最新人教版高中数学必修5第一章《正弦定理和余弦定理》课后训练(第2课时)
《1.1 正弦定理和余弦定理》(同步训练)高中数学必修5_人教B版_2024-2025学年

《1.1 正弦定理和余弦定理》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在三角形ABC 中,已知角A 的余弦值为12,角B 的余弦值为√32,则角C 的余弦值为:A.12B.√32C.−12D.−√32 2、在△ABC 中,已知a=5,b=7,∠C=60°,根据正弦定理求边c 的长度。
(选项中的值保留两位小数)A. 8.09B. 7.00C. 6.08D. 5.003、在三角形ABC 中,已知a=10,b=8,∠B=60°,则c 的长度为( )A. 10B. 12C. 14D. 164、在三角形ABC中,已知角A、B、C的对边分别为a、b、c,若a=5,b=7,角A 的余弦值为3,则角B的正弦值为()5A.45B.35C.2425D.7255、在三角形ABC中,已知a=5,b=8,∠A=60°,则边c的长度为()A. 13B. 5√3C. 10D. 2√36、在三角形ABC中,已知角A、B、C的对边分别为a、b、c,且sinA=3/5,sinB=4/5,则cosC的值为()A. 7/25B. 24/25C. 3/5D. 4/57、在三角形ABC中,已知∠A=60°,∠B=45°,AB=5,则边AC的长度是:A.√10B.√5C.√2D. 58、在三角形ABC 中,已知a=6,b=8,∠A=120°,则sinB 的值为:A. 3√2/4B. 3√3/4C. √3/4D. √2/4二、多选题(本大题有3小题,每小题6分,共18分)1、在三角形ABC 中,已知角A 的余弦值为12,角B 的余弦值为√32,则角C 的余弦值为:A.√32B.12C.−√32D.−122、在三角形ABC 中,已知角A=60°,边长a=10,b=8,则下列说法正确的是( )A. 角B 小于45°B. 边c 大于10C. 三角形ABC 为锐角三角形D. 三角形ABC 面积为20√33、在三角形ABC 中,已知角A 的余弦值为1/2,角B 的余弦值为3/5,且角A 大于角B ,下列选项中,可能成立的边长关系是:A. a < b < cB. a > b > cC. a = b = cD. a < b = c三、填空题(本大题有3小题,每小题5分,共15分)1、在△ABC中,已知a=6,b=8,∠C=60°,则c=______.2、在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a=10,b=8,∠A=30°,则c=______ 。
高中数学人教版必修5课时练习:第一章 解三角形1-1 正弦定理和余弦定理

C.3
10 10
D.
5 5
[答案] C
[解析] 本题考查了余弦定理、正弦定理.
由余弦定理,得 AC2=AB2+BC2-2AB×BC·cos4π
=2+9-2× 2×3× 22=5.∴AC= 5. 由正弦定理,得sAinCB=sBinCA,
∴sinA=BCAsCinB=3×522=3
10 10 .
5.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若(a2+c2-b2)tanB= 3ac,则角 B
2,
∴S△ABC=12acsinB=
3+1 4.
2.在△ABC 中,角 A、B、C 所对的边分别为 a、b、C.若 acosA=bsinB,则 sinAcosA
+cos2B=( )
A.-21
B.12
C. -1
D. 1
[答案] D
[解析] ∵acosA=bsinB,
∴sinAcosA=sin2B=1-cos2B,
二、填空题
5.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a= 2,b=2,sinB+cosB= 2, 则角 A 的大小为________.
[答案]
π 6
[解析] sinB+cosB= 2sinB+π4= 2,
∴sin(B+4π)=1,∵0<B<π,
∴π4<B+π4<54π,∴B=π4,
∴sinAcosA+cos2B=1.
