函数的解析式一对一讲义
函数解析式

求解方法
一、配凑法 例1:已知f(x+1)=x+2,求f(x)。 分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的 关键是弄清对“x”而言,“y”是怎样的规律。 解:∵f(x+1)=x+2=(x+1)+1 令t=x+1,则f(t)=t+1, ∴f(x)=x+1。 小结:此种解法为配凑法,通过观察、分析,将右端“x+2”变为接受对象“x+1”的表达式,即变为含 (x+1)的表达式,这种解法对变形能力、观察能力有一定的要求。 二、换元法 例2:已知f(1-cosx)=sin2x,求f(x)。 分析:视1-cosx为一个整体,应用数学的整体化思想,换元即得。
简介
函数解析式(Analytic expression),函数解析式与函数式相类似都是求出函数x与y的函数关系。在一次 函数中就是求K值也就是它俩的关系。
常用函数的解析式:
一次函数y=kx+b
正比例函数(也是特殊的一次函数)y=kx
反比例函数y=k/x
二次函数y=a*x^2+b*x+c
注意:通俗地讲,函数反映的是两个变量直接的(变化)关系,严格地说,函数是两个数集之间的一种对应 关系(映射)。而“规律”首先是一个(真)“命题”,而“命题”,在逻辑学指表达判断的语言形式,由系词 把主词和宾词联系而成。例如:‘北京是中国的首都’,这个句子就是一个命题。在现代哲学、逻辑学、语言学 中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。命题不是指 判断(陈述)本身。更进一步,“规律”是事物、现象和过程内在的、本质的必然的联系。
初三数学二次函数的表达式讲义

学科教师辅导讲义一、 知识梳理二、 知识概念(一)二次函数解析式的表示方法1、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.体系搭建(二)二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式.考点一:一般式例1、如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2B.y=﹣x2﹣x﹣2或y=x2+x+2C.y=﹣x2+x+2D.y=x2﹣x﹣2或y=﹣x2+x+2例2、如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.考点二:顶点式例1、根据表中的自变量x与函数y的对应值,可判断此函数解析式为()x…﹣1012…y…﹣12…A.y=x B.y=﹣C.y=(x﹣1)2+2D.y=﹣(x﹣1)2+2例2、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3D.y=3(x+1)2+3例3、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0 5B.0 1C.﹣4 5D.﹣4 1考点三:交点式(两根式)例1、如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为()A.y=(x﹣2)2+4B.y=(x﹣2)2+3C.y=(x﹣2)2+2D.y=(x﹣2)2+1例2、图象经过P(3,4)且与x轴两个交点的横坐标为1和﹣2,求这个二次函数的解析式.考点四:待定系数法例1、如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的解析式;(2)在抛物线上有一点P,满足S△AOP=1,请直接写出点P的坐标.例2、在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.实战演练➢课堂狙击1、与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+x2B.y=(2x+1)2C.y=(x﹣1)2 D.y=2x22、一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3D.y=﹣(2x﹣1)2+33、二次函数y=x2﹣6x+5配成顶点式正确的是()A.y=(x﹣3)2﹣4B.y=(x+3)2﹣4C.y=(x﹣3)2+5D.y=(x﹣3)2+144、二次函数图象如图所示,则其解析式是()A.y=﹣x2+2x+4B.y=x2+2x+4C.y=﹣x2﹣2x+4 D.y=﹣x2+2x+35、如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+26、如图,△AOB是边长为2的等边三角形,过点A的直线y=﹣x+m与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.7、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D (1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.➢课后反击1、已知抛物线y=x2﹣2x+c的顶点在x轴上,你认为c的值应为()A.﹣1B.0C.1D.22、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式()A.y=﹣2x2+8x+3B.y=﹣2x‑2﹣8x+3C.y=﹣2x2+8x﹣5D.y=﹣2x‑2﹣8x+23、把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是()A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3 4、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b,k的值分别()A.0,5B.