高三月考数学第二卷
三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。
高三第二次月考(文)数学试卷

高三第二次月考 文科数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的4个选项中,只有1项是符合题目要求的。
)1.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u ( ) A .∅ B .{}|0x x ≤ C .{}|1x x >- D .{}|01x x x >≤-或 2.已知各项均为正数的等比数列{a n }中,lg(a 3·a 8·a 13)=6,则a 1·a 15的值为( )A.100B.1 000C.10000D.103.设集合⎭⎬⎫⎩⎨⎧∈==Z n n x x M ,3sin π,则满足条件M P =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-23,23 的集合P 的个数是( )A .1个B .2个C .4个D .8个 4.命题:“若220a b +=,(a , b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a , b ∈R ),则22a b +≠0 B.若a=b ≠0(a , b ∈R ),则22a b +≠0C .若a ≠0且b ≠0(a ,b ∈R ),则22a b +≠0 D.若a ≠0或b ≠0(a,b ∈R ),则22a b +≠5.函数1)(2++=x ax x f 有极大值的充要条件是( )A .0a <B .0a ≤C .0a >D .0a ≥ 6.根据表格中的数据,可以判定方程20xe x --=的一个根所在的区间为( )A . (2,3)7.已知⎨⎧-∈+=)0,1[1)(2x x x f ,则下列函数的图象错误..的是 ( )8.若数列{}n a 满足11221,2,(3)n n n a a a a n a --===≥,则17a 等于 ( ) A .1 B .2 C .12D .9872- A .f (x -1)的图象 B .f (-x )的图象 C .f (︱x ︱)的图象 D . ︱f (x )︱的图象9. 已知数列{a n }满足a 0=1,a n =a 0+a 1+a 2+…+a n-1(n≥1),则当n≥1时,a n 等于( )A.n2 B.2)1(+n n C. 12-n D. 12-n10.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()3x f x g x -=,则有( )A .(0)(2)(3)g f f <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D . (2)(3)(0)f f g <<11.数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n 项和S n >1020,那么n 的最小值是 ( )A 、7B 、8C 、9D 、1012.定义域为R 的函数0)()(,2,12|,2|lg )(2=+⎩⎨⎧=≠-=x bf x f x x x x x f 的方程若关于恰有5个不同的实数解)(,,,,,5422154321x x x x x f x x x x x ++++则等于( )A .0B .221gC .231gD .1二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
雅礼中学高三数学第二次月考试卷

雅礼中学高三第二次月考试卷数学(理科)命题人: 审题人:得分:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
时量120分钟。
满分150分。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}220A=x x x -<,(){}1B y y lg x ==-,则A B =U ( )A .()0,+∞B .()12,C .()2,+∞D .()0,-∞ (2)设x 、y 是两个实数,则“x 、y 中至少有一个数大于1”是“222x y +>”成立的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 (3)已知直线m 、n 和平面α,β满足m n,m α,αβ⊥⊥⊥,则( )A .n β⊥B .n α∥C .n βn β⊂∥或D .n αn α⊂∥或(4)ABC 中,点D 在AB 上,满足2AD DB =u u u r u u u r,若CB α=u u u r ,CA b =u u u r ,则CD =u u u r ( )A .1233a b +B .2133a b +C .3455a b +D .4355a b + (5)设()2a lg e,b lg e ,c lg e ===,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>(6)现有四个函数:y x sin x =,y xcos x =,y x cos x =,2xy x =⋅的图像(部分)如下,但顺序打乱了,则按照从左到右将图像对应序号排列正确的组是( )A .B .C .D . (7)数列{}n a 满足:()12321112*n n n a ,a ,a ,a a a n N++==-=-=-∈,则数列{}na 的前2019项的和( )A .1B .2-C .0D .32-(8)若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( )A.1122,⎡⎤-+⎣⎦ B .122122,⎡⎤-+⎣⎦ C .1223,⎡⎤-⎣⎦ D .123,⎡⎤-⎣⎦(9)若()0a ,π∈,()sin x,x af x cos x,x a >⎧=⎨≤⎩,的图像关于点()0a,对称,则()2f a =( )A .1-B .12-C .0D .3-(10)已知圆O 的半径为2,A 、B 是圆上两点,且23πAOB ∠=,MN 是一条直径,点C 在园内且满足()()101OC λOA λOB λ=+-<<u u u r u u u r u u u r,则CM CN ⋅u u u u r u u u r 的最小值为( )A .3-B .3-C .0D .2 (11)正三棱锥S ABC -的外接球半径为2,底边长AB =3,则此棱锥的体积为( )A .934 B .933344或 C .2734D .273344或 (12)已知函数()x a f x x e -=+, ()()24a x g x ln x e -=+-,其中e 为自然对数的底数,若存在实数0x ,使得()()003f x g x -=成立( )A .21ln --B .21ln -C .2ln -D .2ln第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考试必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,共20分.(13)已知实数x 、y 、z 满足102400x y x y x -+≤⎧⎪+-≥⎨⎪≥⎩,则2z x y =+的最小值为 .(14)三棱锥S ABC -及其三视图中的正视图和侧视图如图所示,则棱SB 的长为 .(15)等差数列{}n a 的公差0d ≠,3a 是2a ,5a 的等比中项,已知数列1224n k k k a ,a ,a ,a ,,a ,L L 为等比数列,数列{}n k 的前n 项和记为n T ,则29n T += .(16)三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()12f f -=<0,()1f =()40f >,则111a b c++的取值范围是 . 三、解答题:共70分,解答题应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图所示,扇形AOB 中,圆心角∠AOB =4π,半径为2,在半径OA 上有一动点C ,过点C 作平行于OB 的直线交弧AB 于点P .(1)若C 是半径OA 的中点,求线段PC 的长;(2)设∠COP =θ,求△POC 面积的最大值及此时θ的值。
2025年人教新课标高三数学下册月考试卷含答案

2025年人教新课标高三数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、若实数x、y满足约束条件,则的取值范围是()A. [,2]B. [,]C. [,2]D. [1,2]2、圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为()A. (x-2)2+(y+1)2=2B. (x+2)2+(y-1)2=2C. (x-1)2+(y-2)2=2D. (x-2)2+(y-1)2=23、两圆(x-2)2+(y-1)2=4与(x+1)2+(y-2)2=9的公切线有()条.A. 1B. 2C. 3D. 44、已知直线y=2x上存在点(x,y)满足约束条件,则实数m的取值范围是()A. (-∞,-1]B. [-1,+∞)C. [2,+∞)D. (-∞,1]5、设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f (x)>0成立的x的取值范围是()A. (﹣∞,﹣1)∪(0,1)B. (﹣1,0)∪(1,+∞)C. (﹣∞,﹣1)∪(﹣1,0)D. (0,1)∪(1,+∞)6、定义:如果函数y=f(x)在区间[a,b]上存在x12(a<x1<x2<b)满足f隆盲(x1)=f(b)鈭�f(a)b鈭�af隆盲(x2)=f(b)鈭�f(a)b鈭�a则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=x3鈭�65x2是区间[0,t]上的双中值函数,则实数t的取值范围是()A. (35,65)B. (25,65)C. (25,35)D. (1,65)7、某椎体的三视图如图所示;则该棱锥的最长棱的棱长为()A. 33B. 17C. 41D. 428、复数z满足(3鈭�2i)z=4+3i(i为虚数单位)则复数z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限评卷人得分二、填空题(共8题,共16分)9、(x2-)6的二项展开式中x2的系数为____(用数字表示).10、已知sinα+2cosα=0,则2sinαcosα-cos2α的值是____.11、在△ABC中,已知a=,b=,∠A=45°则c=____.12、在△ABC中,AB=AC=1,∠BAC=120°,则•=____.13、观察下列式子:,根据以上式子可以猜想:____.14、【题文】____.15、【题文】高二年级某班共有60名学生,在一次考试中,其数学成绩满足正态分布,数学平均分为100分,若(表示本班学生数学分数),求分数在的人数____ ;16、由曲线y=x2, y=2x围成的封闭图形的面积为____.评卷人得分三、判断题(共7题,共14分)17、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)18、判断集合A是否为集合B的子集;若是打“√”,若不是打“×”.(1)A={1,3,5},B={1,2,3,4,5,6}.____;(2)A={1,3,5},B={1,3,6,9}.____;(3)A={0},B={x|x2+1=0}.____;(4)A={a,b,c,d},B={d,b,c,a}.____.19、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)20、已知函数f(x)=4+a x-1的图象恒过定点p,则点p的坐标是( 1,5 )____.(判断对错)21、空集没有子集.____.22、任一集合必有两个或两个以上子集.____.23、若b=0,则函数f(x)=(2k+1)x+b在R上必为奇函数____.评卷人得分四、解答题(共2题,共6分)24、已知函数f(x)=x3+x-16.(1)求满足斜率为4的曲线的切线方程;(2)求曲线y=f(x)在点(2;-6)处的切线的方程;(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.25、已知直线l1:ax-by+4=0和直线l2:(a-1)x+y+2=0,直线l1过点(-3,-1),并且直线l1和l2垂直,求a,b 的值.评卷人得分五、其他(共4题,共28分)26、若函数f(x)=,则f(-1)=____;不等式f(x)<4的解集是____.27、解不等式。