3.在△ABC 中,内角 A、B、C 的对边分别为 a、b、c,若 asinBcosC+csinBcosA=12b,
且 a>b,则∠B=( )
A.6π
B.π3
C.23π
D.56π
人教版高中数学必修五课时作业23:第2课时 正弦定理和余弦定理

第2课时 正弦定理和余弦定理一、选择题1.若三条线段的长分别为5,6,7,则用这三条线段( )A .能组成直角三角形B .能组成锐角三角形C .能组成钝角三角形D .不能组成三角形答案 B解析 设最大角为θ,则最大边对应的角的余弦值为cos θ=52+62-722×5×6=15>0,所以能组成锐角三角形. 2.已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b 2-2a 2=ac +2c 2,则sin B 等于( ) A.154 B.14 C.32 D.12 答案 A解析 由2b 2-2a 2=ac +2c 2,得2(a 2+c 2-b 2)+ac =0.由余弦定理,得a 2+c 2-b 2=2ac cos B ,∴4ac cos B +ac =0.∵ac ≠0,∴4cos B +1=0,cos B =-14,又B ∈(0,π), ∴sin B =1-cos 2B =154.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( )A .1B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A ,∴13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).4.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23答案 A解析 由余弦定理c 2=a 2+b 2-2ab cos C=(a +b )2-2ab -2ab cos C ,∴(a +b )2-c 2=2ab (1+cos C )=2ab (1+cos 60°)=3ab =4,∴ab =43. 5.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c 2-b 2=ab ,C =π3,则sin A sin B的值为( )A.12B .1C .2D .3 答案 C解析 由余弦定理得c 2-b 2=a 2-2ab cos C =a 2-ab =ab ,所以a =2b ,所以由正弦定理得sin A sin B=a b=2. 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C 等于( )A.π3B.3π4C.2π3D.5π6答案 C解析 由正弦定理a sin A =b sin B 和3sin A =5sin B ,得3a =5b ,即b =35a ,又b +c =2a ,∴c =75a ,由余弦定理得cos C =a 2+b 2-c 22ab =-12,∴C =2π3. 7.若△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为( ) A.922 B.924 C.928 D .9 2答案 B解析 设另一条边为x ,则x 2=22+32-2×2×3×13=9,∴x =3. 设cos θ=13,θ为长度为2,3的两边的夹角,则sin θ=1-cos 2θ=223.∴2R =3sin θ=3223=924. 8.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于() A.1010 B.105 C.31010 D.55答案 C解析 在△ABC 中,由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos ∠ABC=(2)2+32-2×2×3×cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC ,得sin ∠BAC =BC ·sin ∠ABC AC =3×sin π45 =3×225=31010.二、填空题9.在△ABC 中,B =60°,a =1,c =2,则csin C = .答案 2解析 ∵由余弦定理得,b 2=a 2+c 2-2ac cos B =3,∴b =3,∴由正弦定理得,c sin C =b sin B =332=2. 10.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B ,则B = .答案 45°解析 由正弦定理,得a 2+c 2-2ac =b 2,由余弦定理,得b 2=a 2+c 2-2ac cos B ,故cos B =22. 又因为B 为三角形的内角,所以B =45°.11.在△ABC 中,a 2-b 2=3bc ,sin C =23sin B ,则A = .答案 30°解析 由sin C =23sin B 及正弦定理,得c =23b ,把它代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32, 又0°<A <180°,所以A =30°.三、解答题12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a 2+c 2-b 2=65ac . 求2sin 2A +C 2+sin 2B 的值. 考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与三角变换的综合解 由已知得a 2+c 2-b 22ac =35, 所以cos B =35, 又因为角B 为△ABC 的内角,所以sin B >0,所以sin B =1-cos 2B =45, 所以2sin 2A +C 2+sin 2B =2cos 2B 2+sin 2B =1+cos B +2sin B cos B=1+35+2×45×35=6425. 13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,∴2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12. ∵0°<A <180°,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°,由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B =3,∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,∴30°<B +30°<150°,∴B +30°=90°,即B =60°,∴A =B =C =60°,∴△ABC 为正三角形.14.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .不确定答案 A解析 ∵cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=⎝⎛⎭⎫b -c 22+3c 242bc >0,∴0°<A <90°,即角A 是锐角.15.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos C c. (1)求C 的大小;(2)如果a +b =6,CA →·CB →=4,求c 的值.考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与平面向量的综合解 (1)由正弦定理,sin A a =3cos C c 可化为sin A 2R sin A =3cos C 2R sin C,即tan C = 3.又∵C ∈(0,π),∴C =π3. (2)CA →·CB →=|C A →||CB →|cos C =ab cos C =4, 且cos C =cos π3=12.∴ab =8. 由余弦定理,得c 2=a 2+b 2-2ab cos C=(a+b)2-2ab-2ab cos π3=(a+b)2-3ab=62-3×8=12.∴c=2 3.。