﹣4,1C.﹣4,5D.﹣4,﹣15、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+36、若所求的二次函数图象与抛物线y=2x2﹣4x﹣1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为()A.y=﹣x2+2x+4B.y=﹣ax2﹣2ax﹣3(a>0)C.y=﹣2x2﹣4x﹣5D.y=ax2﹣2ax+a﹣3(a<0)7、已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),(1)求二次函数和一次函数解析式.(2)求△OAB的面积.8、已知:二次函数y=﹣x2+bx+c的图象过点A(﹣1,0)和C(0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数y=﹣x2+bx+c的图象在直线y=1上方的部分沿直线y=1翻折,图象其余的部分保持不变,得到的新函数图象记为G,点M(m,y1)在图象G上,且y1≥0,求m的取值范围.直击中考1、【2016•兰州】二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣1)2+3C.y=(x﹣2)2+2D.y=(x﹣2)2+42、【2013•深圳】已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A.B.C.D.3、【2011•泰安】若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5B.﹣3C.﹣13D.﹣274、【2008•济宁】已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3B.y=x2﹣2x﹣3C.y=x2+2x﹣3 D.y=x2+2x+35、【2010•深圳】如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S‑PAD=4S‑ABM成立,求点P的坐标.重点回顾二次函数表达式的三种形式:一般式、顶点式、交点式;待定系数法名师点拨1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式.学霸经验➢本节课我学到➢我需要努力的地方是。
第一册函数解析式的求法

第一册函数解析式的求法各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢总第课时课型:复习课授课时间:年月日教学目标:让学生了解函数解析式的求法。
重点:对f的了解,用多种方法来求函数的解析式难点:待定系数法、配凑法、换元法、解方程组法等方法的运用。
教学过程:例1。
求函数的解析式(1) f9[(x+1)= ,求f (x);答案:f (x)=x2-x+1(x≠1)练习1:已知f( +1)=x+2 ,求f(x) 答案:f (x)=x2-1(x≥1)(2) f (x) =3x2+1,g (x) =2x -1 ,求f[g(x)];答案:f[g(x)]=12x2-12x+4 练习2:已知:g(x)=x+1,f[g(x)]=2x2+1,求f(x-1) 答案:f(x-1)=2x2-8x+9(3)如果函数f (x)满足af (x)+f()=ax,x∈R且x≠0,a为常数,且a≠±1,求f (x)的表达式。
答案:f (x)=(x∈R且x≠0)练习3:2f (x) - f (-x) =lg (x+1),求f (x)。
答案:f(x)= lg(x+1)+lg(1-x) (-12+1,则当x>1 时,f(x)=x2-4x+5课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。
布置作业:1、若g(x)=1-2x ,f[g(x)] = (x≠0),求f()的值。
2、已知f(x - )=x + ,求f(x-1)的表达式。
3、已知f(x)=9x+1,g(x)=x,则满足f[g(x)]=g[f(x)] 的x的值为多少?4、已知f(x)为一次函数且f[f(x)] =9x+4,求f(x)。
教后反思:各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
函数的性质专题讲义

函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题四《函数》讲义5.1函数的三要素知识梳理.函数的概念1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的三种表示法解析法图象法列表法就是把变量x,y之间的关系用一个关系式y=f(x)来表示,通过关系式可以由x的值求出y的值.就是把x,y之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x,y的值.就是将变量x,y的取值列成表格,由表格直接反映出两者的关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.题型一.定义域考点1.具体函数定义域1.函数f(x)=(1﹣)−12+(2x﹣1)0的定义域是()A.(﹣∞,1]B.(−∞,12)∪(12,1)C.(﹣∞,1)D.(12,1)2.函数op=M,g(x)=ln(x2+3x+2)的定义域为N,则M∪∁R N=A.[﹣2,1)B.(﹣2,1)C.(﹣2,+∞)D.