华南师范大学附属中学2022-2023学年高三上学期月考(二)数学含答案

华南师大附中2023届高三月考(二)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号等填写在答题卡上,并用铅笔在答题卡上的相应位置填涂.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号. 3.回答第Ⅱ卷时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷各题目指定区域内,不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}=0A x R x ∈≤,{}=11B x R x −∈≤≤,则()()RR A B =( )A .(,0)−∞B .[1,0]−C .[0,1]D .(1,)+∞2.如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.函数()sin tan f x x x =⋅的图象大致为( )A .B .C .D .4.赤岗塔是广州市级文物保护单位,是广州市明代建筑中较具特色的古塔之一,与琶洲塔、莲花塔并称为广州明代三塔,如图,在A 点测得塔底位于北偏东60°方向上的点D 处,塔顶C 的仰角为30°,在A 的正东方向且距D 点61m 的B 点测得塔底位于北偏西45°方向上(A ,B ,D 在同一水平面),则塔的高度CD 约为( )2.45≈)A .40mB .45mC .50mD .55m5.在ABC ∆中,D 为BC 边上的点,当2ABD ADC S S =△△,AB xAD y AC =+,则( ) A .3x =,2y =− B .32x =,12y =− C .2x =−,3y =D .12x =−,32y =6.在ABC ∆中,2cos cos cos c bc A ac B ab C =++,则此三角形必是( ) A .等边三角形 B .直角三角形 C .等腰三角形D .钝角三角形7.设实数,a b 满足0b >,且2a b +=,则18a a b+的最小值是( ) A .98B .916 C .716D .148.已知函数()2ln f x x x x =−的图象上有且仅有两个不同的点关于直线1y =的对称点在10kx y +−=的图象上,则实数k 的取值范围是( )A .(),1−∞B .[)0+∞,C .[)0,1D .(),1−∞−二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.设,m n 为不同的直线,αβ,为不同的平面,则下列结论中正确的是( ) A .若//m α,//n α,则//m n B .若,,m n αα⊥⊥则//m n C .若//m α,m β⊂,则//αβ D .若,,m n m n αβ⊥⊥⊥则αβ⊥ 10.函数()()sin f x x ωϕ=+(0,20,A πωϕ><>)的部分图象如图所示,下列结论中正确的是( )A .直线6x π=−是函数()f x 图象的一条对称轴B .函数()f x 的图象关于点(),062k k Z ππ⎛⎫−+∈ ⎪⎝⎭对称 C .函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤−++∈⎢⎥⎣⎦D .将函数()f x 的图象向由右平移12π个单位得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象11. 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,分形几何学不仅让人们感悟到数学与艺术审美的统一,而且还有其深刻的科学方法论意义.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第n 行白圈的个数为n a ,黑圈的个数为n b ,则下列结论中正确的是( ) A .1239a a a +=+B .12n n n a b b +=+C .当1k =±时,{}n n a kb +均为等比数列D .1236179b b b b ++++=12.曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,表明曲线偏离直线的程度,曲率越大,表示曲线的弯曲程度越大.曲线()y f x =在点(,())x f x 处的曲率()()() 1.52''()1f x K x f x '=⎡⎤+⎣⎦,其中()''f x 是()f x '的导函数.下面说法正确的是( )A .若函数3()f x x =,则曲线()y f x =在点3(,)a a −−与点3(,)a a 处的弯曲程度相同B .若()f x 是二次函数,则曲线()y f x =的曲率在顶点处取得最小值C .若函数()sin f x x =,则函数()K x 的值域为[0,1]D .若函数1()(0)f x x x =>,则曲线()y fx =第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,a b 夹角为4π,且||1a =,||2b =,则2a b +=______. 14.已知1sin 83πα⎛⎫−= ⎪⎝⎭,则sin2cos2αα+=__________.15.某学生在研究函数()3f x x x =−时,发现该函数的两条性质:①是奇函数;②单调性是先增后减再增.该学生继续深入研究后发现将该函数乘以一个函数()g x 后得到一个新函数()()()h x g x f x =,此时()h x 除具备上述两条性质之外,还具备另一条性质:③()'00h =.写出一个符合条件的函数解析式()g x =__________.16.已知数列{}n a 的通项公式为n a n t =+,数列{}n b 为公比小于1的等比数列,且满足148b b ⋅=,236b b +=,设22n n n n n a b a b c −+=+,在数列{}n c 中,若4()n c c n N *≤∈,则实数t 的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知ABC ∆的内角,,A B C 的对边分别为a ,b ,c ,且2cos cos tan 2sin sin B AB A+=−A .(1)求C ;(2)若6a =,ABC S ∆=c 的值.设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式; (2)若23n n a b n =,求数列{}n b 的前n 项和n T .19.(本小题满分12分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A 组,从年龄在40岁及以上的客户中抽取10位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A 组的客户,“⊙”表示B 组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(1)记A ,B 两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m ,n ,根据图中数据,试比较m ,n 的大小(直接写结论);(2)从抽取的20位客户中随机抽取2位,求其中至少有1位是A 组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,现从该市使用这种电动汽车的所有客户中,随机抽取年龄40岁以下和40岁以上的客户各1位,记“驾驶达人”的人数为X ,求随机变量X 的分布列和数学期望. 20. (本小题满分12分)在斜三棱柱111ABC A B C −中,1AA BC ⊥,11AB AC AA AC ====,1B C = (1)证明:1A 在底面ABC 上的射影是线段BC 中点; (2)求平面11A B C 与平面111A B C 夹角的余弦值.已知()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点.(1)求椭圆E 的标准方程;(2)过点()2,1P 的直线l 与椭圆E 交于C ,D 两点,与直线AB 交于点M ,求PM PMPC PD+的值.22.(本小题满分12分)设函数1()e ,()ln x f x m g x x n −==+,m n 、为实数,()()g x F x x=有最大值为21e .(1)求n 的值; (2)若2()()e f x xg x >,求实数m 的最小整数值.华南师大附中2023届高三月考(二)数学参考答案一、单项选择题:1.D 2.C 3.A 4.C 5.A 6.B 7.C 8.A 二、多项选择题:9.BD 10.BCD 11.BCD 12.ACD 11. 【答案】BCD【详解】易得-1113,2,2n n n n n n n n n a b a a b b b a +++==+=+,且有111,0a b ==,故有11113()n n n n n n n n a b a b a b a b +++++=+⎧⎨−=−⎩,故131n n n n na b a b −⎧+=⎪⎨−=⎪⎩ 故11312312n n n n a b −−⎧+=⎪⎪⎨−⎪=⎪⎩,进而易判断BCD 正确,A 错误.故选:BCD. 12.【答案】ACD【详解】对于A ,2()3f x x '=,()6f x x ''=,则22 1.56()[1(3)]x K x x =+,又()()K x K x =−,所以()K x 为偶函数,曲线在两点的弯曲长度相同,故A 正确;对于B ,设2()(0)f x ax bx c a =++≠,()2()2f x ax b f x a '''=+=,,则 1.52|2|()1(2)a K x ax b =⎡⎤++⎣⎦,当且仅当20ax b +=,即2bx a=−时,曲率取得最大值,故B 错误; 对于C ,()cos ()sin f x x f x x '''==−,,()()1.51.522|sin |()(|sin |[0,1])1cos 2x tK x t x x t −===∈+−,当0t =时,()0K x =;当01t <≤时,函数()1.52()2tp t t =−为增函数,所以()p t 的最大值为(1)1p =,故C 正确; 对于D ,2312()()f x f x x x '''=−=,,3 1.542()11x K x x =≤⎛⎫+ ⎪⎝⎭, 当且仅当1x =时,等号成立,故D 正确.