新编人教a版必修5学案:1.1正弦定理和余弦定理(含答案)

新编人教版精品教学资料第一章 解三角形§1.1 正弦定理和余弦定理材拓展1.几何法证正弦定理设BD 为△ABC 外接圆⊙O 的直径,则BD =2R ,下面按∠A 为直角、锐角、钝角三种情况加以证明.(1)若∠A 为直角,如图①,则BC 经过圆心O ,∴BC 为圆O 的直径,BC =2R ,asin A=BCsin 90°=BC =2R . (2)若∠A 为锐角,如图②,连结CD ,则∠BAC =∠BDC ,在Rt △BCD 中,BC sin ∠BDC =BCsin ∠BAC,∵BC sin ∠BDC =BD =2R ,∴BC sin ∠BAC =2R . 即a sin A=2R . (3)若∠A 为钝角,如图③,连结CD ,则∠BAC +∠CDB =π,所以sin ∠BAC =sin ∠CDB ,在Rt △BCD 中,BCsin ∠CDB=BD =2R ,又∵BC sin ∠CDB =BCsin ∠BAC ,∴BC sin ∠BAC=2R ,即a sin A =2R .可证得:a sin A =2R .同理可证:b sin B =2R ,csin C=2R .所以,不论△ABC 是锐角三角形,直角三角形,还是钝角三角形,都有:a sin A =bsin B =csin C=2R (其中R 为△ABC 的外接圆的半径). 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于其外接圆的直径.2.坐标法证余弦定理如图所示,以△ABC 的顶点A 为原点,射线AC 为x 轴的正半轴,建立直角坐标系,这时顶点B 可作角A 终边的一个点,它到原点的距离r =c .设点B 的坐标为(x ,y ),由三角函数的定义可得:x =c cos A ,y =c sin A ,即点B 为(c cos A ,c sin A ),又点C 的坐标是(b,0).由两点间的距离公式,可得:a =BC =(b -c cos A )2+(-c sin A )2.两边平方得:a 2=(b -c cos A )2+(-c sin A )2 =b 2+c 2-2bc cos A .以△ABC 的顶点B 或顶点C 为原点,建立直角坐标系,同样可证 b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的积的2倍.余弦定理的第二种形式是:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.易知:A 为锐角⇔b 2+c 2-a 2>0; A 为直角⇔b 2+c 2-a 2=0; A 为钝角⇔b 2+c 2-a 2<0. 由此可见:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.法突破一、解三角形的常见类型及解法方法链接:在三角形的边、角六个元素中,只要知道三个,其中至少一个元素为边,即可求解该三角形,按已知条件可分为以下几种情况:大角”来检验.例1如图所示,在四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°.求BC 的长.解 在△ABD 中,设BD =x ,则BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA , 即142=x 2+102-2·10x ·cos 60°, 整理得x 2-10x -96=0,解之得x 1=16,x 2=-6(舍去).由正弦定理:BC sin ∠CDB =BDsin ∠BCD ,∴BC =16sin 135°·sin 30°=8 2.二、三角形解的个数判断方法链接:已知三角形的两边及一边的对角,可用正弦定理解三角形,也可用余弦定理解三角形.如已知a ,b ,A ,可先由余弦定理求出边c ,即列关于c 的方程a 2=b 2+c 2-2bc cos A ,解出c 后要注意验证c 值是否与a ,b 能构成三角形.符合题意的c 值有几个,对应的三角形就有几解.若采用正弦定理解三角形,可以结合下表先判断解的情况,再解三角形.解 方法一 利用余弦定理求解. 先将b =3,c =33,B =30° 代入b 2=a 2+c 2-2ac cos B , 有32=a 2+(33)2-2a ·33·cos 30°. 整理,得a 2-9a +18=0.所以a =6或a =3,经检验6和3均符合题意. 所以a 的值为6或3.方法二 利用正弦定理求解.∵c sin B =323,∴c >b >c sin B .∴△ABC 有两解.∵c sin C =b sin B =6,∴sin C =32. ∴C =60°或C =120°.当C =60°时,A =180°-B -C =90°. 由a sin A =b sin B=6,解得:a =6. 当C =120°时,A =180°-B -C =30°.由a sin A =b sin B=6,解得a =3.所以a 的值为6或3. 三、三角形的面积公式及应用方法链接:三角形面积的常用计算公式(1)S =12ah a (h a 表示a 边上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c ) (r 为三角形内切圆半径);(4)S =abc4R (可由正弦定理推得);(5)S =2R 2sin A ·sin B ·sin C (R 是三角形外接圆半径); (6)S =p (p -a )(p -b )(p -c ) (p 是三角形的半周长).例3 在△ABC 中,已知∠B =60°,面积为103,外接圆半径为R =733,求三边a ,b ,c .解 b =2R sin B =2×733×32=7,∵S △ABC =12ac sin B ,∴103=12ac ×32,∴ac =40,由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=89.由⎩⎪⎨⎪⎧ a 2+c 2=89ac =40 解得⎩⎪⎨⎪⎧a +c =13a -c =±3.∴⎩⎪⎨⎪⎧ a =8c =5或⎩⎪⎨⎪⎧a =5c =8. 所以△ABC 的三边长为a =8,b =7,c =5或a =5,b =7,c =8. 