(﹣∞,1)考点2.抽象函数定义域3.若函数f(3﹣2x)的定义域为[﹣1,2],则函数f(x)的定义域是.4.函数y=f(x)的定义域为[﹣1,2],则函数y=f(1+x)+f(1﹣x)的定义域为()A.[﹣1,3]B.[0,2]C.[﹣1,1]D.[﹣2,2]考点3.已知定义域求参5.已知函数f(x)=lg(ax2+3x+2)的定义域为R,则实数a的取值范围是.6.若函数f(x)=(2a2+5a+3)x2+(a+1)x﹣1的定义域、值域都为R,则实数a满足()A.a=﹣1或a=−32B.−139<<−1C.a≠﹣1或a≠−32D.a=−32题型二.解析式考点1.待定系数法1.已知函数f(x)是一次函数,且f[f(x)]=9x+4,求函数f(x)的解析式.2.已知f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x,则f(x)的解析式是.考点2.换元法3.已知o−1)=−2,则函数f(x)的解析式为.4.已知f(1−1+)=1−21+2,求f(x)的解析式.考点3.凑配法5.(1)已知f(1)=1−2,求f(x)的解析式;(2)已知f(x+1)=x2+12,求f(x).6.已知f(3x)=4x log23+10,则f(2)+f(4)+f(8)+…+f(210)的值等于.考点4.方程组法7.已知函数f(x)满足f(x)+2f(﹣x)=3x,则f(1)=.8.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2•3x,则函数f(x)=.考点5.求谁设谁9.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式;(2)当f(x)>0时.求x的取值范围.10.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈(﹣1,0]时,f(x)的值域为()A.[−18,0]B.[−14,0]C.[−18,−14]D.[0,14]考点6.利用对称求解析式11.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)12.设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1B.1C.2D.4题型三.值域考点1.利用单调性求值域1.下列函数中,与函数op=(15)的定义域和值域都相同的是()A.y=x2+2x,x>0B.y=|x+1|C.y=10﹣x D.=+12.已知函数f(x)=log3(x﹣2)的定义域为A,则函数g(x)=(12)2﹣x(x∈A)的值域为()A.(﹣∞,0)B.(﹣∞,1)C.[1,+∞)D.(1,+∞)考点2.换元法3.函数=2+41−的值域为()A.(﹣∞,﹣4]B.(﹣∞,4]C.[0,+∞)D.[2,+∞)4.函数f(x)=log2(x2﹣2x+3)的值域为()A.[0,+∞)B.[1,+∞)C.R D.[2,+∞)考点3.分离常数5.函数=2r1r1在x∈[0,+∞)上的值域是.6.已知函数op=2+4,则该函数在(1,3]上的值域是()A.[4,5)B.(4,5)C.[133,5)D.[133,5] 7.函数=2+2r2r1的值域是.8.下列求函数值域正确的是()A.函数=5K14r2,x∈[﹣3,﹣1]的值域是{U≠54}B.函数=2−3r1的值域是{U≤−1,≥−15}C.函数=sB+1K2,∈[2,2)∪(2,p的值域是{U≤4K4,≥1K2} D.函数=+1−2的值域是{U−1≤≤2}课后作业.函数的三要素1.函数op=−2+9+10−2B(K1)的定义域为()A.[1,10]B.[1,2)∪(2,10]C.(1,10]D.(1,2)∪(2,10]2.已知函数f(x)=l2,>03,<0,则no14)]的值为()A.19B.13C.﹣2D.3 3.已知o p=2−2,则函数f(x)的解析式为()A.f(x)=x4﹣2x2(x≥0)B.f(x)=x4﹣2x2C.op=−2o≥0)D.op=−24.已知函数f(x)满足2f(x﹣1)+f(1﹣x)=2x﹣1,求:f(x)解析式.5.已知f(x)=(1−2p+3o<1)Bo≥1)的值域为R,那么a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,12)C.[﹣1,12)D.(0,1)6.用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为.。
高考专题讲座(第5讲)求解函数解析式的几种常用方法

题目高中数学复习专题讲座求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解例1 (1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错技巧与方法 (1)用换元法;(2)用待定系数法解 (1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t因此f (t )=12-a a (a t -a -t ) ∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0) (2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为f (x )=2x 2-1 或f (x )=-2x 2+1 或f (x )=-x 2-x +1或f (x )=x 2-x -1 或f (x )=-x 2+x +1 或f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象 