莫来石_磷酸锆复相陶瓷材料性能的研究_熊里
莫来石论文:快速制备莫来石密实材料及致密化机理研究

莫来石论文:快速制备莫来石密实材料及致密化机理研究【中文摘要】莫来石陶瓷具有优异的高温力学性能、高温冲击性能和良好的介电性能,使其广泛应用于各种行业。
虽然用普通莫来石原料以传统方式烧结制备的莫来石陶瓷成本较低,可以大规模应用,但是不能完全显示出莫来石陶瓷的优异性能。
现采用化学合成的方法制备出纯度高、晶粒细小且分布均匀的莫来石前驱体粉末,并利用这种高品质莫来石粉末探索先进的烧结工艺,从而制备出超细晶的莫来石陶瓷,具有重要的意义。
本文采用溶胶-凝胶(Sol-gel)法制备高纯、颗粒均匀且具有良好烧结活性的莫来石前驱体粉末,应用SPS烧结技术,快速制备高致密度、显微结构为类等轴品的块体材料,获得力学性能优良的莫来石陶瓷。
并且在SPS烧结基础上,探索利用两步烧结法进行烧结莫来石陶瓷,研究两步烧结法对晶粒生长、显微结构的影响及其致密化机理。
本文以正硅酸乙酯(TEOS)、硝酸铝为原料,采用溶胶-凝胶工艺,以球磨工艺细化分散干凝胶形成莫来石前驱体,并利用SPS脉冲加热处理合成制备出超细莫来石前驱体粉,并以此前躯体粉为原料,研究采用SPS反应烧结制备莫来石陶瓷。
研究表明:利用SPS 烧结时,当烧结温度为1400℃,升温速率为100℃/min,保温时间3min,压力80MPa时,能...【英文摘要】Because of its great mechanical properties and impact resistance under high temperature as well as its good dielectrical property, the mullite ceramics have been widelyused in different areas. Traditional ways of sintering mullite ceramics has a low cost and widely application. However, they are not solutions good enough to make full use of the great properties of mullite. In this paper, through chemical synthesis, we can get mullite precursor which has mean crystal grain and high purity. By using those hi...【关键词】莫来石 Sol-Gel SPS 高压两步法【英文关键词】mullite Sol-Gel SPS high pressure two-step sintering【目录】快速制备莫来石密实材料及致密化机理研究中文摘要4-6Abstract6-7第1章绪论10-24 1.1 莫来石概况10-15 1.1.1 莫来石基本特性及相关系10-12 1.1.2 莫来石性能及应用12-15 1.2 莫来石粉体制备方法15-16 1.2.1 传统方法15 1.2.2 湿化学方法15-16 1.3 莫来石块体烧结16-21 1.3.1 微波烧结莫来石陶瓷16 1.3.2 放电等离子(SPS)烧结莫来石陶瓷16-19 1.3.3 两步烧结制备高致密细晶陶瓷19-20 1.3.4 晶粒长大与致密化机理20-21 1.4 冷等静压预处理21-22 1.4.1 等静压成型的分类21 1.4.2 等静压成型工艺21-22 1.4.3 等静压成型的应用22 1.5 研究目的、意义及主要内容22-24 1.5.1 研究目的及意义22 1.5.2 研究的主要内容22-24第2章莫来石陶瓷的制备及测试方法24-29 2.1 实验原料与仪器设备24-25 2.1.1 实验原料24 2.1.2 仪器设备24-25 2.2 测试方法25-27 2.2.1 物相分析(XRD)25 2.2.2 形貌分析(SEM和FESEM)25 2.2.3 TEM 分析25-26 2.2.4 密度测定26 2.2.5 硬度分析26-27 2.3 实验过程27-29 2.3.1 前驱体粉的制备27 2.3.2 莫来石陶瓷的制备27-29第3章超细莫来石粉SPS烧结及性能表征29-57 3.1 SPS烧结原理29 3.2 超细莫来石粉的SPS烧结29-33 3.2.1 前驱体粉的表征29-31 3.2.2 前驱体粉烧结方案31-33 3.3 结果与讨论33-43 3.3.1 烧结温度对前驱体粉烧结及其材料微观结构和性能的影响33-37 3.3.2 升温速率对前驱体粉烧结及其微观结构和性能的影响37-39 3.3.3 保温时间对前驱体粉烧结和块体微观结构和性能的影响39-40 3.3.4 轴向压力对前驱体粉烧结和块体微观结构和性能的影响40-43 3.4 SPS烧结工艺优化43-55 3.4.1 烧结加压时机的选择43-49 3.4.2 CIP对烧结的影响49-51 3.4.3 高压磨具的设计51-55 3.5 本章总结55-57第4章莫来石两步法烧结57-69 4.1 实验方案57 4.2 方案设计与结果讨论57-69 4.2.1 实验方案一57-60 4.2.2 结果与讨论60-63 4.2.3 实验方案二63-64 4.2.4 结果与讨论64-69第5章结论与展望69-71 5.1 本文研究结论69 5.2 展望与未来工作69-71参考文献71-74致谢74。
氧化铝-堇青石-莫来石复相陶瓷的制备及抗碱腐蚀性能

氧化铝-堇青石-莫来石复相陶瓷的制备及抗碱腐蚀性能
王佳程;胡继林;盛强;戴海钟;梁波;刘璇
【期刊名称】《山东陶瓷》
【年(卷),期】2022(45)1
【摘要】以低钠氧化铝、煅烧氧化铝、堇青石、莫来石和镁铝尖晶石为主要原料,选择TiO2GCaOGMgOGSiO2体系烧结助剂为添加剂,在1500~1600℃下烧结制备氧化铝-堇青石-莫来石复相陶瓷.探讨了配方组成和烧结温度对氧化铝基复相陶瓷力学性能和抗碱腐蚀性能的影响.实验结果表明:在1600℃下烧结的2号陶瓷样品的综合性能最好,其洛氏硬度为92.6HRA,体积密度为3.92g/cm3,吸水率为
0.09%,气孔率为0.34%.在1600℃下烧结的2号样品的抗碱腐蚀性能最佳,该陶瓷样品在经过两次抗碱腐蚀后其洛氏硬度为68.8HRA.