四、利用正、余弦定理求三角形外接圆半径方法链接:利用正弦定理a sin A =b sin B =csin C =2R ,(其中R 是△ABC 的外接圆半径)可以推得以下结论:(1)R =a 2sin A =b 2sin B =c2sin C;(2)R =a +b +c2(sin A +sin B +sin C );(3)R =abc4S(其中S 为△ABC 的面积);(4)R =abc 4p (p -a )(p -b )(p -c ) (其中p 为12(a +b +c ),即△ABC 的半周长).有了这些结论,我们可以容易解决涉及三角形外接圆的问题. 例4如图所示,已知∠POQ =60°,M 是∠POQ 内的一点,它到两边的距离分别为MA =2,MB =11,求OM 的长.解 如图所示,连接AB ,由已知O ,A ,M ,B 四点都在以OM 为直径的圆上.这个圆就是△ABM 的外接圆. ∵∠POQ =60°,∴∠AMB =120°.在△ABM 中,AB 2=MA 2+MB 2-2MA ·MB cos 120°.∴AB 2=22+112-2×2×11×⎝⎛⎭⎫-12=147∴AB =7 3. 由正弦定理得OM =AB sin ∠AMB =AB sin 120°=73sin 60°=14.五、利用正、余弦定理判断三角形形状方法链接:(1)判断三角形的形状,主要有以下两种途径:①利用正、余弦定理,把已知条件转化为边边关系,然后通过因式分解,配方等方法,得出边的相应关系,从而判断三角形的形状;②利用正、余弦定理,把已知条件转化为角角关系,然后通过三角恒等变形,得出内角的关系,从而判断三角形的形状.(2)判断三角形的形状时,在等式变形中,一般两边不要约去公因式,以免漏解. (3)常见的三角形有:正三角形、等腰三角形、直角三角形、等腰直角三角形、钝角三角形或锐角三角形.例5 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.解 方法一 由正弦定理,设a sin A =b sin B =c sin C=k >0, ∴a =k sin A ,b =k sin B ,c =k sin C ,代入已知条件得 k sin A cos A +k sin B cos B =k sin C cos C , 即sin A cos A +sin B cos B =sin C cos C . 根据二倍角公式得sin 2A +sin 2B =sin 2C , 即sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )] =2sin C cos C ,∴2sin(A +B )cos(A -B )=2sin C cos C . ∵A +B +C =π,∴A +B =π-C , ∴sin(A +B )=sin C ≠0, ∴cos(A -B )=cos C , 又∵cos(A +B )=-cos C , ∴cos(A -B )+cos (A +B )=0,∴2cos A cos B =0,∴cos A =0或cos B =0, 即A =90°或B =90°,∴△ABC 是直角三角形. 方法二 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.六、利用正、余弦定理证明三角形中的恒等式方法链接:证明三角恒等式有三种方向:一种是从等式某一侧证到另一侧;一种是将式子的两侧同时整理化简得到相同的结果;最后一种是将要证的恒等式进行适当的等价变形,证明等价变形后的式子成立即可.不论哪种方向都应遵循“从繁化简”的原则.例6 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A=0.分析 利用正弦定理把边角统一为角的代数式,再结合三角公式求证.证明 由正弦定理a sin A =b sin B =csin C =2R .∴a =2R sin A ,b =2R sin B ,C =2R sin C . ∴a 2-b 2cos A +cos B =4R 2(sin 2A -sin 2B )cos A +cos B =4R 2[(1-cos 2A )-(1-cos 2B )]cos A +cos B=4R 2(cos 2B -cos 2A )cos A +cos B=4R 2(cos B -cos A );同理b 2-c 2cos B +cos C =4R 2(cos C -cos B );c 2-a 2cos C +cos A=4R 2(cos A -cos C ).∴左边=a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A=4R 2(cos B -cos A )+4R 2(cos C -cos B )+4R 2(cos A -cos C ) =4R 2(cos B -cos A +cos C -cos B +cos A -cos C )=0. ∴左边=右边. 即a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A =0成立.区突破1.忽视构成三角形的条件而致错例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围. [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab=k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长,∴k >0. 综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,k +(k +2)>k +4.即k >2而不是k >0.[正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,综上所述,k 的取值范围为2<k <6.2.忽视边角之间的关系而致错例2 在△ABC 中,已知A =60°,a =6,b =2,则∠B =____. [错解] 在△ABC 中,由正弦定理, 可得sin B =b sin A a =2sin 60°6=22,所以B =45°或B =135°.[点拨] 上述错解中的错误十分明显,若B =135°,则A +B =195°>180°,故B =135°不适合题意,是个增解.这个增解产生的根源是忽视了a >b 这一条件,根据三角形的边角关系,角B 应小于角A ,故B =135°应舍去.[正解] 在△ABC 中,由正弦定理可得 sin B =b sin A a =2sin 60°6=22,因为a >b ,所以A >B ,所以B =45°.3.忽视角之间的关系而致错例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.[错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2Asin 2B ,⇔cos B cos A =sin A sin B , ⇔sin A cos A =sin B cos B , ⇔sin 2A =sin 2B ,∴A =B . ∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°.[正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2Asin 2B,⇔cos B cos A =sin Asin B⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π.