直接序列扩频通信和跳频扩频通信系统选题背景和研究现状

合集下载

精编扩频通信的基本原理(直接序列扩频、跳频等)资料

精编扩频通信的基本原理(直接序列扩频、跳频等)资料

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

宽带无线直接扩频系统的研究与实现的开题报告

宽带无线直接扩频系统的研究与实现的开题报告

宽带无线直接扩频系统的研究与实现的开题报告一、研究背景及意义随着无线通信技术的飞速发展,对于带宽的需求也越来越高,宽带通信成为了无线通信的重要发展方向。

目前,宽带通信主要有两种传输方式,一种是基于直接序列扩频(DS-CDMA)的宽带无线通信系统,另一种是基于直接扩频(DS-UWB)的宽带无线通信系统。

直接扩频系统具有带宽利用率高、抗干扰能力强等优点,已经被广泛应用于无线通信领域。

本课题将重点研究的是基于直接扩频的宽带无线通信系统,该系统在研究过程中将关注以下几个方面:(1)系统的基本架构和原理(2)系统的传输性能分析(3)系统的调制与解调算法(4)系统的实现与仿真(5)系统的性能评估和优化本研究对于提高宽带无线通信系统的传输能力和稳定性,进一步推动无线通信技术的发展具有重要意义。

二、研究内容和计划1、系统的基本架构和原理在第一阶段的研究中,将详细研究直接扩频系统的基本架构和原理,包括系统的调制、解调、编码、解码等方面,为后续的研究工作打下基础。

2、系统的传输性能分析在第二阶段的研究中,将对系统的传输性能进行分析,明确系统的传输速率、传输距离、误码率等参数,为后续的算法设计和实现提供参考。

3、系统的调制与解调算法在第三阶段中,将研究基于正交多项式的直接扩频调制算法和曼彻斯特解调算法,实现对系统的调制和解调,并对实现结果进行评估和优化。

4、系统的实现与仿真在第四阶段中,将根据已有的研究成果,进行系统实现和仿真,测试实现结果的可靠性和稳定性。

5、系统的性能评估和优化在第五阶段中,将对系统进行性能评估和优化,针对实现过程中出现的问题进行分析,提出解决方案,进一步提高系统的可靠性和性能。

三、预期成果在本课题的研究中,预期达到以下成果:1、明确基于直接扩频的宽带无线通信系统的基本架构和原理;2、对系统的传输性能进行分析,明确系统的传输速率、传输距离、误码率等参数;3、研究基于正交多项式的直接扩频调制算法和曼彻斯特解调算法;4、实现和仿真基于直接扩频的宽带无线通信系统,并测试实现结果的可靠性和稳定性;5、对系统进行性能评估和优化,提高系统的可靠性和性能。