【总页数】6页(P42-47)
【作者】王佳程;胡继林;盛强;戴海钟;梁波;刘璇
【作者单位】湖南人文科技学院材料与环境工程学院
【正文语种】中文
【中图分类】TQ174
【相关文献】
1.堇青石-莫来石复相陶瓷制备
2.莫来石含量对堇青石-莫来石复相陶瓷性能的影响
3.ZrO2对铝型材厂污泥制备刚玉-堇青石-莫来石复相材料性能的影响
4.堇青石—
莫来石复相陶瓷的制备与性能5.合成温度对堇青石-莫来石复相材料中堇青石、莫来石生成量的影响
因版权原因,仅展示原文概要,查看原文内容请购买。
添加Y_2O_3的ZrO_2-Al_2O_3复相陶瓷力学性能的研究

添加Y_2O_3的ZrO_2-Al_2O_3复相陶瓷力学性能的研究王玉春;丘泰;沈春英【期刊名称】《中国稀土学报》【年(卷),期】2003(21)2【摘要】采用工业ZrO2,Al2O3原料,以Y2O3作为稳定剂,通过适当的工艺制备出ZrO2 Al2O3复相陶瓷。
研究结果表明,Y2O3添加量为3.5%(摩尔分数)的ZrO2基陶瓷中加入Al2O3可有效地抑制ZrO2晶粒的生长,有利于使ZrO2晶粒以亚稳四方相存在,从而提高材料的强度与断裂韧性。
Al2O3含量为20%(质量分数)时,复相陶瓷的抗弯强度、断裂韧性分别为676.7和10MPa·m1 2,其值接近湿化学法制备的复相陶瓷的力学性能。
相变增韧与颗粒弥散增韧作用相互叠加提高了复相陶瓷材料的力学性能。
【总页数】5页(P174-178)【关键词】无机非金属材料;复相陶瓷;颗粒弥散增韧;相变增韧;力学性能;稀土【作者】王玉春;丘泰;沈春英【作者单位】南京工业大学材料科学与工程学院【正文语种】中文【中图分类】TB484.5【相关文献】1.ZrO_2-Al_2O_3复相陶瓷材料的制备研究 [J], 文瑞龙;唐浩;刘书跃;魏耀祖;唐潮;闵鑫2.ZrO_2-Al_2O_3两相陶瓷复合材料力学性能与增韧机制的研究 [J], 陈德勇;黎俊初;闵嗣林;杨刚3.ZrO_2-Al_2O_3复相陶瓷的研究 [J], 王玉春;丘泰;沈春英4.添加Y_2O_3的ZrO2-Al_2O_3复相陶瓷力学性能 [J], 丘泰;王玉春;沈春英5.添加ZrSiO_4制备Al_2O_3/ZrO_2/莫来石复相陶瓷的组织及力学性能研究 [J], 赵龙江;桑可正;雒融;黄治文;曾德军因版权原因,仅展示原文概要,查看原文内容请购买。
多孔Al_2TiO_5-莫来石陶瓷的机械性能和热性能

入初 始悬 浮液 中 , 在烧 结试 样 中获 得 莫 来 石 相 。试 验 测 得 了 纯 A 1 T i O 及添加 了莫来石 的 A 1 T i O 陶 瓷 试 样 的 热 膨
胀 系 数 和 热 滞 后 曲 线 。采 用 赫 兹 压 痕 法 在 强 制 负 荷 条件 下估 测 这 些 试 样 的 损 伤 特性 。通 过 印 压 负 荷 一位 移 曲 线 研
究 了 试 样 的 机 械性 能 。
关 键 词 :A 1 : T i O ; 莫来石 ; 多孔陶瓷 ; 机械性能 中 图 分 类 号 :T Q 1 7 5 . 7 1 2 . 1 文 献 标 识 码 :A 文 章编 号 :1 6 7 3 — 7 7 9 2( 2 0 1 7 )0 4 — 0 0 5 8 — 0 5
是把 T i O 悬 浮 液 以等 克 分 子 的 浓 度 加 入 局 部 浸 润 的 A 1 O 胶 质 悬 浮 液 中 。A l : O , 悬 浮 液 和 同 样 经过 均质 化 和 球 磨 处
理的 S i O 水悬浮液 , 以3 : 2的 摩 尔 比 混 合 在 一 起 生成 二 次 悬 浮 液 。然 后 分 别 以 1 0 %、 2 0 %、 3 0 %和 5 0 % 的体 积 比 加
Wm K ) 、 熔 点高 ( 1 8 6 0  ̄ C±1 0 ℃) 、 杨 氏 模 量 低 ( 1 0 ~ 2 0 G P a ) , 是适 用 于 高温 环 境 的优 质 耐 火材 料 。
另外 , 它还具 有抗 热 震 性 好 、 耐火度高、 抗 腐 蚀 性好
等优点, 可 用 于柴 油 颗粒 过 滤 器 ( D P F ) 及 熔 融 金属
机 械发 泡把 空气 加入 浓 胶 质 悬 浮 液 中 , 干 燥烧 结 后
外文翻译(英文)陶瓷颗粒细度对氧化锆-莫来石复合材料性能的影响.