故选ACD .三、填空题:13.14.915. 2x (答案不唯一) 16. []4,2−− 16.【详解】在等比数列{}n b 中,由142388b b b b ⋅=⇒⋅=,又236b b +=,且公比小于1,323214,2,2b b b q b ∴==∴==,因此242211422n n n n b b q −−−⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, 由22n nn n n a b a b c +=+-,得到()(){},n n n n n n nn b a b c c a a b ⎧≤⎪=∴⎨>⎪⎩是取,n n a b 中最大值. 4()n c c n N *≤∈,4c ∴是数列{}n c 中的最小项,又412n n b −⎛⎫= ⎪⎝⎭单调递减,n a n t =+单调递增,∴当44c a =时,4n c c ≤,即44,n a c a ≤∴是数列{}n c 中的最小项,则必须满足443b a b <≤,即得44341143222t t −−⎛⎫⎛⎫<+≤⇒−<≤− ⎪⎪⎝⎭⎝⎭,当44c b =时,4n c c ≤,即4n b c ≤,4b ∴是数列{}n c 中的最小项,则必须满足445a b a ≤≤,即得44145432t t t −⎛⎫+≤≤+⇒−≤≤− ⎪⎝⎭,综上所述,实数t 的取值范围是[]4,2−−,故答案为[]4,2−−.四、解答题: 17.(1)由2cos cos tan 2sin sin B A A B A +=−得2cos cos sin 2sin sin cos B A AB A A+=−,(1分)即222cos cos cos 2sin sin sin B A A B A A +=−,()222cos cos sin sin cos sin B A B A A A ∴−=−−, ()1cos 2B A ∴+=−,(3分)()0A B π+∈,,2π3A B ∴+=,(4分) π3C =∴.(5分) (2)由6a =,π3C =,1sin 2ABC S ab C ∆== 解得2b =,(7分)22212cos 364262282c a b ab C ∴=+−=+−⨯⨯⨯=,c ∴=.(10分) 18.解: (1)122n n a S +=+,① 当2n ≥时,122n n a S −=+,②(1分) ①-②得()1122n n n n n a a S S a +−−=−=,(2分) ∴13(2)n n a a n +=≥,∴13n na a +=,(3分)∵12a =,∴21226a S =+=,∴21632a a ==也满足上式,(4分) ∴数列{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a −−=⋅=⋅.即{}n a 的通项公式为123n n a −=⨯.(5分)(2)由(1)知123n n a −=⨯,所以233n n n n nb a ==,(6分) 令211213333n n n n nT −−=++++,①(7分)得231112133333n n n n nT +−=++++,②(8分) ①-②得23121111333333n n n nT +=++++−(9分)1111331313n n n +⎛⎫− ⎪⎝⎭=−− (10分)1111233n n n +⎛⎫=−− ⎪⎝⎭ (11分) 所以323443n nn T +=−⨯.(12分) 19.解:(1)m n <;(1分)(2)设“从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户”为事件M ,则()112101010220C C C 29C 38P M +==,所以从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户的概率是2938;(4分) (3)题图,知A 组“驾驶达人”的人数为1人,B 组“驾驶达人”的人数为2人,(5分) 则可估计该市使用这种电动汽车的所有客户中,在年龄40岁以下的客户中随机抽取1位,该客户为“驾驶达人”的概率为110,在年龄40岁以上的客户中随机抽取1位,该客户为“驾驶达人”的概率为21105=;(6分) 依题意,X 所有可能取值为0,1,2.(7分)则()111801110525P X ⎛⎫⎛⎫==−⨯−= ⎪ ⎪⎝⎭⎝⎭,(8分)()11111311110510550P X ⎛⎫⎛⎫==−⨯+⨯−= ⎪ ⎪⎝⎭⎝⎭,(9分)()111210550P X ==⨯=,(10分) 所以随机变量X 的分布列为故X 数学期望为181313()01225505010E X =⨯+⨯+⨯=.(12分)20. 解:(1)法一:取BC AC 、的中点M N 、,连接11,,,AM MN A M A N ∵AB AC =且M 为BC 的中点,则AM BC ⊥(1分) 又∵1AA BC ⊥,1AMAA A =,且1,AM AA ⊂平面1AA M∴BC ⊥平面1AA M (2分)1A M ⊂平面1AA M ,1A M ∴⊥BC (3分)由题意可得1BB BC ⊥,则2BC == ∴222BC AC AB =+,则AB AC ⊥ ∵MN AB ∥,则MN AC ⊥(4分)又∵1AAC △为等边三角形且N 为AC 的中点,则1A N AC ⊥ 1MNA N N =,且1,MN A N ⊂平面1A MN∴AC ⊥平面1A MN1A M ⊂平面1A MN ,则1A M ⊥AC (5分)又ACBC C =,且,AC BC ⊂平面ABC∴1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分) 法二:取BC 的中点M ,连接1,M 由=AB AC 得AM BC ⊥(1分) 又由A A BC A AAM A ⊥11,=得BC A AM⊥1平面(2分) 因为A M A AM ⊂11平面,所以BC A M ⊥1(3分) 由于11//BB AA ,1AA BC ⊥得1BB BC ⊥在1Rt BB C ∆中,2BC ===,112MC BC ==在1Rt A MC ∆中,11A M ===,(4分)同理1AM =在1A AM ∆中,22211+2A M AM A A ==,因此1A M AM ⊥(5分)又由于AM BC M =,所以1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分)(2)如图,以M 为坐标原点,以1MC MA MA ,,所在的直线为,,x y z 轴建立空间直角坐标系,(7分)则()()()()10,0,1,0,1,0,1,0,0,1,0,0A A B C −,∴()()1111,1,0,1,0,1B A BA CA ===−(8分)设平面11A B C 的法向量(),,m x y z =,则11100m B A m CA ⎧⋅=⎪⎨⋅=⎪⎩即00x y x z +=⎧⎨−+=⎩ 令1x =,则1,1y z =−=,即()1,1,1m =−(9分) 平面111A B C 的法向量()0,0,1n =(10分) ∴13cos 33m n m n m n⋅⋅===(11分)即平面11A B C 与平面111A B C .(12分)21.解:(1)由()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点, 得2a =,1b =,即22:14x E y +=;(3分) (2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,(4分) 所以设()11,C x y ,()22,D x y ,()33,M x y ,直线l 的斜率为k ,则(12P x x P C x =−=− 同理(22x PD =−(32x PM =−, 则33122222x x x x PMPMPC PD −−=+−−+ (5分) 设l :()12y k x −=−,而AB :12x y +=,联立解得3421k x k =+, 所以342222121k x k k −=−=++ (6分) 联立直线l 与椭圆E 方程,消去y 得:()()2224182116160k x k k x k k +−−+−=,(7分) ()()()222=82144116160k k k k k ∆⎡−⎤−+−>⎣⎦解得0k > 所以()12282141k k x x k −+=+,2122161641k k x x k −=+,(8分) 所以()()()1212121212124411222224x x x x x x x x x x x x +−+−+=−=−−−−−−++(9分) ()()2222821441218211616244141k k k k k k k k k k −−+=−=+−−−⨯+++,(11分) 所以()33122222122221x x k x x k −−+=⨯+=−−+,即2PM PM PC PD+=.(12分) 22.解:(1)()ln ()g x x n F x x x +==,定义域为()0,∞+, 21ln ()x n F x x −−=',(1分) 当10e n x −<<时,()0F x '>,当1e n x −>时,()0F x '<,所以()F x 在1e n x −=处取得极大值,也是最大值,(2分) 所以1211()e en n n F x −−+==,解得:1n =−;(3分) (2)()12e ln 1e x m x x −>−,即()3e ln 1x m x x −>−,()3ln 1e x x x m −−>,(4分) 令()()3ln 1e x x x h x −−=,定义域为()0,+∞,()3ln ln e x x x x x h x −'−+=,(5分) 令()ln ln x x x x x ϕ=−+,0x >,则()11ln 11ln x x x x x ϕ=−−+=−', 可以看出()1ln x x xϕ=−'在()0,+∞单调递减,(6分) 又()110ϕ'=>,()12ln 202ϕ=−<', 由零点存在性定理可知:()01,2x ∃∈,使得()00x ϕ'=,即001ln x x =,(7分) 当()00,x x ∈时,()0x ϕ'>,当()0,x x ∈+∞时,()0x ϕ'<, ()x ϕ在0x x =处取得极大值,也是最大值, ()()000000max 01ln ln 111x x x x x x x x ϕϕ==−+=−+>=,(8分) 1112110e e e e ϕ⎛⎫=−++=−< ⎪⎝⎭,7777775717ln ln ln 75ln 022********ϕ⎛⎫⎛⎫=−+=−=−> ⎪ ⎪⎝⎭⎝⎭, ()446ln 20ϕ=−<, 故存在101,e x x ⎛⎫∈ ⎪⎝⎭,27,42x ⎛⎫∈ ⎪⎝⎭,使得()()120,0x x ϕϕ==,(9分) 所以当()12,x x x ∈时,()0x ϕ>,当()()120,,x x x ∞∈⋃+时,()0x ϕ<,所以()3ln ln ex x x x x h x −'−+=在()12,x x x ∈上大于0,在()()120,,x x x ∞∈⋃+上小于0, 所以()()3ln 1e x x x h x −−=在()12,x x x ∈单调递增,在()()120,,,x x +∞上单调递减, 且当e x <时,()()3ln 10e x x x h x −−=<恒成立,(10分) 所以()()3ln 1ex x x h x −−=在2x x =处取得极大值,也是最大值,其中2222ln ln 0x x x x −+=, ()()22222233ln 1ln e ex x x x x h x −−−==,27,42x ⎛⎫∈ ⎪⎝⎭(11分) 令()3ln e x x x φ−=,7,42x ⎛⎫∈ ⎪⎝⎭, ()31ln e x x x x φ−'−=,当7,42x ⎛⎫∈ ⎪⎝⎭时,()31ln 0ex x x x φ−−=<', 故()7327ln 21ex φ−<<,所以实数m 的最小整数值为1. (12分)。