军 事通信系统的抗干扰技术研究与发展与应用

军 事通信系统的抗干扰技术研究与发展与应用

军事通信系统的抗干扰技术研究与发展与应用在现代战争中,军事通信系统的作用至关重要。

它是连接指挥中心与作战部队、传递情报和指令的关键纽带。

然而,复杂的电磁环境和敌方的有意干扰,给军事通信系统的稳定运行带来了巨大挑战。

因此,深入研究军事通信系统的抗干扰技术,并不断推动其发展与应用,具有极其重要的战略意义。

一、军事通信系统抗干扰技术的重要性军事通信系统的可靠性和稳定性直接关系到战争的胜负。

在战场上,敌方会采取各种手段对我方通信进行干扰,如电磁压制、信号欺骗、网络攻击等。

一旦通信系统受到干扰,指挥命令无法及时下达,情报信息不能准确传递,作战部队将陷入混乱,甚至可能导致战斗的失败。

因此,强大的抗干扰技术是保障军事通信系统有效运行的基石。

二、常见的军事通信系统干扰类型1、自然干扰自然干扰主要包括雷电、静电、太阳黑子活动等引起的电磁干扰。

这类干扰具有随机性和不可预测性,但通常强度较低,对军事通信系统的影响相对较小。

2、人为有意干扰人为有意干扰是敌方有针对性地对我方通信系统实施的干扰,是军事通信面临的主要威胁。

这包括以下几种类型:阻塞式干扰:通过发射大功率的噪声信号,覆盖我方通信频段,使我方通信信号被淹没在噪声中,无法有效接收。

欺骗式干扰:伪造与我方通信信号相似的假信号,误导我方接收设备,造成通信错误。

跟踪式干扰:能够实时监测我方通信信号的频率和特征,动态调整干扰信号的参数,实现精准干扰。

三、军事通信系统抗干扰技术的研究现状为了应对各种干扰威胁,科研人员在军事通信系统抗干扰技术方面开展了大量的研究工作,并取得了一系列重要成果。

1、扩频技术扩频技术是目前军事通信中应用较为广泛的抗干扰技术之一。

它通过将信号的频谱扩展到一个较宽的频带上,降低了信号的功率谱密度,使敌方难以检测和干扰。

常见的扩频技术有直接序列扩频(DSSS)和跳频扩频(FHSS)。

DSSS 是将原始信号与高速的伪随机码进行相乘,使信号的频谱得到扩展;FHSS 则是使通信信号在多个不同的频率上快速跳变,使敌方难以跟踪和干扰。

直接序列扩频技术在无线通信中的

直接序列扩频技术在无线通信中的
抗多普勒效应
直接序列扩频技术能够抵抗多普勒效应,保证高速移动通信的稳 定性。
05
直接序列扩频技术在无线通信 中的实例分析
实例一:无线局域网(WLAN)中的应用
1 2
扩频技术
在无线局域网中,直接序列扩频技术被用于对 数据进行编码和传输。
抗干扰能力
由于使用了扩频技术,无线局域网可以在复杂 的电磁环境中提高抗干扰能力。
通过扩频技术可实现信号 隐蔽传输,提高通信的保 密性。
直接序列扩频技术在无线通信中的实现方式
采用伪随机二进制序列进行调制
01
将信息信号与伪随机二进制序列进行调制,实现信号的扩频。
通过相关解调技术进行解调
02
在接收端,使用相关解调技术将扩频信号解调为原始信号。
可实现多用户同时接入
03
通过不同的伪随机二进制序列实现多个用户同时接入,提高频
直接序列扩频技术 在无线通信中的应 用
2023-11-05
目录
• 引言 • 直接序列扩频技术概述 • 无线通信中的直接序列扩频技术 • 直接序列扩频技术的性能分析 • 直接序列扩频技术在无线通信中的实例分析 • 结论与展望
01
引言
背景介绍
无线通信在现代社会中的普及程度不断提高,尤其在移动通 信和互联网接入方面。
扩频技术定义
扩频技术是一种用宽带信号传输信息的方式,其信号所占用的带宽远大于所传输的信息所需的带宽。
扩频技术特点
抗干扰能力强、抗多径衰落能力强、抗噪声干扰能力强、抗人为干扰能力强、保密性好。
直接序列扩频技术的原理
• 直接序列扩频技术原理:直接序列扩频技术是将待传输信息 信号的频谱用高速率的伪随机噪声(PN码)进行扩展,形 成宽带信号,然后通过发射天线发送出去。接收端使用相同 的PN码进行解扩,恢复原始信息信号。

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息和发出的信息并不完全相同。

可靠性就是用来衡量收到信息和发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了使用。

近年来,扩展频谱通信技术的理论和使用发展非常迅速,在民用通信系统中也得到了广泛的使用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(和待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

直接序列扩频(DS-SS)通信系统的仿真与实现 开题报告

南京师范大学毕业设计(论文)开题报告姓名:学号:学院: 泰州学院专业: 通信工程题目: 直接序列扩频通信系统的仿真与实现指导教师:2012 年 3月 10日一.本课题的目的及研究意义现代军事通信面临着纷繁复杂的干扰环境,因此具备足够的抗干扰能力,是未来通信发展至关重要的因素,这要求能够识别和抑制各种干扰。