∴A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.题多解例 已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3分析 数学中的许多问题可以从不同角度去考虑.例如本题可以从正弦定理、余弦定理、构造图形等角度去考虑.解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A , ∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.答案 A题赏析1.(2009·上海)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R ,其中R 是△ABC 外接圆半径, ∴a 2=b 2,∴a =b . ∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab . 由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.赏析 在正、余弦定理与平面向量的交汇点上命题是近几年高考的热点题型之一,题目难度一般不大,以中、低档题为主.2.(2011·大纲卷)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sinC =b sin B .(1)求B ; (2)若A =75°,b =2,求a ,c .解 (1)由正弦定理得a 2+c 2-2ac =b 2, 由余弦定理得b 2=a 2+c 2-2ac cos B , 故cos B =22. 又B 为三角形的内角,因此B =45°. (2)sin A =sin(30°+45°) =sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b sin A sin B =2+62=1+3, c =b sin C sin B =2×sin 60°sin 45°= 6.。
(完整版)高一数学必修5解三角形,正弦,余弦知识点和练习题(含答案),推荐文档

C . a=1,b=2, / A=100C . b=c=1, / B=451 .正弦定理abc2R 或变a ・ A ・ c ain △・ain R ・ain C■ K/ ■ vzn u i L M / ・ w iii sin A sin B sinC222bc acco AUUo / v2a 2 2b c 2bccosA 92bc 92.余弦定理:b 22 2 a c 2accosB 或c a QCO l-< c b 22ac2cb 2 a2bacosC.2 22ba ccos C2ab3.( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角 2、已知两角和其中一边的对角,求其他边角 (2)两类余弦定理解三角形的问题:1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式〔、△ ABC 中,a=1,b= 3 , / A=30 °,则/ B 等于A . 60°B . 60° 或 120°2、符合下列条件的三角形有且只有一个的是A . a=1,b=2 ,c=3 ( )C . 30° 或 150°D . 120°( )B . a=1,b= .2,/A=30 °3、在锐角三角形 ABC 中,有( )A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinAB . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA4、若(a+b+c)(b+c — a)=3abc ,且 sinA=2sinBcosC,那么△ ABC 是A .直角三角形D .等腰直角三角形1、在厶ABC 中,已知内角 A —,边BC 2.3.设内角B(1)求函数y f (x)的解析式和定义域;(2)求y 的最大值.2、在VABC 中,角A,B,C 对应的边分别是a,b,c ,若si nAsi nBB .等边三角形C .等腰三角形 5、C 为三角形的三内角,且方程(sinB—si nA)x 2+(si nA — sinC)x+(si nC — sin B)=0有等根,那么角 B6、 满足A=45 B>60 ° C . B<60 D . B w 60°,c= , 6 ,a=2的厶ABC 的个数记为 m,则a m 的值为B .D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是B ,点离地面的高度AB等于asin sin A .sin( )B .asin sin cos( )asin cos C .sin( )a cos sin D .cos( )9、A 为 ABC 的一个内角,且 sinA+cosA = 172,肌 ABC 是三角形•11、在4 ABC 1 中,若 S ABC = (a 2+b 2 — c 2),那么角/ C=412、在4 ABC 13、在4 ABC① B=60 亠31 中,a =5,b = 4,cos(A — B)= 一,则 cosC= _____ .32中,求分别满足下列条件的三角形形状:,b 2=ac ; ② b 2ta nA=a 2ta nB ;sin A sin B ③ sin C=cos A cos Bx ,周长为—求 a:b:c2 ,3、在锐角三角形ABC中,有( )23、在 VABC 中 a, b, c 分别为 A, B, C 的对边,若 2sinA(cosB cosC) 3(sinB sinC), (1)求A 的大小;(2)若a .61,b c 9,求b 和c 的值。
高中数学第一章解三角形课时作业2余弦定理新人教B版必修5

因为BD= ,AB=1,
所以AD= = .
A.钝角三角形B.直角三角形
C.锐角三角形D.等边三角形
解析:∵2c2=2a2+2b2+ab,∴a2+b2-c2=- ab,
∴cosC= = =- <0,
∴90°<C<180°,∴三角形为钝角三角形.
答案:A
6.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()
答案:3或6
8.在△ABC中,∠ABC= ,AB= ,BC=3,则sin∠BAC=________.
解析:由余弦定理得AC2=BA2+BC2-2BA·BCcos∠ABC=5,∴AC= .
由正弦定理得 = ,∴sin∠BAC= .
答案:
9.在△ABC中,角A,B,C所对边的长分别为a,b,c.若a=2,B= ,c=2 ,则b=________.
解析:由余弦定理得cosC= ,
即 = ,解得ab=4.
答案:A
4.△ABC的内角A,B,C的对边分别为a,b,c,若b2=ac,c=2a,则cosB的值为()
A. B.
C. D.
解析:cosB= = = .
答案:B
5.在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC是()
答案:A
2.在△ABC中,a=1,B=60°,c=2,则b等于()
A.1 B.
C. D.3
解析:b2=a2+c2-2accosB=1+4-2×1×2× =3,故b= .
