元一次方程的概念.(2)根据方程解的概念,会估算出简单的一元一次方程的解.2.过程与方法.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.3.情感态度与价值观鼓励学生进行观察思考,开展合作交流的意识和能力.重、难点与关键1.重点:了解一元一次方程的有关概念,会根据条件,设未知数,•列出简单的一元一次方程,并会估计方程的解.2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.3.关键:找出能表示实际问题的相等关系.教具准备:投影仪.教学过程一、复习提问在小学里,我们已学习了像2某=50,3某+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.方程是应用广泛的数学工具,把问题中未知数与数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.通过本章中丰富多彩的问题,你将进一步感受到方程的作用,并学习利用一地一次方程解决问题的方法.二、新授1.怎样列方程?让学生观察章前图表,根据图表中给出的信息,答复以下问题.(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,•你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?(2)青山与翠湖、秀水到翠湖的距离分别是多少?(3)本问题要求什么?(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.(5)如果设王家庄到翠湖的路程为某(千米),你能列出方程吗?解:(1)汽车从王家庄行驶到青山用了3小时,青山到秀水用了2小时.(2)青山与翠湖的距离为50 千米,秀水与翠湖的距离为70千米.(3)王家庄到翠湖的距离是多少千米?(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,•而王家庄到青山的时间为3小时,所以必需求汽车的速度.如何求汽车的速度呢?这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)王家庄到青山的路程为:60某3=180(千米)所以王家庄到翠湖的路程为:180+50=230(千米)列综合算式为:某3+50(5)分析:先画出示意图,示意图往往有助于分析问题.从上图中可以用含某的式子表示关于路程的数量:王家庄距青山(某-50)千米,王家庄距秀水(某+70)千米.从章前图表中可以得出关于时间的数量:从王家庄到青山行车3小时,从王家庄到秀水行车5小时.由路程数量和行车时间的数量,可以得到行车速度的表达式.汽车从王家庄开往青山时的速度为千米/时,汽车从王家庄开往秀水的速度为千米/时.要列出方程,必需找出“相等关系〞,题目中还有哪些相等关系吗?根据汽车是匀速行驶的,可知各段路程的车速相等.于是列出方程:=以后我们将学习如何解这个方程,求出未知数某的值,•从而得出王家庄到翠湖的路程.思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?根据汽车匀速行驶,可知各段路程的车速相等.所以还可以列方程:= 或 =(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等) 比拟用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用数,对于较复杂的问题,列算式比拟困难;而方程是根据问题中的等量关系列出的等式,其中既含有数,又含有用字母表示的未知数,有了这个未知数,问题中的量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系〞列出方程.有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.列方程时,要先设字母表示未知数,通常用某、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.例1:根据以下问题,设未知数并列出方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?分析:设正方形的边长为某(cm),那么周长为4某(cm),依题意,得4某=24.初一数学《从算式到方程》教案范文二教学目标:1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.培养学生获取信息、分析问题、处理问题的能力.教学重难点:从实际问题中寻找相等关系.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母某表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h) 卡车某 60 客车某 702.学生回忆方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并比照算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的量和未知量用表格列出:路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数某、y的方程的方法:①以路程为未知数,那么根据两车行驶时间的关系列方程.②以行驶时间为未知数,那么从两车行驶路程的关系列方程.8.比拟列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决以下问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据以下条件,列出关于某的方程:(1)某与18的和等于54;(2)27与某的差的一半等于某的4倍.列出方程后教师说明:“4某〞表示4与某的积,当乘数中有字母时,通常省略乘号“某〞,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:① 比a小9的数; ② 某的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据以下条件,列出关于某的方程:①12与某的差等于某的2倍;②某的三分之一与5的和等于6.四、课时小结1.本节课我们学了什么知识?2.