Refractories and Industrial Ceramics Vol. 52, No. 1, May, 2011EFFECT OF CERAMIC POWDER FINENESSON MULLITE-ZIRCONIUM CERAMIC PROPERTIESG . P. Sedmale, 1A. V . Khmelev, 1and I. É.Shperberga 1Translated from Novye Ogneupory , No. 1, pp. 41–46, January 2011.Original article submitted October 29, 2010.Results are provided for a study of the development of high-temperature mullite-zirconium ceramic with use of activated ceramic powders prepared by grinding for different times with addition of illite clay, and from pure oxide powders. It is shown that increased activity and amorphicity of ground particles considerably pro-motes formation of mullite phase at 1200°C,and also transition of the monoclinic modification of ZrO 2to tetragonal, particularly with an increase in firing temperature. It is proposed that as a result of rapid “freezing”the structure retains the high-temperature modification of ZrO 2, having a tendency with slow ceramic cooling to transform into the monoclinic modification.Keywords:mullite-zirconium ceramic, illite clay, grinding, particle size.INTRODUCTIONMullite-zirconia (mullite-corundumceramic is one of the materials used extensively in high-temperature produc-tion processes. A distinguishing feature of mullite-zirconia ceramic is the retention of high strength, including at ele-vated temperature and with temperature falls. The set of these properties predetermines further application of the ce-ramic and use of it in high-temperature production processes.It has been established [1]that mullite-zirconia ceramic may be prepared from mixed starting compositions, includ-ing g-Al 2O 3, silica-gel, ZrO 2mon, Y 2O 3with addition of 7.75–8.75wt.%illite clay, promoting sintering and forma-tion of a mullite phase at lower temperatures [2].On the other hand, the importance is indicated in [3,4]of the degree of grinding of the starting powders. It has been established grinding ceramic powders leads to destruction of the particle crystal lattice, and as a consequence to amorphization. Here higher sintering indices are achieved for ceramic material and correspondingly density, and ultimate strength in bend-ing and compression. However, a distinguishing feature of rapid grinding [3]is formation of coarse agglomerates con-sisting of particles strongly sintered to each other. It has been proposed that agglomeration is due to heat liberated during grinding. Therefore, as indicated in [5],the duration of grind-ing should severely limited and determined by experiment1for each specific case. According to the authors of the pres-ent articles, grinding duration for starting powders is 5–6h.It is also noted [6]that grinding of starting powder pro-motes crystallization of mullite and tegtragonal ZrO 2in ce-ramic material. After a short period of grinding (4–6h rapid mullite formation during firing is observed at 1180–1280°C;further mullite formation occurs over the ex-tent of the next 350°C.It has been established [7]that with an average content of particles with a size of0.5mm in the starting powder the increase in ultimate strength in compression and even elas-ticity modulus was about 30%compared with a specimen containing particles with a size of more than 5mm. It has been noted that the size of mullite crystal particle that form, which are 50–70nm, and sometimes 80–95nm, is of con-siderable importance.The aim of this work includes determining the effect of ceramic powder fineness, including with addition of illite clay, on formation and development of high-temperaturecrystalline phases (mulliteand ZrO 2, and the mechanical properties of mullite-zirconia ceramic. STUDY METHODSThe starting powder was prepared from a mixture con-sisting of synthetic materials, i.e., g-Al2O 3prepared from calcined Al(OH3at 550°C,amorphous SiO 2, ZrO 2mon, and Y 2O 3. A mineral raw material was used in one part of the 351083-4877/11/05201-0035©2011Springer Science+BusinessMedia, Inc.Riga Technical University, Institute of Silicate Materials, Riga, Latvia.36Fig. 1. Schematic image of diffraction maximum with marked value for calcu-lating crystal particle size by the Sherrer equation.starting powder as an additional component, i.e. illite clay containing about65%illite fraction. The starting powder compositions are provided in Table 1.The chemical and mineral compositions, and also the av-erage grain size of illite clay are provided below:Chemical composition, %:SiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.5Al 2O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8Fe 2O 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.5TiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2CaO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.9MgO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6K2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0Na2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1Dm cal(1000°C. . . . . . . . . . . . . . . . . . . . . . . . . . 