答案:C
3.在△ABC中,c2-a2-b2= ab,则角C为()
高中数学第一章解三角形1.1正弦定理和余弦定理第2课时余弦定理练习含解析新人教A版必修5
高中数学第一章解三角形1.1正弦定理和余弦定理第2课时余弦定理练习含解析新人教A 版必修51.1 正弦定理和余弦定理 第2课 时余弦定理A 级 基础巩固一、选择题1.(2016·天津卷)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .4解析:由余弦定理得13=9+AC 2+3AC ⇒AC =1,选A. 答案:A2.在△ABC 中,已知a cos A +b cos B =c cos C ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:由a cos A +b cos B =c cos C ,得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·b 2+a 2-c 22ab,化简得a 4-2a 2b 2+b 4=c 4,即(a 2-b 2)2=c 4. 所以a 2-b 2=c 2或a 2-b 2=-c 2. 故△ABC 是直角三角形. 答案:B3.在△ABC 中,有下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc ,则∠A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A ∶B ∶C =1∶2∶3,a ∶b ∶c =1∶2∶3. 其中正确的个数为( ) A .1 B .2 C .3 D .4解析:①cos A =b 2+c 2-a 22bc <0,所以A 为钝角,正确;②cos A =b 2+c 2-a 22bc =-12,所以A =120°,错误;③cos C =a 2+b 2-c 22ab>0,所以C 为锐角,但A 或B 不一定为锐角,错误;④A =30°,B =60°,C =90°,a ∶b ∶c =1∶3∶2,错误. 答案:A4.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010解析:设BC 边上的高线为AD ,则BC =3AD ,所以AC =AD 2+DC 2=5AD ,AB =2AD .由余弦定理,知cos A =AB 2+AC 2-BC 22AB ·AC =2AD 2+5AD 2-9AD 22×2AD ×5AD=-1010,故选C.答案:C5.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等边三角形解析:因为2cos B sin A =sin C ,所以2×a 2+c 2-b 22ac·a =c ,所以a =b ,所以△ABC 为等腰三角形. 答案:C 二、填空题6.在△ABC 中,若(a +c )(a -c )=b (b +c ),则∠A =________. 解析:由(a +c )(a -c )=b (b +c )得b 2+c 2-a 2=-bc , 所以cos A =-12,A =120°.答案:120°7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sinC ,则cos A 的值为________.解析:由正弦定理得到边b ,c 的关系,代入余弦定理的变化求解即可. 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .又b =c =14a ,所以12c =14a ,即a =2c .由余弦定理得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c23c 2=-14.答案:-148.三角形的一边长为14,这条边所对的角为60°,另两边长之比为8∶5,则这个三角形的面积是________.解析:设另两边长分别为8x ,5x (x >0),则cos 60°=64x 2+25x 2-14280x2,解得x =2或x =-2(舍去).故另两边长分别是16,10.所以三角形的面积S =12×16×10×sin 60°=40 3.答案:40 3 三、解答题9.在△ABC 中,已知sin 2B -sin 2C -sin 2A =3sin A sin C ,求B 的度数. 解:因为sin 2B -sin 2C -sin 2A =3sin A sin C , 由正弦定理得:b 2-c 2-a 2=3ac ,由余弦定理得:cos B =c 2+a 2-b 22ca =-32,又0°<B <180°,所以B =150°.10.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1(1)求角C 的度数; (2)求AB 的长.解:(1)因为cos C =cos[π-(A +B )]= -cos(A +B )=-12,且C ∈(0,π),所以C =2π3.(2)因为a ,b 是方程x 2-23x +2=0的两根, 所以⎩⎨⎧a +b =23,ab =2.所以AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, 所以AB =10.B 级 能力提升1.在△ABC 中,sin 2 A 2=c -b 2c,则△ABC 的形状为( ) A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形解析:因为sin 2A 2=1-cos A 2=c -b2c, 所以cos A =b c =b 2+c 2-a 22bc,所以a 2+b 2=c 2,故△ABC 为直角三角形. 答案:B2.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:因为cos C =BC 2+AC 2-AB 22×BC ×AC =22,所以sin C =22. 所以AD =AC ·sin C = 3. 答案:33.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解:在△ABD 中,由余弦定理有:AB 2=AD 2+BD 2-2·AD ·BD ·cos ∠ADB . 设BD =x ,有142=102+x 2-2×10x cos 60°,x 2-10x -96=0. 所以x 1=16,x 2=-6(舍去),即BD =16, 在△BCD 中,由正弦定理BC sin ∠CDB =BDsin ∠BCD,可得:BC =16sin 135°·sin 30°=8 2.。
人教A版高中数学必修五第一章第一节《正、余弦定理》课后训练题(无答案).docx
《正余弦定理》训练题1> 在厶ABC 屮,A = 45\B = 60\a = l0,则/?= __________________2、在△ABC 中,a=3, b=5, sinA=*,贝ij sinB= _________________3 43、在厶ABC r t1,cos4=§, cosB=§, BC=4,贝ij AB== _____________________4、在AABC 中,A = 30°,a = l,b = V2 f则B== ______________5、在厶ABC中,若(«2+/?2-c2)tan C=ab,则角C为 ___________6^ 在厶ABC中,G =3,b = 2 , A = 60°,贝0 cos B = = ____________________・*? • 2亠A丄卄r 2siirB —sin A八八7、在厶ABC中,.若3a=2b,则 ---- ——的值为= ___________________8、在AABC 中,A = 60°, AC=2, BC=羽,则AB 等于__________________9、在厶ABC 中,若2方cosB=dcosC+ccosA,则B= _ 10、在厶ABC 中,已知(h + c):(c +a):(a + b) = 4:5:6 f则sin A : sin B : sin C:等于11、_________________________________________________________________ 在厶ABC 屮,A = 60。
,b = l, S,、ABC=Z,则^― = ____________________________sinC12、已知在△ ABC中,sinA:sinB:sinC = 3:5:7,那么这个三角形的最大角是—13、___________________________________________________________________ 已知在△ ABC中,b =护,c = 4, cosB = — ,则a等于_________________________________414、________________________________________________________________________ 在ZiABC 中,已知sin2B = sinAsinC,且c=2a,则cosB 的值为_________________________15、______________________________________________________ 在厶ABC 中,已知bcosC+ccosB = 2b,贝吟= _____________________________________16、________________________________________________________ 在ZVIBC屮,若a2+c2-b2=-ac,则角B的值为__________________________________________17、若在△ ABC中a,b,c满足(a + b)2-c2 =4,且C = 60°,贝q刃?的值为_____________18、若在△ABC 中,B = 2A, a=l, b=书,则c= __________________19^ 在△ABC 中,若b+c=2d,3sirL4 = 5sinB,则角C= _____________20、__________________________________________________________________________ 在厶ABC中,若A = —, b = y[i , AABC的面积为巧,则d二__________________________321、_________________________________________________ 在ZVIBC 屮,G=4,b=5, c=6,则船仝= ________________________________________________ .mi jz22、________________________________________________________ 在厶ABC中,AB=3, AC=2, BC=帧,则乔&= ________________________________________ .23、__________________________________________________________________________ 在△ABC 中,若(b-c)⑸nB+sinC)=(d—V5c)・siiL4,则角3 的大小为_____________________24> 在△ABC 中,b = , C = — , sin A =—,若£)是BC 的中点,则AD= ___________6 225、 在△ABC 中,若 a<b<c,且 cW + /r,则△ABC 为 ______________A.直角三角形B.锐角三角形C.钝角三角形D.不存在26、 在AABC 中,已知b=40, c=20, C=60°,则此三角形的解的情况是 ____________________A.有一解B.有两解C.无解D.有解但解的个数不确定27、 根据下列条件,判断三角形解的情况,其中正确的是 ___________A. G 二&b = \6,A = 30°有两解B. b = 18,c = 20,3 = 60°有一解D. a = 30,b = 25,A = 120。