扩频通信早期主要应用于军事目的,从世纪年代末、年代初开始,扩频技术在民用通信方面的应用逐渐兴起并迅速发展,例如在蜂窝数字移动通信系统中,扩频技术被用于克服多路径效应和抑制同信道干扰,新一代移动通信系统利用技术进一步提高频谱利用率和系统性能。

直接序列扩频系统是目前应用最广泛的一种扩频通信系统。

它最突出的优点是当扩频增益足够大时,系统具有良好的抗干扰能力。

直接序列扩频是高安全性高抗扰性的一种无线序列型号传输方式。

英文全称Direct Sequence Spread Spectrum,简称直扩方式(DS方式)。

通过利用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。

直接序列扩频技术在军事通信和机密工业中得到了广泛的应用,现在甚至普及到一些民用的高端产品,例如信号基站、无线电视、蜂窝手机、无线婴儿监视器等,是一种可靠安全的工业应用方案扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直接序列扩频系统则分别是在这两个领域应用最多的扩频方式。

直接序列扩频系统,及DS-CDMA,主要是一种民用技术,在移动通信系统中的应用则成为扩频技术的主流。

欧洲的GSM标准和北美的以CDMA技术为基础的IS-95都在第二代移动通信系统(2G)的应用中取得了巨大的成功。

而在目前所有建议的第三代移动通信系统(3G)标准中(除了EDGE)都采用了某种形式的CDMA。

因此CDMA技术成为目前扩频技术中研究最多的对象。

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

直接序列扩频技术在无线通信中的研究与应用

直接序列扩频技术在无线通信中的研究与应用直接序列扩频(Direct Sequence Spread Spectrum,简称DSSS)技术是一种常见的无线通信技术,它通过在传输信号中引入高序列码(即扩频码)来提高信号的抗干扰性能和传输安全性。

本文将对直接序列扩频技术在无线通信中的研究和应用进行详细的介绍。

一、直接序列扩频技术的原理直接序列扩频技术是通过将原始信号与伪随机序列进行“乘法运算”来实现的。

伪随机序列也称为扩频码,它是一种高度复杂的码序列,具有良好的随机性。

原始信号在发送端乘以扩频码后,信号的带宽被扩大,从而增加了信号的抗干扰性能。

在接收端,使用与发送端一样的扩频码对接收到的信号进行解码,从而恢复出原始信号。

二、直接序列扩频技术的研究进展1. 扩频码设计:早期的扩频码设计主要依赖于单一序列的生成算法,如线性反馈移位寄存器(Linear Feedback Shift Register,简称LFSR)。

然而,这种方法生成的扩频码周期较短,因此容易受到时间和频率同步误差的影响。

近年来,研究者们提出了一些新的扩频码设计方法,如复合序列的设计、混沌序列的设计等,使得扩频码的周期更长,抗干扰性能更好。

2. 增强码的引入:为了进一步提高直接序列扩频系统的传输性能,针对码跳变和码相位模糊等问题,研究者们引入了增强码(Enhanced Code)技术。

增强码是一种对原始扩频码进行变换得到的码序列,通过增强码的引入,可以提高系统的信号识别与抗干扰能力。

3. 码跳频技术的研究:直接序列扩频技术可以与码跳频技术相结合,即通过在传输过程中引入码跳变来增加系统的抗多径干扰能力。

码跳频技术通过频率域的快速跳变,使得信号在不同的频率上进行传输,从而降低了多径干扰对信号的影响。

三、直接序列扩频技术的应用直接序列扩频技术在无线通信中有广泛的应用,以下是一些典型的应用场景:1. CDMA系统:CDMA(Code Division Multiple Access)是一种基于直接序列扩频技术的通信系统。