8.4Mineral composition, wt. p:illite K 0.5(H3O 0.5Al 2(OH. . . 2[(Al,Si. . . . 4O . . 10]·n H . . . 2O . . . . . . . 65–70quartz SiO 2. . . . . . . . . . . . . . 18–20calcite CaCO 3. . . . . . . . . . . . . . . . . . . . . . . . . . 5–6goethite a-FeOOH . . . . . . . . . . . . . . . . . . . . . . . 7–8kaolinite Al 2(OH4[Si2O5]. . . . . . . . . . . . . . . . . . . 5–7Content, %,particles with sizes, mm:63–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.520–6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.56.3–2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28.5<2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.5The starting powder mixes were ground and homoge-nized in a laboratory planetary mill for 4, 10and 24h, using corundum balls as the grinding bodies. The size of ground powder particles was determined by means of an SEM mi-croscope (modelJSM-T200, Japan, and the average particle distribution was evaluated by means of a photon correlation spectrometer using a strongly diluted suspension of 10–2N KCl (40mg KCl +100ml H 2O; the surfactant used was Fairy washing substance. In order to determine the crystal-line particle size an x-ray diffractometer (modelRigaku, Ja-pan, with Cu Ka-radiation with a scanning interval 2è=10–60°and a speed of 4°/minwas used. The size of crystal particles D , nm, in the original ground powders was determined by the Sherrer equation [8]:D =k l/B cos q,where k is Bolzmann constant (k =0.87–1.0; lis x-ray beam wavelength, nm(l=0.15418nm. The value of B , rad, was calculated from the difference in x-ray beam reflection angles, B =èwith 2–èa 1. A schematic image of the diffraction maximum note of the values required for calculation is shown in Fig. 1.G. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaTABLE 1. Starting Powder Compositions for Preparing Mullite-Zirconia Ceramic, wt.%Powder compositiong-Al 2O 3SiO 2·n H 2OZrO 2Y 2O 3Illite clay1062.3028.005.204.50–10i 57.3025.854.704.158.00Specimens for phase composition, structure and proper-ties of the prepared ceramic materials were manufactured in the form of disks 30mm in diameter and 3mm thick, cylin-ders with a diameter of 35mm and a height of 45mm, and rods 55mm long and3mm thick from powders by axial compaction (pressure120MPa. Firing was carried outin an air atmosphere in the range from 1200to 1500°Cafter each 100°C(ina laboratory muffle furnace Nabertherm 3000, Germany, with a heating rate of 6°C/minwith soaking at the maximum temperature for 30min. Specimen density after firing was evaluated according to apparent density from the ratio of specimen weight to its volume, and also from deter-mination of open porosity and overall shrinkage according to EN 63-2:2001.The composition of phases, as for the size of crystals, and also microstructure of fired specimens were determined from x-ray phase analysis (XPAdata and scanning a scan-ning electron microscope (JSM-T200,Japan data after each firing temperature cycle. Thermal shock resistance was de-termined according to EN820-3:2004,using ceramic rod specimens fired at 1400°C.Specimens were studied after each 200°Cin the range 500–1000°C.Thermal shock resis-tance after firing cycle was evaluated from the change in elasticity modulus and ultimate strength in bending.Elasticity modulus was determined in a Buzz-o-sonic in-strument (firmBuzz-Mac International LLC, USA accord-ing tot eh principle of measuring shock wave propagation with a ceramic specimens placed perpendicular to two paral-lel installed metal bases, covered with a thin polymer layer. Shock waves within a specimen were created by means of small polymer hammer, in one end of which there was a steel ball4mm in diameter, recorded by a special microphone and analyzed by means of a Fourier arrangement.Elasticity modulus E , GPa, was calculated by the equa-tionE =0.9465rf 2L 4T 1/t 2,where ris specimen density, g/cm3; f is frequency, Hz; L is specimen length, mm; T test specimen dimensions; 1is correlation value which depends on t is specimen thickness, mm.The ultimate strength in compression of ceramic speci-mens was determined according to EN 658-2:2003using a TONI Technik Controller TG0995instrument, and ultimate strength in bending was determined by a three-point method according to EN 843-1:2006using a Zwick/Rolemodel 1486instrument.Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties37Fig. 2. Microstructure of starting powder composites 10and 10i re-spectively after grinding for 4(a and 20h (b.Fig. 3. Change in crystal dimensions in relation to starting powder grinding duration for composites 10and 10i:¯and ¡ baddeleyite (correspondinglycompositions 10and 10i; tion 10i; r and ´ Y * corundum (composi-2O 3(correspondinglycompositions 10and 10i; + quartz (composition10i.Fig. 4. Most possible distribution of particles P and their aggregates in starting powder compositions 10and 10i after grinding for 4and 10h.RESULTS AND DISCUSSIONMicrophotographs are shown in Fig. 2of ceramic pow-der compositions 10and 10i, ground for 4and 24h. After 4h of grinding powder composition 10is represented by densely compacted amorphous particles of circular shape with sizes of about 3to 7–10mm, being both individual formations and in the form of agglomerates. At the same time thestruc-ture of ceramic powder 10i with additions of illite clay, ground for 24h, is in the from of amorphous agglomerates of finer particles.According to XPA data, the average size of ZrO 2mon, Y 2O 3and quartz SiO2crystals (introducedwith illite clay in powders after 4, 10and 24h of grinding with an without ad-dition of clay varies within limits 55–100nm (Fig.3. It may seen that additions of clay affects the dispersion of crys-tals in the original powder. There is especially a reduction in crystal size of baddeleyite after 24h of grinding powder and Y 2O3(lessmarkedly; a sharp reduction in the size of quartz and ZrO 2crystals in composition 10i, reaching 55–59nm (seeFig. 3. On the other hand, from the results of determin-ing the size of particles an agglomerates in ground powder using a correlation spectrometer it follows that the size of the maximum amount of particles is seen within the limits 200–520nm (Fig.4.Formation of mullite and corundum phases, and also tetragonal and monoclinic ZrO 2(accordingto XPA data in specimens sintered at different temperatures, is shown in Fig.5. It may be seen that mullite formation commences at 1200°Cand it develops actively up to 1600°C,although the first mullite phase nuclei possibly form at 1100°Cdue to the activity and amorphicity of particles in the original powder. Crystalline phases of SiO2(cristobaliteand quartz are pres-ent up to 1250°C,and at higher temperatures (1330and 1400°Ca reaction sets in promoting further mullite and also corundum formation.It should be noted that over the whole temperature range apart from a diffraction maximum from ZrO 2mon, there is formation of a clearly expressed maximum from ZrO 2tetr,Fig. 5. X-ray patterns of crystalline phase formation in a 10i speci-men in relation to sintering temperature:M is mullite 3Al 2O 3·2SiO2; C is corundum a-Al 2O 3; Q is quartz; Cr is cristobalite; Z m is ZrO 2mon; Z t is ZrO 2tetr.38Fig. 6. Microstructure of specimens of compositions 10i (a and 10(b , fired at1300°C.which points to partial stabilization of zirconium dioxide due to introduction of Y2O 3into the ZrO 2structure.The microstructure of a specimen of this ceramic, shown in Fig. 6a , is represented by densely packed crystalline for-mations, mainly mullite of prismatic and pseudo-prismatic habit; for a specimen without a clay addition (Fig.6b the shape of mullite is more clearly observed.As may be seen from data for shrinkage of specimens of composition 10i (Fig.7, the effect of grinding duration t, i.e., increase in fineness of the starting powder, is quite marked. Specimen shrinkage increases from 15to 25%with an increase in tfor the starting powder for each temperature. Such a marked difference in development of shrinkage with an increase in tmay be explained by assuming that with presence of a liquid phase there is “contraction”(drawingto-gether of particles followed by sintering by a solid-phase mechanism. An increase in shrinkage with an increase in sintering temperature to 1500°Ccauses a reduction in liquid phase viscosity and consequently acceleration of ion diffu-sion, leading to specimen contraction during cooling. A simi-lar observation is also given by the authors in [4].By analyzing the change in apparent density rapp and ul-timate strength in compression sco (Fig.8 it may be noted that a significant role in increasing specimen rapp (upto 3.0and ~2.6g/cm3correspondingly for compositions 10i and 10 is played byaddition of illite clay, which is particularly typical for specimens ground for 10and 24h. This is ex-plained by more active diffusion and reaction of particles in the presence fo a liquid phase, whose formation is pro-moted by addition of illite clay. A positive role is also pro-posed for addition of illite clay on the transformation ZrO 2tetr ®ZrO 2mon on cooling specimens. At the sameG. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaFig. 7. Change in shrinkage Y for specimens of composition 10i:t is temperature; tis starting powder grinding time.Fig. 8. Change in apparent density rapp (––and strength in com-pression sco (——.time, ceramic specimens without addition of illite clay have lower values of rapp since in this case sintering is determined mainly by the activity and amorphicity of particles in the starting powder.A more intense increase in rfirst 4h of grinding app and sshould co of specimens of powders after the also be noted. A further increase in grinding duration (t>10h is less effec-tive, which is probably due to agglomeration of particles. Addition of illite clay at a high level promotes an increase in the value of sco , reaching a maximum value of165MPa. An increase in saddition co to 98MPa is also demonstrated by specimens without of illite clay from powders after 24h of grinding, although the lower values of this index are due to presence of internal pores within specimens, which is indi-cated by the power values of rapp .The elasticity modulus E of specimens after thermal shock DT , particularly with an increase in the temperature range during thermal shock, and also specimens prepared from finer powders, has a tendency to increase (Fig.9. Such a clear difference in the value of E for specimens is appar-ently connected mainly with phase transformations of ZrO [6,11](ZrOwith im-2provement and 2mon >ZrO growth 2tetr, and in all probability of prismatic crystalline mullite for-mations. For specimens with addition of clay the value of E increased by 2–3GPa or more uniformly, particularly with a sharper temperature drop (800/20and 1000/20.For speci-Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties39Fig. 9. Change in elasticity modulus E for specimens of composi-tion 10in relation to difference in temperature interval DT with ther-mal shock. Specimen firing temperature1400°C.Fig. 10. Change in ultimate strength in bending sben of specimens without addition (a and with addition of illite clay (b made from powders ground for 4, 10and 24h in relation to temperature DT . Specimen firing temperature 1400°C.mens after the first thermal shock cycle (500/20a similar tendency is retained.A similar tendency is observed for the ultimate strength in bending sben of specimens after thermal shock. As may be seen from Fig. 10a, the overall tendency of a change in sben involves a marked increase after thermal shock. For exam-ple, whereas for an original specimens (after24h grinding of starting powder the value of sben is25MPa, with an in-crease in DT sben reaches 42.5MPa. It may be proposed that compliance of specimen to a sharp change in temperature followed by rapid b rapid “freezing”of the structure pro-motes a marked or total transfer ZrO 2mon >ZrO 2tetr, and to a certain extent agrees with expressions provided in [10].Changes of sben of specimens with addition of clay (Fig.10b are more uniform. The previous tendency is ob-served towards a more marked increase in sof powders after 24h of grinding, and also ben of specimens with an increase in DT , which is also explained by ZrO 2polymorphic transfor-mation. CONCLUSIONResults of development of high-temperature mullite-zir-conia ceramic using activated powders, ground for different times without or with addition of illite clay, showed that the particle size of the starting powder is determined by grinding duration. Use of different methods for evaluating powder particle size, and also particle agglomeration in a powder, gives different results. It is clear that the size of crystal parti-cles is ~50–100nm, whereas for amorphous particles and aggregates it is 200–500nm. An increase in activity and amorphicity of ground particles markedly promotes forma-tion of mullite phase starting from 