数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

哈三中2024—2025学年度上学期高三学年十月月考数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A.B. C.D.8.已知平面向量,,,满足,且,,则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
福建省惠安一中等重点中学2024届高三月考试卷(二)数学试题
福建省惠安一中等重点中学2024届高三月考试卷(二)数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()(0x f x m m m =->,且1)m ≠的图象经过第一、二、四象限,则|(2)|a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( ) A .c b a << B .c a b << C .a b c <<D .b a c <<2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( ) A .132B .5C .25D .133.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .4.已知复数12iz i-=-(i 为虚数单位)在复平面内对应的点的坐标是( ) A .31,55⎛⎫- ⎪⎝⎭B .31,55⎛⎫-- ⎪⎝⎭C .31,55⎛⎫ ⎪⎝⎭D .31,55⎛⎫- ⎪⎝⎭5.下列函数中,既是奇函数,又是R 上的单调函数的是( ) A .()()ln 1f x x =+B .()1f x x -=C .()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩D .()()()()2,00,01,02x xx f x x x ⎧<⎪⎪⎪==⎨⎪⎛⎫⎪-> ⎪⎪⎝⎭⎩6.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件7.如图是二次函数2()f x x bx a =-+的部分图象,则函数()ln ()g x a x f x '=+的零点所在的区间是( )A .11,42⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(1,2)D .(2,3)8.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .199.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A .433B .43C .233D .2310.函数()()sin ωϕ=+f x x 的部分图象如图所示,则()f x 的单调递增区间为( )A .51,,44k k k Z ππ⎡⎤-+-+⎢⎥⎦∈⎣B .512,2,44k k k Z ππ⎡⎤-+-+∈⎢⎥⎣⎦C .51,,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦D .512,2,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦11.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .27412.已知双曲线22221x y a b-=(0a >,0b >)的左、右顶点分别为1A ,2A ,虚轴的两个端点分别为1B ,2B ,若四边形1122A B A B 的内切圆面积为18π,则双曲线焦距的最小值为( ) A .8B .16C .62D .122二、填空题:本题共4小题,每小题5分,共20分。
福建省龙岩第一中学2022-2023学年高三上学期第二次月考数学试题(解析版)
2023届福建省龙岩第一中学高三上学期第二次月考数学试题一、单选题1.已知{}1,0,1,3,5A =-,{}230B x x =-<,则R A B =ð( ) A .{}0,1 B .{}1,1,3-C .{}1,0,1-D .{}3,5【答案】D【分析】由题意求出B ,R B ð,由交集的定义即可得出答案.【详解】因为{}230B x x =-<32x x ⎧⎫=<⎨⎬⎩⎭, 所以R B =ð32x x ⎧⎫≥⎨⎬⎩⎭,所以A R B =ð{}3,5.故选:D. 2.若5:11xp x -≤+,则p 成立的一个充分不必要条件是( ) A .21x -<≤- B .12x -≤≤ C .15x ≤≤ D .25x <<【答案】D【分析】先求出分式不等式的解集,进而结合选项根据充分不必要条件的概念即可求出结果. 【详解】因为511xx -≤+,即51011x x x x -+-≤++,因此4201x x -≤+等价于()()42+10+10x x x -≤≠⎧⎨⎩,解得2x ≥或1x <-,结合选项可知p 成立的一个充分不必要条件是25x <<, 故选:D.3.已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【分析】分别求出()0f 、()1f 、()3f 、()4f 的值,即可判断其正负号,利用零点存在定理则可选出答案.【详解】由题意知:()0ln1660f =-=-<,()231ln2+16ln3+462ln 32ln0e f f =-<-==-=<(), ()ln3+96ln3303f =-=+>,()ln4+166ln 40041f =-=+>. 由零点存在定理可知()f x 在区间()2,3一定有零点. 故选:C.4.如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OAl OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C5.已知22sin sin ,cos cos 33αβαβ-=--=,且π,0,2αβ⎛⎫∈ ⎪⎝⎭,则ta n()αβ-的值为( )AB.CD.【答案】B【分析】将条件的两个式子平方相加可得()8922cos αβ--=,然后可得()5os 9c αβ-=,再由2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,可得()π,02αβ⎛⎫-∈- ⎪⎝⎭,从而可求出()in s αβ-=,由商式关系可求得()an t αβ-=【详解】由2sin sin 3αβ-=-,得22sin 2sin sin sin 49ααββ-+=,由2cos cos 3αβ-=,得22cos 2cos cos cos 49ααββ-+=,两式相加得,()8922cos αβ--=,所以可得()5os 9c αβ-=,因为2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以()π,02αβ⎛⎫-∈- ⎪⎝⎭,所以()in s αβ-=()an t αβ-=故选:B6.已知()()2222cos 1ln 4f x x x =-⋅,则函数()f x 的部分图象大致为( )A .B .C .D .【答案】A【分析】利用二倍角余弦公式化简()2f x 的表达式,令()20t x t =≠,可得()f x 的解析式,再判断函数()f x 的奇偶性,可排除选项C 、D ,最后根据0x +→时,()0f x <即可求解.【详解】解:()()()()22222cos 1ln 4cos 2ln 2f x x x x x =-⋅=⋅,令()20t x t =≠,则()2cos ln f t t t =⋅()0t ≠,所以()2cos ln f x x x =⋅()0x ≠,定义域关于原点对称,因为()()()()22cos ln cos ln f x x x x x f x -=-⋅-=⋅=,所以()f x 为偶函数,图象关于y 轴对称,故排除选项C 、D ;又0x +→时,因为2cos 0,ln 0x x ><,所以()2cos ln 0f x x x =⋅<,所以排除选项B ,选项A 正确; 故选:A.7.已知()22231,0log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,函数()()g x f x b =+有四个不同的零点1234,,,x x x x ,且满足:1234x x x x <<<.则下列结论中不正确的是( ) A .10b -<< B .341x x =C .3112x ≤< D .1232x x +=-【答案】A【分析】作出()f x 图象,利用函数有四个不同的交点求出10b -≤<,A 错误; 根据二次函数的对称轴求出1232x x +=-可判断D ;数形结合结合对数运算得到341x x =可判断B ;数形结合求出231log 0x -≤<,解得3112x ≤<,可判断C. 【详解】如图,作出()f x 图象,若y =-b 与()y f x =有四个交点,需01b <-≤,则10b -≤<,故A 错误;这四个交点的横坐标依次为1234,,,x x x x ,因为抛物线2231y x x =++的对称轴为34x =-,所以1232x x +=-,故D 正确;因为2324log log x x -=,即2324log log 0x x +=,所以341x x =,故B 正确;()(]323log 0,1f x x =-∈,即231log 0x -≤<,所以3112x ≤<,故C 正确.故选:A.8.已知13sin 2,ln 2,2a b c -===,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】D【分析】判断sin2和2πsin3的大小,比较a 与34、b 与34、c 与34的大小可判断a 与b 大小关系及b 与c 大小关系,判断aca 与c 大小关系,从而可判断a 、b 、c 大小关系.【详解】2π3sin2sin34a =>=>, 4333344443e e 2e 2lne ln24⎛⎫=>⇒>⇒=> ⎪⎝⎭,即b 34<,∴a >b ;∵3131322264-⎛⎫== ⎪⎝⎭,3327464⎛⎫= ⎪⎝⎭,∴13324->,c b ∴>;∵62764=⎝⎭,6131162464-⎛⎫== ⎪⎝⎭,132->,a c ∴>; a cb ∴>>. 故选:D .【点睛】本题关键是利用正弦函数的值域求出sin2的范围,以34两个值作为中间值,比较a 、b 、c 与中间值的大小即可判断a 、b 、c 的大小.