命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型 知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线 错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱 技巧与方法 合理进行分类,并运用待定系数法求函数表达式 解 (1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0) ∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2 综上可知 f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3已知f (2-cos x )=cos2x +cos x ,求f (x -1) 解法一 (换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二 (配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4) 学生巩固练习1 若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A 3 B 23 C -23 D -3 2 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( ) A f (x )=(x +3)2-1 B f (x )=(x -3)2-1 C f (x )=(x -3)2+1 D f (x )=(x -1)2-1 3 已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4 已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________ 5 设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式 6 设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式 若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值 7 动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图 8 已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5(1)证明 f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式;(3)试求y =f (x )在[4,9]上的解析式 参考答案 1 解析 ∵f (x 34-x mx ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3 答案 A2 解析 利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1 答案 B 3 解析 由f (x )+2f (x 1)=3x 知f (x 1)+2f (x 1 由上面两式联立消去f (x 1)可得f (x )=x 2-x 答案 f (x )= x 2-x 4 解析 ∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0 又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1 故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x 答案 21x 2+21x 5 解 利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6 解 (1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1), 则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764, 当且仅当2t 2=2-t 2,即t =36时取等号 ∴S 2≤27864⨯即S ≤9616,∴S max =9616 7 解 (1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1); 当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时, 即3<x ≤4时,S △ABP =21(4-x ) 故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x 8 (1)证明 ∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解 当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解 ∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3, f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64( 1532x x x x 课前后备注。
如何求函数的解析式
细谈函数的解析式江苏 袁军求函数的解析式是函数中比较重要的一类题型,如何去求函数的解析式,下面就求函数的解析式的三种方法举例讲解,希望对同学们的学习有所帮助。