1200°C,and also a transi-tion of the monoclinic modification of ZrO 2into tetragonal, particularly with a high firing temperature.It has been established that specimens have relatively high shrinkage (15–25%,which increases considerably with an increase in temperature and starting powder grinding duration.The apparent density and ultimate strength in compres-sion of specimens are governed both by the duration of start-ing powder grinding and also presence of illite clay within it. After 24h of starting powder grinding these indices for spec-imens without addition of illite clay reach 2.55g/cm3and 80MPa; for specimens with additions they increase to 2.95g/cm3and 15MPa respectively.Elasticity modulus and ultimate strength in bending for specimens with an increased temperature difference during thermal shock, both for specimens of powder with prolonged grinding (10and 24h have a tendency towards a marked in-crease, particularly for specimens without illite clay.It is assumed that the tendency of ceramic specimens to-wards a sharp temperature drop leads to rapid “freezing”of the structure, promoting retention of the high-temperature tetragonal modification of ZrO 2. REFERENCES1. G. P. Sedmali, I. É.Sperberger, A. V . Khmelev, et al., “F orma-tion of ceramic in the system Al Tekhn. 2O 3–SiOKeram. 2–ZrO, 2in the presence ofmineralizers,”Ogneupory No. 5, 18–23(2008.2. G. Sedmale, I. Sperberga, U. Sedmalis, et al., “Formationof high-temperature crystalline phases in ceramics from illite cla y and dolomite,”J. Eur. Ceram. Soc. , 26, No. 15, 3351–3355(2006.40 G. P. Sedmale, A. V. Khmelev, and I. É. Shperberga 3. N. Behmanesh and S. H. Manesh, “Role of mechanical activation of precursors in solid-state processing of nano-structured mullite phas e,” J. of Alloys and Compounds, 450, 421 – 425 (2008. 4. Y. Lin and Yi. Chen, “Fabrication of mullite composites by cyclic infiltration and reactionsintering,” Materials Science and Engineering A, 298, 179 – 186 (2001. 5. L. B. Kong, T. S. Zhang, J. Marr, et al., “Anisotropic grain growth of mullite in high-energy ball milling powders doped with transition metal oxides,”,” J. Eur. Ceram. Soc., 23, 2247 – 2256 (2003. 6. E. Medvedovski, “Alumina-mullite ceramics for structuring applications,” Ceramics International, 32, 369 –375 (2006. 7. C. Aksel, “The effect of mullite on mechanical properties and thermal shock behavior of alumina-mullite refractory materials,” Ceramics International, 29, 183 – 188 (2003. 8. S. Junaid, S. Quazi, and R. Andrian, “Use of wid e-angle x-ray diffraction to measure shape and size of dispersed colloidal particles,” J. of Colloid and Interface Science, 338, No. 1, 105 – 110 (2009. 9. W. Yoon, P. Sarin, and W. M. Kriven, “Growth of textured mullite fibers using a quadrupole lamp furn ace,”,” J. Eur. Ceram. Soc., 28, 455 – 463 (2008. 10. N. M. Rendtorft, L. B. Garrido, and E. F. Aglietti, “Thermal shock behavior of dense mullite-zirconia composites obtained by two processing routes,” Ceramics International, 34, 2017 – 2024 (2008.。
氧化锆增韧氧化铝复合陶瓷制备及性能研究

氧化锆增韧氧化铝复合陶瓷制备及性能研究邓茂盛【摘要】本实验以纳米3Y-TZP和微米Al2O3为主要原料,采用常压烧结法制备致密的纳米ZTA复相陶瓷材料.当3Y-TZP含量为30wt%时,其相对密度达到最高,如烧结温度为1 400℃,试样的相对密度高达96.35%.在烧结温度范围内,试样中的颗粒会随着烧结温度的升高而增大,Al2O3颗粒随着3Y-TZP含量的增加而变小.纳米级的3Y-TZP颗粒会形成“内晶型”结构.在烧结温度为1 450℃时,含30wt%3Y-TZP的试样抗弯强度高达441.22 MPa.【期刊名称】《陶瓷》【年(卷),期】2018(000)010【总页数】6页(P30-35)【关键词】复相陶瓷;烧结温度;晶相组成;抗弯强度;硬度【作者】邓茂盛【作者单位】榆林市新科技开发有限公司陕西榆林718100【正文语种】中文【中图分类】TQ174.75氧化铝陶瓷材料是现代无机非金属材料中的一个重要组成部分,其具有其它许多材料所没有的优良的性能。
然而,由于氧化铝陶瓷存在室温强度低、断裂韧度差、脆性大的缺点,使其应用范围受到一定的限制[1]。
而氧化锆具有好的断裂韧性,其可以通过相变增韧来提高材料的力学性能,人们根据此原因研制出氧化锆增韧氧化铝复合陶瓷[2]。
近年来,纳米复合材料的研究成为材料科学领域的一个热点,尤其是以氧化铝为基体的陶瓷[3]。
ZTA复相纳米陶瓷逐渐发展起来,利用相变增韧和第二相纳米颗粒增韧的叠加作用来改善Al2O3力学性能,被广泛应用于各项领域。
本研究是以纳米3Y-TZP和微米Al2O3为原料,采用液相烧结方式制备3Y-TZP/Al2O3复相陶瓷。
在最佳烧结条件下,研究不同含量的纳米3Y-TZP对3Y-TZP/Al2O3复相陶瓷的致密化、相组成、显微结构以及力学性能的影响,并对其复相陶瓷的增韧机理进行探讨。
1 实验内容1.1 实验原料实验所用的原料如表1所示。
表1 实验所用的原料表名称化学式生产厂家纯度八水氧氯化锆ZrOCl2·8H2O国药集团化学试剂有限公司分析纯,纯度≥99.0%六水硝酸钇Y(NO3)3·6H2O国药集团化学试剂有限公司分析纯,纯度≥99.0%二氧化钛TiO2国药集团化学试剂有限公司化学纯,纯度≥98.0%二氧化锰MnO2天津市福晨化学试剂厂分析纯,纯度≥85.0%氧化铝Al2O3浙江省乐清市超微细化工有限公司—无水乙醇C2H5OH国药集团化学试剂有限公司分析纯,纯度≥99.7%氨水NH3·H2O天津市福晨化学试剂厂分析纯,氨含量25%~28%聚乙二醇1000H(OCH2CH2)nOH国药集团化学试剂有限公司化学纯PVA[C2H4OCH]n自制5g/100ml去离子水H2O自制—1.2 试样的配方样品的编号采用以下方式:以组份中的质量百分比进行编号。
莫来石及多孔莫来石的研究和应用
1 . 1 高温莫来石材料
莫来石陶瓷具有良好的高温稳定性和抗热震性, 因此被广泛用于坩埚、防护管以及热电偶管等耐热材 料。日本 C h i c h b u 公司开发出了隧道窑中所用的高纯 莫来石陶瓷传送带,从而取代了不锈钢传送带,用于 在 1 0 0 0℃以上烧结制备电子陶瓷元件[7] 。