二、多选题9)A .2252cos cos 1212ππ⎛⎫- ⎪⎝⎭ B .1tan151tan15+︒-︒C.cos15︒︒ D .16sin10cos20cos30cos40︒︒︒︒【答案】ABD【分析】对于A ,采用降幂公式,结合特殊角三角函数,可得答案; 对于B ,根据特殊角三角函数,结合正切的和角公式,可得答案; 对于C ,根据辅助角公式,结合特殊角三角函数,可得答案; 对于D ,根据积化和差公式,结合特殊角三角函数,可得答案.【详解】对于A ,2251cos 1cos 55662cos cos 2cos cos12122266ππππππ⎛⎫++ ⎪⎛⎫-=-=- ⎪ ⎪⎝⎭⎪⎝⎭=,故A 正确; 对于B ,()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--,故B 正确;对于C ,13cos153sin152cos15sin1522⎛⎫-=- ⎪ ⎪⎝⎭()()()2sin30cos15cos30sin152sin 30152sin152sin 4530=-=-==-()212sin 45cos30cos 45sin 302222⎛⎫=-== ⎪ ⎪⎝⎭C 错误; 对于D ,16sin10cos 20cos30cos 40 ()116sin 30sin 10cos30cos 402⎡⎤=⨯+-⎣⎦ 8sin30cos30cos 408sin10cos30cos 40=-()18408sin 40sin 20cos 402⎡⎤=-⨯+-⎣⎦404sin 40cos 404sin 20cos 40=-+()1402sin804sin 60sin 202⎡⎤=-+⨯+-⎣⎦402sin8032sin 20=-+-404sin50cos303=-+ )cos 40sin 503=-+)cos 40cos 403=-+=D 正确;故选:ABD.10.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥ C .2216a b +≥ D .228a b +≤【答案】AB【分析】根据基本不等式进行逐一判断即可.【详解】A :因为0a >,0b >,所以4a b ab +≥≤,当且仅当2a b ==时取等号,故本选项正确;B :因为0a >,0b >,所以有11111()(2)(21444a b b a a b a b a b b a ++=+=++≥+=+,当且仅当2a b ==时取等号,故本选项正确;C :因为228a b +≥=,当且仅当2a b ==时取等号,所以本选项不正确;D :因为0a >,0b >,所以有22282a b a b +≤≤+≥,当且仅当2a b ==时取等号,所以本选项不正确,故选:AB11.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则( )A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,则12x x -的最大值为2π【答案】AC【分析】根据题意得6πϕ=-,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,再结合三角函数的图像性质依次分析各选项即可得答案.【详解】解:因为函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,所以,2,Z 32k k ππϕπ⨯+=+∈,解得,Z 6k k πϕπ=-+∈,因为22ππϕ-<<,所以6πϕ=-,即()3sin 26f x x π⎛⎫=- ⎪⎝⎭,所以,对于A 选项,函数3sin 212f x x π⎛⎫+= ⎪⎝⎭,是奇函数,故正确;对于B 选项,当,32x ππ⎡⎤∈⎢⎥⎣⎦时,25,626x πππ-⎡⎤∈⎢⎥⎣⎦,由于函数sin y x =在5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故错误;对于C 选项,函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像对应的解析式为()3sin 226g x x a π⎛⎫=-- ⎪⎝⎭,若()g x 图像关于6x π=对称,则22,Z 662a k k ππππ⨯--=+∈,解得,Z 62k a k ππ=-+∈, 由于0a >,故a 的最小值是3π,故正确; 对于D 选项,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=, 所以,12x x -的最大值为3π,故错误.故选:AC12.已知1a b >>,则( ) A .ln ln a b b a > B .11ea ba b-<C .11e b a ->D .若m b b n =+,则m a a n >+ 【答案】BC【分析】根据各个选项中的不等式,通过构造新函数,利用导数判断其单调性,再结合特例法进行判断即可.【详解】因为1a b >>,所以ln ln ln ln b aa b b a b a>⇔>, 设函数ln ()(1)xf x x x=>,21ln ()x f x x -'=,当(1,e)x ∈时,()0f x '>,函数()f x 单调递增, 当(e,)x ∈+∞时,()0f x '<,函数()f x 单调递减, 所以A 选项错误;因为1a b >>,所以由111111eln ln ln ln a ba ab a b b a b a b -<⇔-<-⇔->-, 设函数1()ln g x x x =-,211()g x x x '=+,当,()0x ∈+∞时,()0g x '>,函数()g x 单调递增,所以B 选项正确;因为111eln 1ba a b->⇔>-,设函数1()ln 1h a a a ⎛⎫=-- ⎪⎝⎭,所以21()a h a a -'=,当()1,a ∞∈+时,()0'>h a ,函数()h a 单调递增, 当()0,1a ∈时,()0h a '<,函数()h a 单调递减,所以()(1)0h a h >=,即11ln 10ln 1a a a a ⎛⎫-->⇒>- ⎪⎝⎭,因为1a b >>,所以111111a b a b <⇒->-,因此11ln 11a a b>->-,所以C 选项正确. 令2,0b m ==,则有1n =-,又令3a =,所以01,2m a a a n ==+=, 显然不成立,所以D 选项错误, 故选:BC【点睛】方法点睛:不等式是否成立可以通过构造函数利用导数的性质来进行判断.三、填空题13.已知角θ的终边经过点(2,1)P -,则22cos 2sin cos 2θθθ-=___________.【答案】23【分析】利用三角函数定义求出tan θ,再利用二倍角公式化简,结合齐次式法计算作答.【详解】因角θ的终边经过点(2,1)P -,则1tan 2θ=-,所以2222222222112()cos 2sin cos 2sin 12tan 221cos 2cos sin 1tan 31()2θθθθθθθθθ-⨯----====----. 故答案为:2314.函数()xe f x x =的单调递减区间是__________.【答案】和(或写成和)【详解】试题分析:由题意得22(1)()x x x xe e e x f x x x-='-=,令()0f x '<,解得0x <或01x <<,所以函数的递减区间为和.【解析】利用导数求解函数的单调区间.15.已知函数(1)y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=,当2(]0,x ∈时,()2f x x =+.则(2022)f =___________. 【答案】2-【分析】根据给定条件,推理论证出函数()f x 的周期,再利用周期性计算作答. 【详解】因函数(1)y f x =+的图象关于直线3x =-对称,而函数(1)y f x =+的图象右移1个单位得()y f x =的图象,则函数()y f x =的图象关于直线2x =-对称,即(4)()f x f x --=,而对R x ∀∈都有()()2f x f x +-=,则(4)()2f x f x --+-=,即R x ∀∈,(4)()2f x f x +=-+,有(8)(4)2f x f x +=-++[()2]2()f x f x =--++=,因此函数()y f x =是周期函数,周期为8,又当2(]0,x ∈时,()2f x x =+, 所以(2022)(25382)(2)2(2)242f f f f =⨯-=-=-=-=-. 故答案为:2-16.已知函数()sin cos (0,0)f x x a x a ωωω=+>>图像的两条相邻对称轴之间的距离小于,3f ππ⎛⎫= ⎪⎝⎭()6f x f π⎛⎫≤⎪⎝⎭,则ω的最小值为___________. 【答案】13【分析】先由对称轴间的距离确定了1ω>,再利用()6f x f π⎛⎫≤ ⎪⎝⎭得到2,Z 62k k πωπϕπ+=+∈,依次利用诱导公式与基本关系式求得tan 6πω⎛⎫⎪⎝⎭、cos 6πω⎛⎫ ⎪⎝⎭、sin 6πω⎛⎫⎪⎝⎭的a 关于表达式,求出a 的值,进而得到121,Z k k ω=+∈,即可得到结果. 【详解】()()sin cos f x x a x x ωωωϕ=+=+,tan a ϕ=, 因为两条相邻对称轴之间的距离小于π,即2T π<,故22T ππω=<,所以1ω>, 因为()f x 在6x π=处取得最大值,所以2,Z 62k k πωπϕπ+=+∈,即2,Z 26k k ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6a πω⎛⎫= ⎪⎝⎭,因为3f π⎛⎫= ⎪⎝⎭3πωϕ⎛⎫+=⎪⎝⎭,即sin 3πωϕ⎛⎫+= ⎪⎝⎭所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,解得23a =,又0a >,所以a =1sin 62πω⎛⎫= ⎪⎝⎭,又tan 06πω⎛⎫> ⎪⎝⎭,所以2,Z 66k k πωππ=+∈,解得121,Z k k ω=+∈,又1ω>,所以ω的最小值为13.故答案为:13.四、解答题17.已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,且满足2225,sin 2sin 8b c a bc C B +-==. (1)求cos A ;(2)若ABC 的周长为6ABC 的面积.【答案】(1)516;(2【解析】(1)由余弦定理可求得cos A ;(2)根据正弦定理可得2c b =,再由已知和余弦定理可求得2b =,根据三角形的面积可求得答案.【详解】解:(1)因为22258b c a bc +-=,所以2225cos 216b c a A bc +-==;(2)因为sin 2sin C B =,所以2c b =.由余弦定理得2222152cos 4a b c bc A b =+-=,则a =,因为ABC 的周长为636b =2b =,所以ABC 的面积为122b b ⨯⨯【点睛】方法点睛:(1)在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件;(2)如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件;(3)如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.