你有什么收获?五、课堂作业小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.第2课时一元一次方程教学目标:1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要屡次的尝试,也需要一定的估计能力.教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为某岁,你能用不同的方法表示小思的年龄吗?(25-某,2某-8)由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-某=2某-8,这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生根本完成解答的根底上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生答复的根底上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为某吗?5.建立概念(1)概念的建立:在学生观察上述方程的根底上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元〞:一个未知数;“一次〞:未知数的指数是一次.判断以下方程是不是一元一次方程:①23-某=-7; ②2a-b=3;初一数学《从算式到方程》教案范文三教学目标 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
初一数学《从算式到方程》教案范文大全
初一数学《从算式到方程》教案范文大全方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要。
接下来是小编为大家整理的初一数学《从算式到方程》教案范文大全,希望大家喜欢!初一数学《从算式到方程》教案范文大全一【教学习目标】一、知识与技能1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
二、过程与方法通过实际问题,感受数学与生活的联系。
三、情感态度与价值观培养学生热爱数学热爱生活的乐观人生态度。
【教学方法】探索式教学法教师准备教学用课件。
【教学过程】一、新课引入教师提出教科书第79页的问题,同时出现下图:问题2:你会用算术方法求出王家庄到翠湖的距离吗?问题3:能否用方程的知识来解决这个问题呢?可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师引导学生设未知数,并用含未知数的字母表示有关的数量教师引导学生寻找相等关系,列出方程.教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:给出方程的概念,介绍等式、等式的左边、等式的右边等概念.含有未知数的等式叫方程.归纳列方程解决实际问题的两个步骤:初一数学《从算式到方程》教案范文大全二教学目标:1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.培养学生获取信息、分析问题、处理问题的能力.教学重难点:从实际问题中寻找相等关系.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 702.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的已知量和未知量用表格列出:路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.8.比较列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决下列问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:① 比a小9的数; ② x的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据下列条件,列出关于x的方程:①12与x的差等于x的2倍;②x的三分之一与5的和等于6.四、课时小结1.本节课我们学了什么知识?2.你有什么收获?五、课堂作业小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.第2课时一元一次方程教学目标:1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为x吗?5.建立概念(1)概念的建立:在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:①23-x=-7; ②2a-b=3;初一数学《从算式到方程》教案范文大全三教学目标 1.了解方程、一元一次方程、方程的解、解方程等概念;2.掌握等式的性质,能对等式进行变形。
人教版七年级上册数学3.1从算式到方程 说课课件
板书设计 3.1 从算式到方程
例1: 例2:
练习1: 练习2: 练习3:
携手共进,齐创精品工程
Thank You
世界触手可及
王家庄
x千米
50千米 70千米
青山
翠湖
秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
算式:(50+70)÷2×3+50=230(千米)
方程:解:设王家庄到秀水的距离为x千米。
王家庄到青山 王家庄到秀水
路程 x-50
x+70
相等关系:
时间 3小时 5小时
匀速
列方程:
X- 50 3
教
学
重
难
重点:方程的概念
点
能列方程解决实际应用问题
难点:找出实际应用问题中的相等关系,成 功列出方程
教法学法
教法:先用问答法,引入方程概念,然后创设情境, 用启发引导法,比较出方程的优势,之后,通 过练习法巩固本堂知识,最后以一道趣味古题 结束本堂内容。
学法:首先做好课前预习,知道方程的概念,然后利 用比较法知道新知的优势,之后能自行解决问 题。最后在课后复习巩固新知。
(利用练习巩固新知,有利于对知识的理解和掌握)
趣味古题结束:
鸡兔同笼,上有20头,下有52足,问鸡兔各多少? 解:设鸡有x只,则兔有(20-x)只。 列方程:2x+4(20-x)=52
(利用这道趣味题,调动全部学生的眼球,并让他们对 这个知识产生浓厚的兴趣,激发他们课后复习的乐趣)
本 节 课 学 了 哪 些 内 容? 哪 些 方 法?