多孔陶瓷是一种由众多的气孔在空间通过各种方 式排列而成的一类陶瓷材料。多孔陶瓷按孔径大小可 分为粗孔径多孔陶瓷(孔径> 5 0 0 μ m ) 大孔径多孔陶瓷 (5 0 0 μ m > 孔径> 1 0 0 μ m),中孔径多孔陶瓷(1 0 0 μ m > 孔径> 1 0 m m ),小孔径多孔陶瓷(1 0 μ m > 孔径> 1 μ m ),微孔多孔陶瓷(孔径< 1 μ m );按气孔在陶 瓷中的结构可分为开口气孔型多孔陶瓷、闭口型多孔
软化温度高,优异的抗酸碱腐蚀性,电绝缘性能好,介
收稿日期:2006-7-25 基金项目:武器装备预研基金资助项目(51412040205JW1615) 作者简介:赵光岩(1977-),男,硕士。
电系数低等优点,因此莫来石陶瓷不仅可以用作工程 材料,还可以作为高级耐火材料广泛应用于冶金、玻 璃、陶瓷、化学、电力、国防、燃气和水泥等工业上。
1 . 2 光学莫来石材料
莫来石属于斜方晶系,具有双折射小,在一定条 件下可以获得透明陶瓷。另外,莫来石还具有优良的 透过红外线能力,可以在高温、腐蚀等恶劣的环境中 用作窗口材料。苏春辉等采用溶胶-凝胶(Sol-Gel) 工 艺合成了莫来石透明陶瓷薄膜,扩大了莫来石陶瓷的 光学应用范围[12]。
1 . 3 莫来石在电学方面的应用
由于氧扩散的渗透系数比较高,因而造成非氧化 物陶瓷材料抗氧化能力较弱,限制了这些材料的应用 [8 - 9] 。通过热喷涂、刷镀、溶胶—凝胶、离子表面注入、 等离子喷涂、物理气相沉积和物理化学气相沉积等方 法制备莫来石涂层,可以阻止环境介质直接与材料接 触,提高非氧化物材料高温抗氧化能力,延长材料的 使用寿命,同时莫来石层还具有吸收热震效应[ 1 0 ] 。吕振 林等采用溶胶-凝胶法浸涂在再结晶的碳化硅表面制 作莫来石涂层,该涂层在温度高达 1 5 0 0 ℃下能有效阻 止氧与碳化硅材料接触,从而提高结晶碳化硅材料高 温抗氧化能力[11]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年第7期(第216期)佛山陶瓷2014年第11期(第220期)
研究与探讨
Research&Discussion
1引言
莫来石是工业陶瓷制品中一种重要的材料,是陶瓷和耐火材料中最常见的氧化物之一,最高使用温度达1600℃。
通过莫来石和低膨胀相复合,可以进一步降低材料的热膨
胀系数,这类材料性能优异、应用广泛。磷酸锆陶瓷材料是一种新型的低膨胀材料,因其具有优良的热学性能使它成为人们关注的重点材料而加以深入研究[1]。若能制备出热膨胀系数连续可调的莫来石-磷酸锆复相材料,则可以适应多种条件使用。通
过本实验的研究,可为进一步研究不同离子掺杂形成的热膨胀系数连续变化的莫来石-磷酸锆复相陶瓷做准备。
2实验内容
2.1实验原料
本实验所采用的原料为:化学纯的Al(OH)3、(NH4)2HPO4、无水K2CO3、MgO、煅烧ZnO和工业SiO2、ZrO2等。
2.2实验制备工艺过程
本实验以Al(OH)3和石英为原料,按照莫来石理论组成混合,加入适量添加剂;然后于1350℃下保温3h锻烧
合成莫来石粉体。把ZrO2磨细,按配方称量后,将(
NH
4)
2HPO4、和K2CO3加入水中搅拌溶解倒入ZrO2充分混合均匀,经干燥以后装入A12O3坩埚中,放入电炉中,在
250℃
温度下保温1h;最后在1350℃温度下中烧成(保温
1
h),合成磷酸锆粉体[2]。
按照莫来石和磷酸锆不同的比例进行实验,并考虑是否添加MgO作为烧结助剂,在1350℃煅烧温度下保温3h,其具体成份及含量如表1所示。
本文以煅烧温度、烧结助剂的种类及含量为变量,做三因素二水平的正交实验,分别如表2、表3所示。
本文将合成的磷酸锆换成磷酸锆原料,其他实验条
莫来石-磷酸锆复相陶瓷材料性能的研究熊里(佛山市远泰陶瓷化工有限公司,佛山528000)
摘要:本文研究了在莫来石中添加低膨胀第二相磷酸锆的莫
来石-磷酸锆复相陶瓷的性能,找到了在保证强度的同时,获得较低热膨胀系数的莫来石-磷酸锆复相陶瓷的制备方法。实验表
明:莫来石-磷酸锆复相陶瓷能通过将莫来石粉料与磷酸锆粉料
或莫来石粉料与磷酸锆生料粉按不同质量比混合烧结制备;加入1wt%的MgO作为烧结助剂,在1350℃烧成的样品具有最低
的热膨胀系数和较小的吸水率。关键词:莫来石;磷酸锆;复相;低膨胀
5No.7(SerialNo.216)Vol.24No.11(SerialNo.220)
FOSHANCERAMICS
表1原料成份及含量实验号莫来石(%)磷酸锆(%)氧化镁(%)
196402964239282488122584162680202
件保持不变,研究原位生成磷酸锆对实验结果的影响(实验编号分别为11号~14号)。
2.3实验测试仪器
(1)X射线衍射分析:德国Bruker公司D8Advance型XRD衍射仪;(2)热膨胀系数:湘潭湘仪仪器有限公司PCY型高
温卧式膨胀仪;(3)抗折强度:西安力创计量仪器有限公司WDW-10型微机控制电子万能实验仪。
3实验结果与分析
3.1样品成份分析
图1是以ZrO2、(NH4)2HPO4和K2CO3为原料,按磷酸
锆的理论组成,在电炉中250℃温度下保温1h
,并煅烧
至1350℃,保温1h,,所获得的XRD成份分析图。
由图1可知,按磷酸锆的理论组成,并在1350℃
煅
烧温度下保温1h获得的样品,通过X衍射分析发现,能够合成出纯度较高的磷酸锆粉体。图2为第8组实验样品的XRD成份分析图。由图2可知,其中莫来石为主晶相、少量磷酸锆为次
晶相,说明莫来石的合成效果较好。用磷酸锆粉末和莫来石粉末混合煅烧可以生成莫来石-磷酸锆复相陶瓷。
3.2烧结助剂和原料比例对样品性能的影响
经研究表明,磷酸锆的烧结主要靠液相烧结,添加MgO就是要形成能致密化的液相[3],本文采用MgO作烧
结助剂,加入量为2wt%。其样品的性能如表4所示。
从表4中第1组和第2组样品的性能对比可知,
MgO的加入可以促进莫来石-磷酸锆复相陶瓷烧结,使吸
水率和显气孔率降低,但同时也会增大材料的热膨胀系数。热膨胀系数为本征性能与空隙基本无关,与派相的多有关。少从烧结程度上看,1、2号两种样品都没有烧结,而
表2三因素二水平的正交实验水平因素
ABC
11450℃ZnO1wt%21350℃MgO2wt%
表3添加含量及温度对莫来石—磷酸锆实验的影响实验号莫来石(g)磷酸锆(g)添加剂温度
736.83.20.8gZnO1350℃
836.83.20.4gMgO1350℃936.83.20.4gZnO1450℃1036.83.20.8gMgO1450℃
图1在1350℃温度下获得样品的XRD图
图2第8组实验样品的XRD图
62014年第7期(第216期)佛山陶瓷2014年第11期(第220期)
表4样品的性能编号123456
抗折强度
/MPa60.141.264.259.654.249.4
α500/×10-6/℃3.564.584.224.284.415.03α800/×10-6/℃5.435.795.485.946.086.45吸水率/%0.2050.1820.1250.1060.0970.089
气孔率/%0.400.370.2820.2460.2290.215
不加烧结助剂的1号样品烧结程度更低。热膨胀系数要低于加烧结助剂的2号样品。
一般来说,样品烧结程度高,致密度大,样品的强度更大,但本实验中添加烧结助剂的样品的强度却更低,这可能是与烧结助剂有关。在2~6号样品中,3号样品具有最低的热膨胀系数和最大的抗折强度,所以本文选择3号样品进行下一步正
交优化实验。3.3烧成温度和烧结助剂加入量对样品性能的影响
由于1~6号样品均为未完全烧结,所以在优化配方
时需要提高烧成温度。另外,由于烧结助剂可能使复相陶瓷的性能变坏,所以应减少其加入量。本实验通过正交实验所得样品的性能如表5所示。
通过对因素指标关系进行分析,得到最优的方案为
A2、
B2、C1,即:烧成温度为1350℃,添加剂量为1wt%的
MgO。
从表5中可以看出,在实验条件不变的条件下,随
着烧结温度的提高,热膨胀系数都有所增大。造成这一变化趋势的原因可能是在越高温度下烧结,磷酸锆低膨胀晶体产生的P2O5蒸发越多[4],导致材料总体热膨胀系数变大。3.4原位生成磷酸锆复相陶瓷性能的分析
表6为正交实验中11~14号样品的性能测试结果。由表6可知,烧成温度对原位生成磷酸锆的样品的
烧结性能影响最大。在1450℃煅烧温度下的样品可以烧结,烧结助剂的量和烧结助剂的种类都对样品烧结性能影响不大。ZnO的助烧效果稍好,剂量加大可以使烧结程度略微增加。同时,添加剂的种类对原位生成磷酸锆样品的热膨胀系数的影响最大。加入ZnO的样品具有更低的热膨胀
系数,热膨胀系数随温度的升高而加大,剂量的加大可以使热膨胀系数略微减小。可能是因为这些水平组合有助于磷酸锆晶体的长大并形成裂纹。另外,烧成温度对原位生成磷酸锆的样品的抗折强度的影响最大。在1450℃样品的抗折强度较高。烧结助
剂的剂量和烧结助剂的种类都对样品抗折强度性能影响不大。加入ZnO的样品的抗折稍高于加入MgO的样品,
剂量加大可以使抗折强度略微增加。
4结论
(1)以氢氧化铝和石英为原料,按照莫来石理论组
成混合,加入适量添加剂,并在1350℃温度下烧成,保温
3h,可以获得较好的莫来石粉。
(2)以(NH4)2HPO4、K2CO3和ZrO2为原料,按磷酸锆
的理论组成配料,在250℃的电驴中保温1h
,然后再在
1350℃温度下烧成,保温1h
,可以获得纯度较高的磷酸
锆粉体。(3)将莫来石粉料和磷酸锆粉料按不同质量比混合烧结,可以获得较好的莫来石-磷酸锆复相陶瓷。
(4)在1350~1450℃范围内,温度对复相材料的性能影响较大。这种复相陶瓷的烧结温度可以低于1450℃
以
下,应该在1400℃附近,这个温度远低于纯莫来石陶瓷
的烧成温度。当烧成温度为1350℃时,并添加1wt%的
表6正交实验中11~14号样品的性能测试结果实验号吸水率/%显气孔率/%α500/×10-6/℃α800/×10-6/℃抗折强度/MPa110.1960.3633.5645.10242.83
120.2010.3954.7696.04623.56
130.0130.0383.8265.458100.89140.0090.0264.5646.136100.93
表5正交实验所得样品的性能情况实验号吸水率/%显气孔率%α500/×10-6/℃α800/×10-6/℃抗折强度/
MPa70.1650.3403.5055.32068.04
80.1270.2892.9414.71874.4890.0140.0433.9575.717117.29100.0080.0233.6235.240116.94
7