一.代入法求函数的解析式已知()f x 的解析式,求(())f g x 的解析式通常用代入法解决。
例1. 已知()43f x x =+,求(32)f x +的解析式。
分析:本题将“32x +”看成x ,代入即可.解:本题用代入法,可以将32x +看成是()f x 中的x ,直接代入即可解决(32)4(32)31211f x x x +=++=+。
随堂训练1.已知21()x f x x +=(0)x ≠,求(1)f x +的解析式。
答案:23(1)1x f x x ++=+(1)x ≠-。
提示:本题容易忽视定义域。
二.换元法求函数的解析式已知(())f g x 的解析式,求()f x 的解析式常用换元法解决。
例2. 已知2(21)32f x x x +=++,求()f x 的解析式。
分析:本题利用换元法来解决.解:由已知2(21)32f x x x +=++,令21t x =+,则12t x -=,∴,23()44x f x x =++。
点评:本种类型的问题还可以用“拼凑法”解决,比如本题还可以这样解决:∵2(21)32f x x x +=++,将232x x ++凑成21x +的形式,然后用x 替换21x +即可。
∵213(21)(441)2144f x x x x +=+++++,∴23()44x f x x =++。
随堂训练2.已知2211(),11xx f x x --=++求()f x 的解析式. 答案:22().1x f x x =+提示:用换元法解决.三.待定系数法求函数的解析式对有些给出函数的特征,求函数的解析式可用待定系数法。
例3. 若()f x 是一次函数,且[]()44f f x x =+;求()f x 的解析式.分析:因为()f x 是一次函数,所以设出()f x 的解析式用代入法解决即可.解:设()(0),f x kx b k =+≠则[]2()().f f x kf x b k kb b =+=++∴244,k x kb b x ++=+比较系数有24,4,k kb b ⎧=⎨+=⎩解得2,4,3k b =⎧⎪⎨=⎪⎩或2,4,k b =-⎧⎨=-⎩ ∴4()23f x x =+或()2 4.f x x =--点评:本题利用()f x 是一次函数,将()f x 的解析式设出,从而代入根据待定系数法的原理从而求出参数的值.随堂训练3.若[]{}()2726,f f f x x =+求一次函数()f x 的解析式.答案:()3 2.f x x =+四.用消去法求函数的解析式对已知()f x 及与()f x 相关的代数式可用消去法解决例4. 如果函数()f x 满足()2()3,f x f x x +-=求()f x .分析:将()f x 和()f x -看成是两个未知数,采用解方程组的思想去求()f x 的表达式. 解:设()f x 的定义域为C ,由()2()3,f x f x x +-=知:,,x C x C ∈-∈则将原式中的x 换成x -,原式任然成立,即有()2()3,f x f x x -+=-与原式联立,得:()2()3,()2()3,f x f x x f x f x x +-=⎧⎨-+=-⎩解得()3.f x x =- 点评:本题利用了方程的思想,将()f x 和()f x -视为两个未知数,采用解方程组的方法消去()f x -,而得到()f x 的解析式.随堂训练4.设函数()f x 满足214()()15(,0),f x f x x R x x -=∈≠求()f x 的解析式. 答案:221()4f x x x =+.求一个函数的解析式,关键是弄清和找出对接受法则的对象实施怎样的运算.以上各题中,我们使用的方法可以总结为①代入法;②换元法;③待定系数法;④消去法,这些都是求函数解析式的常用方法,今后随着学习的深入,还会学习其它方法,要注意随时总结,灵活运用.。
函数y=Asin(ωx φ)讲义-高一上学期数学人教A版(2019)必修第一册
5.6 函数sin()y A x ωϕ=+知识点一 ,,A ωϕ对函数图象的影响1、ϕ对函数sin(),y x x R ϕ=+∈的图象的影响简记为:左加右减“。
这种变换属于平移变换,只改变图象的位置,不改变其大小,可表示为0sin sin()0y x y x ϕϕϕϕϕ=→→=+<向左平移(>)向右平移()2、(0)ωω>对函数sin(),y x x R ωϕ=+∈的图象的影响sin()y x ωϕ=+→sin()y x ωϕ=+3、A (A >0)对函数sin()y A x x R ωϕ=+∈,的图象的影响在纵坐标伸长或缩短的过程中,横坐标未发生变化,其图象变化可以表示为sin()y x ωϕ=+sin()y A x ωϕ=+知识点二 由sin()y x =的图象到sin()y A x ωϕ=+的图象的变换过程由sin()y x =的图象到sin()y A x ωϕ=+的图象的变换过程可由两种方式表示,其一为先平移后伸缩,其二为先伸缩后平移,具体过程如下:知识点三 画函数sin()y A x ωϕ=+的简图 1. 图象变换利用,,A ωϕ对函数sin()y A x ωϕ=+的图象的影响,通过“平移”“伸缩”等得到图象。
2. 用“五点法”作图找五个关键点,分别为使y 能取得最小值、最大值的点和曲线与x 轴的交点,其步骤为: (1) 先确定周期2||T πω=,在一个周期内作出图象; (2) 令X x ωϕ=+,X 分别取30,,,,222ππππ,求出对应的x 值,列表如下:【提示】利用“五点法”作图时,将x ωϕ+看成一个整体,使x ωϕ+分别取30,,,,222ππππ,然后求出相应的x ,y 的值,便找到了“五点”。