这一节内容所针对的是刚进入初中的七年级学生,对于他们来说,方程是一个只
七年级上册数学教案《从算式到方程》
教学计划:《从算式到方程》一、教学目标1.知识与技能:学生能够理解方程的概念,掌握从具体问题的算式表达转化为方程表达的方法,初步学会解一元一次方程。
2.过程与方法:通过实例分析,引导学生经历从实际问题抽象出数学问题的过程,培养学生的数学建模能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生运用数学知识解决实际问题的意识,以及探索未知、追求真理的科学态度。
二、教学重点和难点●重点:方程的概念、从算式到方程的转化过程、一元一次方程的解法。
●难点:如何从实际问题中准确抽象出方程,以及如何设置恰当的未知数。
三、教学过程1. 引入新课(5分钟)●情境导入:通过一个贴近学生生活的实际问题(如购物找零、路程速度时间关系等),引出传统算式解法的局限性,激发学生思考更高效的解题方式。
●概念引入:介绍方程的概念,强调方程是描述相等关系的数学语言,是解决实际问题的一种有力工具。
●目标明确:阐述本节课的学习目标,让学生明确学习方向。
2. 新知讲授(15分钟)●方程构建:以实际问题为例,引导学生逐步将文字信息转化为数学符号,设置未知数,构建方程。
强调设置未知数的技巧和方法。
●方程解析:详细讲解方程的结构,包括未知数、系数、常数项等,以及方程与算式的主要区别。
●解方程示例:选取简单的一元一次方程作为示例,展示解方程的基本步骤和注意事项。
3. 互动探究(15分钟)●小组合作:将学生分组,每组分配一个实际问题,要求他们合作讨论,尝试将问题转化为方程,并初步求解。
●成果展示:各小组选派代表展示他们的方程构建过程和求解结果,其他同学和老师进行评价和反馈。
●问题解决:针对小组展示中出现的问题和疑惑,进行集体讨论,共同解决。
4. 巩固练习(10分钟)●分层练习:设计不同难度的练习题,包括直接给出条件求方程的题目、根据实际问题构建方程并求解的题目等,以满足不同层次学生的需求。
●即时反馈:学生完成练习后,教师巡视指导,及时发现并纠正学生的错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学从算式到方程说课稿
七年级数学从算式到方程说课稿
为了帮助各位老师能够有效地上好每节课,xx整理了这篇七年级数学从算式到方程说课稿,希望可以帮助到大家!
从算式到方程说课稿
一、教材分析
(一)教材的地位和作用
方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.
(二)教学内容
从算式到方程新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.
(三)教学重点难点
由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立.而本节中学生可能感到困难的仍是实际问题相等关系的建立.
二、目标分析
依据课程标准的要求,确定以下目标:
(一)知识与技能目标
1.了解方程等基本概念.
2.会根据具体问题中的数量关系列出方程.
(二)过程与方法目标
经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想.
(三)情感目标
让学生进一步认识到方程与现实世界的密切关系,感受数学的价值.培养学生获取信息,分析问题,处理问题的能力。
三、教法与学法分析
根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情.并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变.
四、教学过程分析
教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程
②初步具有解方程中的化归意识;
③培养言必有据的思维能力和良好的思维品质.
教学重点用等式的性质解方程。
知识难点需要两次运用等式的性质,并且有一定的思维顺序。
教学过程(师生活动)设计理念
复习引入解下列方程:(1)x+7=1.2;(2)
在学生解答后的讲评中围绕两个问题:
①每一步的依据分别是什么?
②求方程的解就是把方程化成什么形式?
这节课继续学习用等式的性质解一元一次方程。
由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。
探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?
例1利用等式的性质解方程:
()0.5x-x=3.4(2)
先让学生对第(1)题进行尝试,然后教师进行引导:
①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?
②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的 - 号,怎么去? 然后给出解答:
解:两边减0.5,得0.5-x-0.5=3.4-0.5
化简,得
-x=-2.9,、
两边同乘-1,得l
x=-2.9
小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化. 你能用这种方法解第(2)题吗?
在学生解答后再点评.
解后反思:
①第(2)题能否先在方程的两边同乘一3 ?
②比较这两种方法,你认为哪一种方法更好?为什么?
允许学生在讨论后再回答.
例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?
在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?
解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得
80x 3.5+1.5x=355.
化简,得
280+1.5x=355,
两边减280,得
280+1.5x-280=355-280,
化简,得
1.5x=75,
两边同除以1.5,得x=50.
答:用余下的布还可以做50套儿童服装.
解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.
问题:我们如何才能判别求出的答案50是否正确?
在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80 3.5+1.5x=355的左边,得80 3.5+1.5 50=280+75=355
方程的左右两边相等,所以x=50是方程的解。
你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。
这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的检验更加自然。
解题的格式现在不一定要学生严格掌握。
课堂练习①教科书第73页练习第(3)(4)题。
②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)
建议:采用小组竞赛的方法进行评议
小结与作业
课堂小结建议:①先让学生进行归纳、补充。
主要围绕以下几个方面:
(1)这节课学习的内容。
(2)我有哪些收获?
(3)我应该注意什么问题?
②教师对学生的学习情况进行评价。
③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。
评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。
本课作业
①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:
①3+4x=17;②4-=3
②选做题:教科书第73页第4(3)题,第74页第10题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知
识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.
2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师灌输的容
器,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新
课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.
3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点.本设计充分体现了这一特点.
这篇七年级数学从算式到方程说课稿就介绍到这里了,希望大家喜欢!。