新人教A版高中数学【必修5】 第一章 1.1.1正弦定理(二)课时作业练习含答案解析
1.1.1 正弦定理(二) 课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =c sin C =2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +csin A +sin B +sin C =2R ;(3)a =2Rsin_A ,b =2Rsin_B ,c =2Rsin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c 2R .2.三角形面积公式:S =12absin C =12bcsin A =12casin B.一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形答案 D2.在△ABC 中,若a cos A =b cos B =c cos C ,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C ,∴tan A =tan B =tan C ,∴A =B =C.3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是() A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝ ⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C.∴0<c≤403.4.在△ABC 中,a =2bcos C ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 A解析 由a =2bcos C 得,sin A =2sin Bcos C ,∴sin(B +C)=2sin Bcos C ,∴sin Bcos C +cos Bsin C =2sin Bcos C ,∴sin(B -C)=0,∴B =C.5.在△ABC 中,已知(b +c)∶(c +a)∶(a +b)=4∶5∶6,则sin A ∶sin B ∶sin C 等于() A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 ∵(b +c)∶(c +a)∶(a +b)=4∶5∶6,∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k>0),则⎩⎨⎧ b +c =4k c +a =5k a +b =6k ,解得⎩⎪⎨⎪⎧ a =72kb =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2C.12 D .4答案 A解析 设三角形外接圆半径为R ,则由πR2=π,得R =1,由S △=12absin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12absin C =43,∴b =2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________. 答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B ,∴sin B =12,故B =30°或150°.由a>b ,得A>B ,∴B =30°,故C =90°,由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C =________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C =2R =2,∴a sin A +b 2sin B +2c sin C =2+1+4=7.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12absin C =12×63×12sin C =183,∴sin C =12,∴c sin C =a sin A =12,∴c =6.三、解答题11.在△ABC 中,求证:a -ccos Bb -ccos A =sin B sin A .证明 因为在△ABC 中,a sin A =b sin B =c sin C =2R ,所以左边=2Rsin A -2Rsin Ccos B2Rsin B -2Rsin Ccos A =+-sin Ccos B +-sin Ccos A =sin Bcos C sin Acos C =sin B sin A =右边.所以等式成立,即a -ccos B b -ccos A =sin B sin A .12.在△ABC 中,已知a2tan B =b2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a2tan B =b2tan A⇔a2sin B cos B =b2sin A cos A⇔4R2sin2 Asin B cos B =4R2sin2 Bsin A cos A⇔sin Acos A =sin Bcos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为() A .45° B .60° C .75° D .90°答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12,∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.解 cos B =2cos2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210. 由正弦定理得c =asin C sin A =107,所以S △ABC =12acsin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B)=sin C ,cos(A +B)=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tan C 2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。
高一数学必修5解三角形,正弦,余弦知识点和练习题(含答案)
1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222A B C A B C A B C+++===.、 已知条件定理应用 一般解法一边和两角 (如a 、B 、C ) 正弦定理由A+B+C=180˙,求角A ,由正弦定理求出b 与c ,在有解时 有一解。
两边和夹角 (如a 、b 、c) 余弦定理由余弦定理求第三边c ,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。
三边(如a 、b 、c) 余弦定理由余弦定理求出角A 、B ,再利用A+B+C=180˙,求出角C 在有解时只有一解。
1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有 ( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为 ( )A .4B .2C .1D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A点离地面的高度AB 等于( )A .)sin(sin sin αββα-aB .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ;③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).1、在ABC △中,已知内角A π=3,边23BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在ABC V 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c A BD Cαβ3、在ABC V 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后训练
1.在△ABC 中,
若1a
,1b
,
c =则△ABC 的最大角的正弦值为( ). A
.2
B .1
C .12
D .12- 2.设a ,a +2,a +4是钝角三角形的三边,则a 的取值范围是( ). A .0<a <3 B .1<a <3 C .3<a <4 D .2<a <6 3.若△ABC 的三边长为a ,b ,c ,它的面积为
14(a 2+b 2-c 2),那么∠C =( ). A .30° B .45° C .60° D .90°
4.在△ABC 中,∠A =60°,b =1
sin sin sin a b c A B C
++++=( ). A
. B
C
D
5.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是__________.