知识点四 函数sin()y A x ωϕ=+([0,),0,0x A ω∈+∞>>)中各量的物理意义 A 为振幅,它表示做简谐运动的物体离开平衡位置的最大距离;而2T πω=表示做简谐运动的物体往复运动一次所需的时间. 简谐运动的频率则为12f T ωπ==,它表示做简谐运动的物体在单位时间内往复运动的次数. x ωϕ+称为相位,当x =0时的相位为ϕ,称为初相.【拓展】因此函数sin y x =到sin()y A x ωϕ=+的图象的变换途径为相位变换 → 周期变换 → 振幅变换(或周期变换 → 相位变换 → 振幅变换)。
二次函数辅导讲义(学生版)
⼆次函数辅导讲义(学⽣版)⼆次函数辅导讲义⼀、基础知识讲解+中考考点、例题分析考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如(a≠0,a,b,c为常数)的函数为⼆次函数.2.⼆次函数的图象及性质:⑴⼆次函数y=ax2 (a≠0);当a>0时,抛物线开⼝向上,顶点是最低点;当a<0时,抛物线开⼝向下,顶点是最⾼点;a越⼩,抛物线开⼝越⼤.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
⑵⼆次函数,顶点为(-,),对称轴x=-;当a>0时,抛物线开⼝向上,图象有最低点,且x>-,y随x的增⼤⽽增⼤,x<-,y随x的增⼤⽽减⼩;当a<0时,抛物线开⼝向下,图象有最⾼点,且x>-,y随x的增⼤⽽减⼩,x<-,y随x的增⼤⽽增⼤.解题⼩诀窍:⼆次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。
3.图象的平移:⼆次函数y=ax2 与y=-ax2 的图像关于x轴对称。
平移的简记⼝诀是“上加下减,左加右减”。
⼀、经典考题剖析:【考题1】在平⾯直⾓坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后⼆次函数的关系式是()A.B.C.D.2.⼆次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A. B. C. D.4.已知⼆次函数(a≠0)与⼀次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所⽰,能使y1>y2成⽴的x取值范围是_______5.已知直线y=x 与⼆次函数y=ax 2 -2x -1的图象的⼀个交点 M 的横标为1,则a 的值为()A 、2B 、1C 、3D 、 46.已知反⽐例函数y= x k 的图象在每个象限内y 随x 的增⼤⽽增⼤,则⼆次函数y=2kx 2 -x+k 2的图象⼤致为图1-2-3中的()7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发⽣变化.例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m ,2m -1),即③④。
2.2 函数的解析式教案
2.2 函数的表示法(2)-解析式教学目的:1.掌握求函数解析式的几种常见方法.教学重点: 求函数解析式的方法.教学难点: 求复合函数的解析式.教学过程:一、复习引入1、常用的函数的表示方法有哪些?(解析法、列表法、图象法.)2、什么叫函数解析式?(把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析式.3、函数解析式有什么优点?(函数关系清楚,容易从自变量的值求出其对应的函数值).函数解析式只表示一种对应关系,与所取的字母无关,如223y x x =++与223u t t =++是同一个函数.本节将通过具体例子来说明求函数解析式的几种常用方法.二、讲解新课求函数解析式的常用方法有:1、待定系数法例1、(1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x . 解:(1)由题意设 2()f x ax bx c =++,∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-,∴2()24f x x x =--.说明:(1)已知函数类型,求函数解析式,常用“待定系数法”;(2)基本步骤:设出函数的一般式(或顶点式或两根式等),代入已知条件,通过解方程(组)确定未知系数。
2、代入法例2、根据已知条件,求函数表达式.(1)已知2()43f x x x =-+,求(1)f x +.(2)已知2()31f x x =+,()21g x x =-,求[()]f g x 和[()]g f x .解:(1)∵2()43f x x x =-+∴22(1)(1)4(1)32f x x x x x +=+-++=-.(2)∵2()31f x x =+,()21g x x =-∴222[()]3[()]13(21)112124f g x g x x x x =+=-+=-+∴22[()]2[()]12(31)161g f x f x x x =-=+-=+说明:已知()f x 求[()]f g x ,常用“代入法”.基本方法:将函数f(x)中的x 用g(x)来代替,化简得函数表达式.3、配凑法与换元法:例3、(1)已知2(1)2f x x x +=-,求()f x .(2)已知1)f x =+,求(1)f x +.解:(1)法一配凑法:∵2(1)(1)212f x x x x +=+---2(1)41x x =+--2(1)4(1)3x x =+-++∴ 2()43f x x x =-+.法二换元法:令1x t +=,则1x t =-,22()(1)2(1)43f t t t t t =---=-+∴ 2()43f x x x =-+.