(4)与三角形有关的最值问题,我们可以利用基本不等式来求最值或利用正弦定理把边转化为关于角的三角函数式,再利用三角变换和正弦函数、余弦函数的性质求最值或范围.18.已知函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的对称中心,并求当π0,2x ⎛⎫∈ ⎪⎝⎭时,()f x 的值域;(2)若函数()g x 的图像与函数()f x 的图像关于y 轴对称,求()g x 在区间()0,π上的单调递增区间.【答案】(1)对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦(2)5π11π,1212⎛⎫ ⎪⎝⎭【分析】(1)根据三角恒等变换,化简函数()f x ,再结合正弦型函数的对称中心公式,即可得到对称中心,结合正弦函数的图像即可求得其值域.(2)由(1)中()f x 的解析式,根据对称变换即可得到函数()g x 的解析式,再结合正弦型函数的单调区间即可求得结果.【详解】(1)因为函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos x x x x x x ⎫=+⎪⎪⎝⎭⎝⎭()221cos 2cos sin 22xx x x +=-+π1232x ⎛⎫++ ⎪⎝⎭令π2π,3x k k +=∈Z ,解得ππ62k x =-+,即对称中心π1π,622k k ⎛⎫-+∈ ⎪⎝⎭Z ,当π0,2x ⎛⎫∈ ⎪⎝⎭时,则ππ4π2,333x ⎛⎫+∈ ⎪⎝⎭,再结合三角函数图像可得()12f x ⎛⎤∈- ⎥⎝⎦所以,函数对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦.(2)因为函数()g x 的图像与函数()f x 的图像关于y 轴对称,则()()π1232g x f x x ⎛⎫=-=-++ ⎪⎝⎭,令ππ3π2π22π232k x k +≤-+≤+,k ∈Z ,解得7ππππ,1212k x k k -+≤≤-+∈Z 当1k =时,即为5π11π,1212⎛⎫ ⎪⎝⎭所以当()0,πx ∈时,()g x 的单调递增区间:5π11π,1212⎛⎫⎪⎝⎭.19.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)ay b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元 (3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. 【详解】(1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠,()log 0,0,1b y a x a b b =≠>≠和(0)ay b a x=+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)把()2,102,()6,78,()20,120分别代入2y ax bx c =++,得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得12a =,10b =-,120c = ∴()221110120107022y x x x =-+=-+,,()0x ∈+∞. ∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元. (3)令()()()1701010210f xg x x x x ==-+--(10,)x ∞∈+, 因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立, 则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增,∴ 当10x =+()g x 取得最小值,且最小值为(10g +=∴k ≥20.己知函数21()2ln (21)(0)2f x x ax a x a =-+->.(1)若曲线(=)y f x 在点(1,(1))f 处的切线经过原点,求a 的值;(2)设2()2g x x x =-,若对任意(0,2]s ∈,均存在(0,2]t ∈,使得()()f s g t <,求a 的取值范围.【答案】(1)=4a ; (2)(0,1ln 2)-.【分析】(1)利用导数的几何意义求切线方程(含参数a ),由切线过原点求出a 的值; (2)利用导数研究()f x 的单调性并求出(0,2]上的最大值,由二次函数性质求()g x 在(0,2]上的最大值,根据已知不等式恒(能)成立求参数a 的范围.【详解】(1)由21()2ln (21)(0)2f x x ax a x a =-+->,可得2()21f x ax a x '=-+-.因为(1)2211f a a a '=-+-=+,13(1)21122f a a a =-+-=-,所以切点坐标为3(1,1)2a -,切线方程为:()311(1)2a y a x ⎛⎫--=+- ⎪⎝⎭, 因为切线经过(0,0),所以3112aa -=+,解得=4a . (2)由题知()f x 的定义域为(0,)+∞,21()[(21)2]f x ax a x x'=----,令()f x '=2(21)20ax a x ---=,解得1x a=-或=2x , 因为0,a >所以10a-<,所以12a-<, 令()0f x '>,即2(21)20ax a x ---<,解得:12x a-<<,令()0f x '<,即2(21)20ax a x --->,解得:1x a<-或2x >,所以()f x 增区间为(0,2),减区间为(2,)+∞.因为()22()211g t t t t =-=--,所以函数()g t 在区间(0,2]的最大值为0, 函数()f s 在(0,2)上单调递增,故在区间(0,2]上max ()(2)2ln 222f s f a ==+-, 所以2ln 2220a +-<,即ln 210a +-<,故1ln 2a <-, 所以a 的取值范围是(0,1ln 2)-.21.如图,在三棱柱111ABC A B C -中,1112,,AB AC AA AB AC A AB A AC ===⊥∠=∠,D 是棱11B C 的中点.(1)证明:1AA BC ⊥;(2)若三棱锥11B A BD -1A BD 与平面11CBB C 所成锐二面角的余弦值.【答案】(1)证明见解析【分析】(1)作出辅助线,由三线合一证明线线垂直,进而证明线面垂直,得到BC ⊥平面1AAO ,从而证明1AA BC ⊥;(2)作出辅助线,由三棱锥的体积求出1A H =用空间向量求解二面角;方法二:作出辅助线,找到二面角的平面角,再求解余弦值. 【详解】(1)取BC 中点O ,连接AO ,1AO ,1AC,因为AB AC =,所以AO BC ⊥,因为11A AB A AC ∠=∠,11,AB AC AA AA ==,所以11A AB A AC ≅,所以11A B AC =,所以1AO BC ⊥, 因为1AOAO O =,1,AO AO ⊂平面1AAO , 所以BC ⊥平面1AAO , 因为1AA ⊂平面1AAO , 所以1AA BC ⊥;(2)连接OD ,则平面1AAO 即为平面1AA DO , 由(1)知BC ⊥平面1AA DO ,因为BC ⊂平面ABC ,且BC ⊂平面11BCC B , 故平面1AA DO ⊥平面ABC ,平面1AA DO ⊥平面11BCC B ,过O 作1OM A D ⊥于M ,则OM ⊥平面ABC ,过1A 作1A H OD ⊥于H ,则1A H ⊥平面11BCC B ,因为11DO BB AA ∥∥知DO BC ⊥,在ABC中:2,AB AC BC ===所以1112BDB S DB DO =⋅△所以111111113B A BD A BDB BDB A A V V S h --==⋅==△,所以11A A H h = 法一:设MOD α∠=,则1DA H α∠=,在1Rt A HD △中11cos A H A D α===所以sin cos DM DO OM OD αα=⋅==⋅=又1A D M 为线段1A D 的中点,以O 为原点,分别以,,OA OB OM 分别为x ,y ,z 轴正方向建立空间直角坐标系,1(0,A B C A ⎝⎭,1,2222B D ⎛⎛ ⎝⎭⎝⎭, 设面1A BD 的法向量为()1111,,x n y z =,则有111111*********n BA xn BD x⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,两式相减得:10x =,所以110=,令12z =,可得:1y = 所以1(0,7,2)n =,设面11CBB C 的法向量为()2222,,n x y z =,则有221122220202n CB n CB ⎧⋅==⎪⎨⋅=-=⎪⎩, 解得:20y =,令21z =,解得:2x =所以2(7,0,1)n=, 设锐二面角为θ,则有1212cos 4n n n n θ⋅===+⋅. 法二:过H 做HE BD ⊥,连接1A E ,1A H ⊥面11BCC B,1A H DB ∴⊥,则DB ⊥面1AHE ,1A E BD ∴⊥,则1A EH ∠即为所求二面角.在1Rt A DH △中,11A H A D =12DH =,在Rt DOB 中,2,DO OB DB == 由RtRt DEHDOB 可得:HE DHOB DB=,HE ∴=,则1A E =11cos HE A EH A E ∴∠===22.己知函数()e sin 1(0)x f x a x a =-->在区间(0,)π内有唯一极值点1x . (1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)∈+∞a (2)证明见解析【分析】(1)根据极值点的定义,求导,进而求导函数的零点,研究零点左右与零大小关系,可得答案;(2)由(1)明确函数的单调区间,分别在两个单调区间上,利用零点存在性定理,证明零点唯一存在,根据单调性证明不等式成立. 【详解】(1)()e cos x f x a x '=-,①当01a <≤时,因为()0,x π∈,所以cos 1a x <,1e e x π<<,()0f x '>,()f x 在()0,π上单调递增,没有极值点,不合题意,舍去;②当1a >时,令()=()g x f x ',则()e sin x g x a x '=+,因为()0,x π∈,所以()0g x '>,所以()f x '在()0,π上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()f x '在()0,π上有唯一零点1x ,且10,2x π⎛⎫⎪⎝⎭∈,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在()0,π上有唯一极值点,符合题意. 综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10f x <,又因为()e 10f ππ=->, 所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x xf x a x a x x =--=--,由(1)知()10f x '=,所以11e cos x a x =,则()112112e 2e sin 1x x f x x =--,构造2()e 2e sin 1,0,2t tp t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t tp t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e c o s s i n t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】在利用导数证明不等式成立时,一定明确单调区间,在同一单调区间上,由函数值的大小关系,可得自变量的大小关系,探究函数的单调性,可通过研究导数过着导数中部分代数式所构成函数的单调性,求其最值,可得函数的单调性.。