直接扩频通信技术分析


03
促进物联网应用创新
直接扩频通信技术的灵活性和可扩展 性为物联网应用带来了更多的创新机 会,有助于推动物联网技术的发展和 应用。
THANKS
感谢观看
适用于高速无线局域网、城域 网、卫星通信等场景。
06
直接扩频通信技术对现代社会的 影响与价值
对信息社会的推动作用
提升信息传输安全性
直接扩频通信技术通过将信号扩展到更宽的 频带,使得信号难以被侦听和干扰,从而提 高了信息传输的安全性。
增强抗干扰能力
由于扩频通信技术使用了比原始信号更宽的频带, 因此可以更好地抵抗各种形式的干扰,提高了通信 的可靠性。
动通信。
缺点
对非对称和不对称加性噪声较为 敏感,实现高速数据传输较为困
难。
窄带与宽带调制比较
窄带调制
窄带调制信号的带宽相对较窄,信号的 传输速率较低,适用于调制信号的带宽较宽,信号的传输速 率较高,适用于高速数据传输和大容量通 信。
03
直接扩频通信性能分析
2023-12-02
直接扩频通信技术分析
汇报人:刘老师
目录
• 直接扩频通信技术概述 • 扩频调制技术 • 直接扩频通信性能分析 • 直接扩频通信应用场景 • 直接扩频通信技术发展趋势与挑战 • 直接扩频通信技术对现代社会的影响与价

01
直接扩频通信技术概述
定义与特点
定义
直接扩频通信技术是一种利用高速率 扩频序列直接对信息数据进行调制传 输的通信技术。
调制方式分类
直接序列扩频(DSSS)、跳频扩频(FHSS)是扩频通信中 两种主要的调制方式。
DSSS与FHSS比较
DSSS在抗多径干扰和抗窄带干扰方面性能较好,而FHSS在 抗频率选择性衰落和抗多普勒效应方面具有优势。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选题背景和研究现状:
扩频通信是扩展频谱通信(Spread Spectrum Communication)的简称,是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列(一般是伪随机码)来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据。

扩展频谱通信与光纤通信、卫星通信一同被誉为进入信息时代的三大高技术通信传输方式。

扩频技术通常有4种类型:
①直接序列扩频(DS)。

②载波频率跳变扩频,简称跳频(FH)。

载荷信息的载波信号频率受伪随机序列的控制,快速地在给定的频段中跳变,此跳变的频带宽度远大于所传送信息的频谱宽度。

③跳时(TH)。

将时间轴分成周期性的时帧,每帧内分成许多时片。

在一帧内哪个时片发送信号由伪码控制,由于时片宽度远小于信号持续时间从而实现信号频谱的扩展。

④混合扩频。

几种不同的扩频方式混合应用,例如:直接序列扩频和跳频的结合(DS/FH),跳频和跳时的结合(FH/TH),以及直接序列扩频、跳频与跳时的结合(DS/FH/TH)等。

扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直接序列扩频系统则分别是在这两个领域应用最多的扩频方式。

一般而言,跳频系统主要在军事通信中对抗故意干扰,在卫星通信中也用于保密通信,而直接序列扩频系统则主要是一种民用技术。

对跳频系统的分析,现在仍集中在其对抗各种干扰的性能方面,如对抗部分边带干扰以及多频干扰等。

而直接序列扩频系统,即DS-CDMA系统,在移动通信系统中的应用则成为扩频技术的主流。

欧洲的GSM 标准和北美的以CDMA技术为基础的IS-95都在第二代移动通信系统(2G)的应用中取得了巨大的成功。

而在目前所有建议的第三代移动通信系统(3G)标准中(除了EDGE)都采用了某种形式的CDMA。

因此CDMA技术成为目前扩频技术中研究最多的对象。

从扩频技术的历史可以看出,每一次技术上的大发展都是由巨大的需求驱动的。

军事通信抗干扰的驱动以及个人通信业务的驱动使得扩频技术的抗干扰性能和码分多址能力得到最大限度的挖掘。

展望未来,第四代移动通信系统(4G)的驱动无疑会使扩频技术传输高速数据的能力得到更大的拓展。

在仿真软件设计中采用了Mathworks公司的MATLAB作为仿真工具,其仿真平台SIMULINK 具有可视化建模和动态仿真的功能。

用SIMULINK构造仿真系统,方法简单直观,开发的仿真系统使用时间流动态仿真,可以准确描述真实系统的每一个细节,并且在仿真进行的同时具有较强的交互功能,易于使用。

另外该软件还具有较好的可扩展性和可维护性。

相关文档
最新文档