(2)设11u =≥,则x =1u -,2(1)x u =-于是22()(1)2(1)1(1)f u u u u u =-+-=-≥∴2()1(1)f x x x =-≥∴22(1)(1)12(11)f x x x x x +=+-=++≥即2(1)2(0)f x x x x +=+≥.说明:已知)]([x g f 求)(x f 的解析式,常用配凑法、换元法;换元时,如果中间量涉及到定义域的问题,必须要确定中间量的取值范围.4、构造方程法例3、已知f(x)满足12()()3f x f x x+=,求()f x .解:∵12()()3f x f x x+= --------① 将①中x 换成1x得 112()()3()f f x x x+= -------② ①×2-②得 33()6f x x x=- ∴1()2f x x x=- 说明:已知)(x f 与)(x f -,或)(x f 与)1(xf 之间的关系式,求)(x f 的解析式,可通过“互换”关系构造方程的方法,消去)(x f -或)1(xf ,解出)(x f . 三、课堂练习:⑴若f(1/x)=1/(1+x),则f(x)= ;⑵已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x ,则f(x)= ; ⑶已知g(x)=1-2x ,f[g(x)]=(1-x 2)/x 2(x ≠0),则f(1/2)= ;(4)已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p ,f(3)=q ,则f(36)= . 解:⑴令u=1/x ,则x=1/u ,f(u)=u/(1+u),∴f(x)=x/(1+x);⑵设f(x)=ax 2+bx+c(a ≠0),∵f(0)=1,∴c=1,又f(x+1)-f(x)=2x ,∴a(x+1)2+b(x+1)+1-ax 2-ba-1=2x ,即2ax+a+b=2x ,比较系数得2a=2且a+b=0,∴a=1,b=-1,∴f(x)=x 2-x+1.⑶由g(x)=1-2x=1/2,得x=1/4,∴f(1/2)=[1-(1/4)2]/(1/4)2=15.⑹f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2(p+q).四、小 结1、函数解析式是函数与自变量之间的一种对应关系,与所取的字母无关.2、求函数解析式的方法一般有待定系数法、代入法、换元法和构造方程法等.3、实际操作中要学会灵活应用这些方法.五、布置作业⒈填空:⑴若f(x)=2x+1,则f[f(2)]= ;f(-x)= ;f[f(x)]= .⑵若f(x+1)=x2-2x+5,则f(x)= .⑶若f(x)=2x+3,g(x+2)=f(x),则g(x)= .⑷若3f(x)+2f(1/x)=4x,则f(x)= .⑸若f(x)=x2-mx+n,f(n)=m,f(1)=-1,则f(-5)= .2、已知函数f(x)=4x+3,g(x)=x2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].答案与提示:⒈⑴f[f(2)]=f(5)=11,f(-x)=-2x+1,f[f(x)]=2f(x)+1=4x+3;⑵f(x)=x2-4x+8;⑶g(x)=2x-1;⑷f(x)=(12x2-8)/5x(x 0);⑸将f(n)=m与f(1)=-1并成方程组,解得m=1,n=-1,可知f(x)=x2-x-1∴f(-5)=29.2、f[f(x)]=4f(x)+3=4(4x+3)+3=16x+15;f[g(x)]=4g(x)+3=4x2+3;g[f(x)]=[f(x)]2=(4x+3)2=16x2+24x+9;g[g(x)]=[g(x)]2=(x2)2=x4.六、板书设计(略)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 1 - 电话:4000-029-101 龙文教育一对一讲义 教师: 学生: 日期: 星期: 时段:
课 题 函 数 解 析 式 学习目标与分析 学习重点 学习方法 学习内容与过程 教师分析与批改
一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(xf是一次函数,且34)]([xxff,求)(xf
二、 配凑法:已知复合函数[()]fgx的表达式,求()fx的解析式,[()]fgx的表
达式容易配成()gx的运算形式时,常用配凑法。但要注意所求函数()fx的定义域不是原复合函数的定义域,而是()gx的值域。 例2 已知221)1(xxxxf )0(x ,求 ()fx的解析式
三、换元法:已知复合函数[()]fgx的表达式时,还可以用换元法求()fx的解析式。
与配凑法一样,要注意所换元的定义域的变化。 例3 已知xxxf2)1(,求)1(xf
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 2 - 电话:4000-029-101 例4已知:函数)(2xgyxxy与的图象关于点)3,2(对称,求)(xg的解析式
五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法
构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(xxfxfxf满足求)(xf
例6 设)(xf为偶函数,)(xg为奇函数,又,11)()(xxgxf试求)()(xgxf和的解析式
六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意
性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7 已知:1)0(f,对于任意实数x、y,等式)12()()(yxyxfyxf恒成
立,求)(xf