湖南省长沙市雅礼中学2023届高三月考试卷(二)数学试题含答案
雅礼中学2023届高三月考试卷(二)数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,时量120分钟,满分150分.第I 卷一、选择题:本题共8小题 ,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220,{2}M x x x N =--=<∣, 则M N ⋂= A. (0,2) B. [0,2] C. [-1,4) D. [-1,2]2. 在平面直角坐标系xOy 中, 以点(0,1)为圆心且与直线10x y --=相切的圆的标准方程为A. 22(1)2x y +-=B. 22(1)1x y -+=C. 22(1)x y +-=D. 22(1)4x y -+=3.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:-0.23(-53)()1t K I t e=+,其中K 为最大确诊病例数.当()*0.95I t K =时,标志着已初步遏制疫情,则*t 约为(ln193)≈ A .60B .63C .66D .694.在某种信息传输过程中,用6个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,例如001100就是一个信息.在所有信息中随机取一信息,则该信息恰有2个1的概率是 A .516B .1132 C .1532D .15165. 已知圆锥的母线长为 2 , 轴截面顶角的正弦值是12, 过圆锥的母线作截面,则截面面积的最大值是A. 1 C. 1 或 2 D. 2 6. 设函数2()(,,)f x ax bx c a b c =++∈R , 若1x =-为函数()()x g x e f x =的一个极值点, 则下列图象不可能为()y f x =的图象的是7. 已知12,F F 分别是双曲线22:221(0,0)x y C a b a b-=>>的左、右焦点, 过2F 的直线与双曲线C 的左支相交于P 、Q 两点, 且1PQ PF ⊥. 若1||PQ PF =, 则双曲线C 的离心率为 63522- 522+ D.122+8. 在棱长为 6 的正方体1111ABCD A B C D -中,M 是BC 的中点, 点P 是面11DCC D 内的动点, 且满足 APD MPC ∠=∠, 则三棱锥D PBC -体积的最大值是A. 3B. 24C. 3D. 36 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.关于统计数据的分析,有以下几个结论,其中正确的是A.利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高B.将一组数据中的每个数据都减去同一个数后, 期望与方差均没有变化C.调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法D.样本数据9,3,5,7,12,13,1,8,10,18的第80百分位数是12.510.1748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式i e cos isin x x x =+(,i x ∈R 为虚数单位),这个公式在复变函数中有非常重要的地位,被誉为“数学中的天桥”,据此公式,则有 A .e 10i π+=B .20221312⎛⎫+= ⎪ ⎪⎝⎭C .i -i e e 2x x+≤D .i -i 2e e 2x x -≤-≤11. 已知函数()sin(cos )cos(sin )f x x x =+, 则下列结论正确的是A. ()f x 是偶函数B. ()f x 在区间0,2π⎛⎫⎪⎝⎭单调递㖪C. ()f x 的周期是πD. ()f x 的最大值为 212. 下列不等关系正确的是A. 33e 3e π<<B. 3e e e ππ<<C. 3e e πππ≤<D.333e ππ<<第Ⅱ卷三、填空题: 本题共 4 小题,每小题 5 分,共 20 分. 13. 已知||2||=b a 且()0⋅-=b a a , 则,b a 的夹角是_____.14. 已知函数()x x f x e ae -=+(a 为常数)为奇函数, 且()()g x f x mx =-为增函数, 则实数m 的取值范围是_____.15. 已知抛物线2:4E y x =, 直线:(1)l y k x =-与E 相交于,A B 两点, 若(1,1)M -使90AMB ︒∠=, 则 k =_____. 16. 已知三角形数表:现把数表按从上到下、从左到右的顺序展开为数列{}n a ,记此数列的前n 项和为n S .若()277tm S t m m =∈∈>Z N ,且,则m 的最小值是_____.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知*n ∈N ,抛物线2y x n =-+与x 轴正半轴相交于点A .设n a 为该拋物线在点A 处的切线在y 轴上的截距. (1)求数列{}n a 的通项公式;(2) 设2n n na b =, 求证: 1211112n b b b n +++<-(*n ∈N 且2n ).18.(本小题满分 12 分)在ABC 中, 角,,A B C 的对边分别为,,a b c , 若2A C B +.(1) 求证: B 3π;(2) 对*n ∈N , 请你给出一个n 的值, 使不等式2n n n a c b +成立或不成立,并证明你的结论.19. (本小题满分 12 分)如图 1, 在ABC 中,2,90,30,AC ACB ABC P ︒︒=∠=∠=是AB 边的中点. 现把ACP 沿CP 折成如图 2所示的三棱锥A BCP -, 使得10AB =(1)求证: 平面ACP ⊥平面BCP ; (2)求二面角B AC P --的余弦值.20. (本小题满分 12 分)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评级.现设4n =,分别以1234,,,a a a a 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令12341234X a a a a =-+-+-+-, 则X 是对两次排序的偏离程度的一种描述.(1)假设1234,,,a a a a 等可能地为1,2,3,4的各种排列,写出X 的可能值集合,并求X 的分布列;(2)某品酒师在相继进行的三轮测试中,都有2X ≤,①试按(1)中的结果,计算出现这种现象的概率(假定各轮测试相互独立); ②你认为该品酒师的酒味鉴别功能如何?说明理由. 21. (本小题满分 12 分)已知(1,0),A B -是圆22:2150F x x y -+-=上的任意一点, 线段AB 的垂直平分线交BF 于点P .(1) 求动点P 的轨迹C 的方程;(2) 设,PA PF 交轨迹C 于另两点,D E . 记PAF 和PDE 的面积分别为12,S S . 求12SS 的取值范围. 22. (本小题满分 12 分)已知函数11()t tttf x x x x +=+- (0, x t >为正有理数). (1) 求函数()f x 的单调区间;(2) 证明: 当2x 时,()0f x .雅礼中学2023届高三月考试卷(二)数学参考答案题号 1 2 3 4 5 6 7 8 9 101112 答案B ACD C D B A ADABC ABABD13.3π 14.(],2-∞ 15. 2 16. 95四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】(1) 抛物线在点,0)A n 处的切线方程为2()y n x n =--, 所以它在y 轴上的截距 2n a n =.(2)222121*********12121223(1)n b b b n n n n +++=++⋅<++++=-⨯⨯-. 18.【解析】(1) 由A B C π++=且2A C B +得23B B B ππ-⇒.(2) 当2n =时, 不等式成立, 即有2222a c b +. 证明如下: 由余弦定理有()()()2222222222cos b a c a c ac B a c -+=++--224cos 24cos 2(12cos )a c ac B ac ac B ac B =+--=-由 (1) 知1,cos cos 12cos 0332B B B πππ<∴=⇒-, 所以()22220b a c -+, 即2222a c b +.或当1n =时, 不等式成立, 即有2a c b +. 证明如下: 由正弦定理有2()2[2sin (sin sin )]24sin cos 2sin cos 2222B B A C A C b a c R B A C R +-⎛⎫-+=-+=- ⎪⎝⎭4cos 2sin cos 222B B A C R -⎛⎫=- ⎪⎝⎭ (其中R 是ABC 外接圆的半径)由 (1) 知1,sin sin 2sin 136222622B B BB πππππ<∴<⇒=⇒. 而cos 12AC -, 所以2sin cos 022B A C --, 又cos 02B>, 所以2()0b a c -+, 即2a c b +.或222()(2)a c b a c b +⇔+,而由余弦定理 ()()222222(2)()42cos 2b a c a c ac B a c ac-+=+--+-()2238cos 268cos 24(12cos )a c ac B ac ac ac B ac ac B =+----=- 由 (1) 知1,cos cos12cos 0332B B B πππ<∴=⇒-, 所以22(2)()0b a c -+, 即2a c b +.或当5n =时, 不等式不成立, 即5552a c b +不成立. 证明如下:取,23A B ππ==, 则有555sin 2sin 3a A b B ⎛⎫⎛⎫=> ⎪ ⎪⎭⎝⎭=⎝, 所以552a c b b ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 即5552a c b +>.说明此时5552a c b +≤不成立19.【解析】(1)在图1中,取CP 的中点O ,连接AO 交CB 于E ,则AE CP ⊥.在图2中,取CP 的中点O,连接AO,OB, 因为2AC AP CP ===, 所以AO CP ⊥且 3AO =在OCB 中, 由余弦定理有2221(23)21237OB ︒=+-⨯⨯=, 所以22210AO OB AB +==, 所以AO OB ⊥, 又,AO CP CP OB O ⊥⋂=, 所以AO ⊥面PCB , 又AO ⊂面ACP , 所以平面ACP ⊥平面CPB .