6.在锐角△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,=6cos b a C a b
+,则tan tan tan tan C C A B
+的值是__________. 2222
22222222
sin 22=====43sin sin cos ··22
C c c c a b c c A B C a b c a b c ab +-⋅⋅+--. 7.已知△ABC 的三个内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,满足a +c =2b ,且2cos 2B -8cos B +5=0,求∠B 的大小,并判断△ABC 的形状.
8.(2011浙江高考,理18)在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,C .已知sin A +sin C =p sin B (p ∈R ),且ac =
14b 2. (1)当p =54
,b =1时,求a ,c 的值; (2)若∠B 为锐角,求p 的取值范围.
在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且
cos cos 2B b C a c
=+, (1)求∠B 的大小;
(2)
若b =a +c =4,求a 的值.
参考答案
1. 答案:A
解析:∵c >a >b ,∴∠C 为最大角,由cos C =12-
得∠C =120°,
∴sin C 2. 答案:D
3. 答案:B
4. 答案:B
解析:
由1sin 2
S bc A ==
,得c =4,a 2=b 2+c 2-2bc cos A =13,
∴a =而sin sin sin a b c A B C +++
+sin a A ===5. 答案:π3 6. 答案:4
解析:利用余弦定理,得222=6cos =62b a a b c C a b ab +++⋅,化简得2
2232
c a b +=, tan tan sin cos sin cos tan tan sin cos sin cos C C C A C B A B A C B C ⋅⋅+=+⋅⋅sin sin cos+cos sin =sin sin cos C B A B A A B C
()⋅⋅ 7. 解:解法一:∵2cos 2B -8cos B +5=0,
∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.
解得cos B =
12或cos B =32
(舍去), ∴cos B =12.∴∠B =π3
.又∵a +c =2b , ∴22222212cos ===222a c a c a c b B ac ac +⎛⎫+- ⎪+-⎝⎭. 化简得a 2+c 2-2ac =0,解得a =C .
∴△ABC 是等边三角形.
解法二:∠B =π3
(同解法一).∵a +c =2b , 由正弦定理得sin A +sin C =2sin B =2sin π3
∴2πsin sin 3A A ⎛⎫-∠= ⎪⎝⎭
+
化简得
3sin 2A A +=∴πsin 16A ⎛⎫∠+= ⎪⎝
⎭. ∵0<∠A <π,∴ππ62A ∠+=,π3A ∠=,π3C ∠=. ∴△ABC 是等边三角形.
8. 解:(1)由题设并利用正弦定理,得5,41,4
a c ac ⎧+=⎪⎪⎨⎪=⎪⎩ 解得1,1,4a c =⎧⎪⎨=⎪⎩或1,41.
a c ⎧=⎪⎨⎪=⎩ (2)由余弦定理,
b 2=a 2+
c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-
12b 2-12
b 2cos B ,
即2
31
=cos 22
p B
+,因为0<cos B<1,得p2∈
3
,2
2
⎛⎫
⎪
⎝⎭
,由题设知p>0
,所以p
<<
9.解:(1)方法1:∵
cos
cos2
B b
C a c
=-
+
,
∴由正弦定理得
cos sin
cos2sin sin
B B
C A C
=-
+
,
即2sin A cos B+cos B sin C+sin B cos C=0.
∵∠A+∠B+∠C=π,∴2sin A cos B+sin A=0.
∴sin A(2cos B+1)=0.∵sin A≠0,∴2cos B+1=0.
∴
1
cos
2
B=-.又0<∠B<π,∴
2π
=
3
B
∠.
方法2:∵
cos
cos2
B b
C a c
=-
+
,
由余弦定理得
222
222
2
2
2
a c b
b
ac
a b c a c
ab
+-
=-
+-+
.
∴
222
222
1
2
a c b
a b c c a c
+-
=-
(+-)+
∴(a2+c2-b2)2a+c(a2+c2-b2)=-(a2+b2-c2)C.
即(a2+c2-b2)2a=-c·2a2.
∴
2221
cos
22
a c b
B
ac
+-
==-.∴
2
=π
3
B
∠.
(2)由余弦定理得b2=a2+c2-2ac cos B,
即b2=a2+c2-2ac cos
2
3
π=a2+c2+ac=(a+c)2-aC.
又a+c=4
,b=,∴ac=3.解得a=1或3.。