七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通
过迭加、迭乘或者迭代等运算求得函数解析式。
例8 设)(xf是定义在N上的函数,满足1)1(f,对任意的自然数ba, 都有
abbafbfaf)()()(,求)(xf
求值域十二法 求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例 北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 3 - 电话:4000-029-101 题、习题则是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。 一、 基本知识 1. 定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。 2. 函数值域常见的求解思路: ⑴.划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵.反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。 ⑶.可以从方程的角度理解函数的值域,如果我们将函数()yfx看作是关于自变量x的方程,在值域中任取一个值0y,0y对应的自变量0x一定为方程()yfx在定义域中的一个解,即方程()yfx在定义域内有解;另一方面,若y取某值0y,方程()yfx在定义域内有解0x,则0y一定为0x对应的函数值。从方程的角度讲,函数的值域即为使关于x的方程()yfx在定义域内有解的y得取值范围。 特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷.可以用函数的单调性求值域。 ⑸.其他。 3. 函数值域的求法 在以上求解思路的引导下,又要注意以下的常见求法和技巧: ⑴.观察法;⑵.最值法;⑶.判别式法;⑷.反函数法;⑸.换元法;⑹.复合函数法;⑺.利用基本不等式法;⑻.利用函数的单调性;⑼.利用三角函数的有界性;⑽.图象法;⑾.配方法;⑿.构造法。 二、 举例说明 ⑴.观察法:由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数11,1yxxx≥的值域。 2,
例2:求函数2610yxx的值域。
1,
⑵.最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例3:求函数2xy,2,2x的值域。 北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 4 - 电话:4000-029-101 1,4
4
例4:求函数2256yxx的值域。 73,8
⑶.判别式法:通过二次方程的判别式求值域的方法。 例5:求函数22122xyxx的值域。
1,1,2
⑷.反函数法:利用求已知函数的反函数的定义域,从而得到原函数的值域的方法。
例6:求函数2332xyx的值域。 22,,33
例7:求函数axbycxd,0,dcxc的值域。 ,,aacc
⑸.换元法:通过对函数恒等变形,将函数化为易求值域的函数形式来求值域的方法。 例8:求函数12yxx的值域。 1,2
⑹.复合函数法:对函数(),()yfuugx,先求()ugx的值域充当()yfu
的定义域,从而求出()yfu的值域的方法。 例9:求函数212log(253)yxx的值域。 北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 5 - 电话:4000-029-101 49,8
⑺.利用基本不等式求值域: 例10:求函数1yxx的值域。 ,22,
例11:求函数212yxx(0)x的值域。
3,
⑻.利用函数的单调性: 例12:求函数11yxx的值域。
提示:211yxx,1x≥,∴1,1xx都是增函数,故11yxx是减函数,因此当1x时,max2y,又∵0y,∴0,2y。
例13:求函数12yxx的值域。 略解:易知定义域为1,2,而12yxx在1,2上均为增函数,
∴11112222y≤,故y1,2 ⑼.利用三角函数的有解性: 例14:求函数2cos13cos2xyx的值域。
1
,3,5
例15:求函数2sin2sinxyx的值域。 1,3
3
⑽.图象法:如果可能做出函数的图象,可根据图象直观地得出函数的值域(求某些分段函数的值域常用此方法)。 北京龙文环球教育科技有限公司西安分公司 教育是一项良心工程 - 6 - 电话:4000-029-101 例16:求函数31yxx的值域。 4,4
求函数值域方法很多,常用的有以上这些,这些方法分别具有极强的针对性,每一种方法又不是万能的。要顺利解答求函数值域的问题,必须熟练掌握各种技能技巧。
⑾.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。
例17:求函数22yxx的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由220xx≥,可知函数的定义域为x∈[-1,2]。此时
221992()0,244xxx
∴22xx30≤≤2,函数的值域是30,2。 ⑿.构造法:根据函数的结构特征,赋予几何图形,数形结合。 例18:求函数224548yxxxx的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。 解:原函数变形为222()(2)1(2)2fxxx 作一个长为4、宽为3的矩形ABCD,再切割成12个单位 正方形。设HK=x,则EK=2x,KF=2x,AK=22(2)2x,