(2)因为AO ⊥面PCB 且OC OE ⊥,故可建立如图2空间直角坐标系, 则(0,0,0),(1,0,0),(0,0,3),(1,0,0),(3,0)O C A P B --(2,3,3),(1,0,3)AB AC =--=.设平面ABC 的法向量为(,,)x y z =m , 则由0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩m m 得(3,3,1)=m又平面ACP 的法向量为(0,1,0)=n .所以313cos ||||13131θ⋅===⋅⨯m n m n . 因此, 二面角B AC P --的余弦值为1313.20.【解析】(1) X 的可能取值集合为{0,2,4,6,8},在1,2,3,4中奇数与偶数各有两个, 所以24,a a 中奇数个数等于13,a a 中偶数个数, 因此1313a a -+-与2424a a -+-的奇偶性相同, 从而X 必为偶数.X 的值非负, 且易知其值不大于 8 .容易举出使得X 的值等于0,2,4,6,8各值的排列的例子.可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X 的值,在等可能的假定下, 得到X 的分布列为X 0 2 4 6 8P124 324 724924 424(2)①首先(2)(0)(2)246P X P X P X ≤==+=== 将三轮测试都有X ≤2的概率记做P ,有上述结果和独立性假设得311P 6216⎛⎫==⎪⎝⎭ ②由于15P 2161000=<是一个很小的概率, 这表明仅凭随机猜测得到三轮测试都有X ≤2的结果的可能性很小, 所以我们认为该品酒师确实有良好的鉴别功能,不是靠随机猜测.21.【解析】(1) 由题意可知||||||||||42||PA PF PB PF FB AF +=+==>=, 所以动点P 的轨迹是以A 、F 为焦点且长轴长为 4 的椭圆, 因此C 方程为22143x y += 设||(13),PA x x PAF θ=<<∠=, 则在PAF 中, 由余弦定理得32cos x θ=-,则有3cos 2xθ=-. 同理33||2cos()2cos AD πθθ==--+.所以22212124||||||4cos 43342x PD PA AD x x θ=+===--⎛⎫-- ⎪⎝⎭. 设||PF y =, 则4x y +=. 同理可得24||43y PE y =-所以12||(43)(43)391||||1616S PA PF x y S PD PE xy xy ⋅--===-⋅∣. 易知(4)(3,4]xy x x =-∈,所以12S S 的取值范围是325,1664⎛⎤ ⎥⎝⎦.22.【解析】(1) 函数的定义域为(0,)+∞.()111111111111()11t t t t t t t t f x txx t x tx x x x t t t-+--'--⎛⎫⎛⎫=+-+=-+- ⎪ ⎪⎝⎭⎝⎭. 当01x <<时, ()0f x '>; 当1x >时, ()0f x '<. 所以函数()f x 的单调区间为(0,1),(1,)+∞且()f x 在(0,1)上单调递增, 在(1,)+∞上单调递减. (2) 因为()f x 在[2,)+∞单调递减, 所以11()(2)222t tttf x f +=+-.记11(0)()222t tttg t t +=+>-,因此要证()0f x ≤,只要证()0g t ≤即可而1()g t g t ⎛⎫= ⎪⎝⎭且(1)0g =,因此只要证明: 当1t 时,()0g t .而1111()2222221t t tt tt ttg t +-⎛⎫=+--+ ⎪⎝⎭=.令122)1(1)(t t t h t t -+=-≥1121()2(ln 2)12t t t h t t -'⎛⎫=+- ⎪⎝⎭, 令1m t =, 则01m <. 令2()12(01)m F m m m =++<,2()22ln 2,()22ln 2(01),()22(ln 2)0m m m F m m G m m m G x ''=-=-<=->令, 所以()G m 在(0,1]上单调递增, 又(0)ln 20,(1)22ln 20G G =-<=->, 又()G m 在(0,1]上连续, 故存在0(0,1]x ∈, 使得()00,x x ∈时,(]0()0,,1G m x x <∈时, $G(m)>0$. 所以()F m 在()00,x 上单调递减, 在(]0,1x 单调递增. 又(0)(1)0F F ==, 所以()0F m .即()0h t ', 所以()h t 在[1,)+∞单调递减, 所以()(1)0h t h =, 即()0g t . 综上所述, 当2x 时,()0f x .。
2023-2024学年上海松江二中高三下学期数学月考试卷及答案(2024.05)
1松江二中2023-2024学年第二学期高三年级数学月考2024.05一、填空题(共9小题)1.已知集合A ={(x ,y )|2x +y =5},B ={(x ,y )|3x +2y =8},则A ∩B = . 2.已知集合A ={x |﹣2≤x ≤10,x ∈Z },m ,n ∈A ,方程221x y m n+=表示焦点在x 轴上的椭圆,则这样的椭圆共有 个.3.设随机变量X 服从二项分布193B,,则D [X ]= .4.设实数x 、y 满足|x +y |=1,则xy 的最大值是 . 5.已知点A 的坐标为(1,2),将OA 绕坐标原点O 逆时针旋转4π至OA ′,则点A ′的坐标为 .6.如图所示,在矩形ABCD中,2AB BC =,点E 在边CD 上,且2DE EC =,则AE BE ⋅的值是 .7.设点P 是曲线22145x y −=右支上一动点,F 为左焦点,点Q 是圆x 2+(y ﹣4)2=1上一动点,则|PF |+|PQ |的最小值是 .8.函数f (x )=|x ﹣a |+cos x 在[0,b ]上的值域为312π−,,则b a 的值为 .9.数列{a n }的前n 项和为S n ,若数列{a n }与函数f (x )满足:①f (x )的定义域为R ; ②数列{a n }与函数f (x )均单调递增;③∃n ∈N *使S n =f (a n )成立,则称数列{a n }与函数f (x )具有“单调偶遇关系”.有下面四个结论:①a n=2n+1与f(x)=x具有“单调偶遇关系”②a n=2n与f(x)=2x﹣2不具有“单调偶遇关系”③与数列{2n+1}具有“单调偶遇关系的函数有有限个④与数列{2n}具有“单调偶遇关系”的函数有无数个,其中正确结论的序号为.二.选择题(共4小题)10.若复数z满足z(1﹣i)=1+3i(i是虚数单位),则|z|=().ABC.D.211.已知l,m,n是三条不同的直线,α,β,γ是三个不同的平面,给出下列命题,其中真命题是().A.若l⊥α,l⊥m,则m∥αB.若α∩β=l,β∩γ=m,γ∩α=n,l∥m,则m∥nC.若α⊥β,l⊂α,m⊂β,则l⊥mD.l⊂α,l⊥m,l⊥n,m∥β,n∥β,则α∥β12.若a,b∈R,则“|a|>|b|成立”是“a2>b2成立”的()条件.A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要13.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布N(38,72),从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布N(44,22),下地铁后从地铁站步行到单位要5分钟.从统计的角度出发,下列说法中合理的是().参考数据:若Z∼N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974.A.若8:00出门,则开私家车不会迟到B.若8:02出门,则开私家车上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大D.若8:12出门,则乘坐地铁几乎不可能上班不迟到2三.解答题(共7小题)14.设f(x)=(1+x)m+(1+x)n(m,n∈N+),若展开式中关于x的一次项系数和为11,试问m,n为何值时,含x2项的系数取得最小值.15.采矿、采石或取土时,常用炸药包进行爆破,部分爆破呈圆锥漏斗形状(如图),已知圆锥的母线长是炸药包的爆破半径R,它的值是固定的.问:炸药包埋多深可使爆破(圆锥)体积最大?16.设△ABC的内角A,B,C所对边分别为a,b,c(a,b,c∈N*),若12cosB sinB cosA sinA +=−.(1)求a cb+的值;(2)若a<b且三个内角中最大角是最小角的两倍,当△ABC周长取最小值时,求△ABC 的面积.3417.随着人脸识别技术的发展,“刷脸支付”成为了一种便捷的支付方式,但是这种支付方式也带来了一些安全性问题.为了调查不同年龄层的人对“刷脸支付”所持的态度,研究人员随机抽取了300人,并将所得结果统计如下表所示.年龄 [20,30)[30,40)[40,50) [50,60)[60,70] 频数 30 75 105 60 30 持支持态度2466904218(1)完成下列2×2列联表,并判断是否有99.9%的把握认为年龄与所持态度具有相关性;年龄在50周岁以上(含50周岁)年龄在50周岁以下总计持支持态度 不持支持态度总计(2)以(1)中的频率估计概率,若在该地区所有年龄在50周岁以上(含50周岁)的人中随机抽取4人,记X 为4人中持支持态度的人数,求X 的分布列以及数学期望; (3)已知某地区“万嘉”连锁超市在安装了“刷脸支付”仪器后,使用“刷脸支付”的人数y 与第x 天之间的关系统计如下表所示,且数据的散点图呈现出很强的线性相关的特征,请根据表中的数据用最小二乘法求y 与x 的回归直线方程y b x a =+.i1 2 3 4 5 6 7 第x i 天 24812222638使用人数y iy 1 y 2y 3 y 4 y 5 y 6 y 7参考数据:715588i i i x y ==∑,71294i i y ==∑.P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828参考公式:()()()()()22n ad bcKa b c d a c b d−=++++,()()()121ni iiniix x y ybx x==−−=−∑∑,a y b x=−.18.如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O,E在母线PC上,且AE=,CE=1,EC⊥BD.(1)求证:平面BED⊥平面ABD;(2)设线段PO上动点为M,求直线DM与平面ABE所成角的正弦值的最大值.5619.已知椭圆C :2222x y a b+=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为Q12−)在椭圆C 上.(1)P 是C 上一动点,求1PF •2PF的范围;(2)过C 的右焦点F 2,且斜率不为零的直线l 交C 于M ,N 两点,求△F 1MN 的内切圆面积的最大值.20.对于函数y =f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数f (x )的一阶不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数f (x )的二阶不动点;依此类推,可以定义函数f (x )的n 阶不动点.其中一阶不动点简称不动点,二阶不动点也称为稳定点.(1)已知f (x )=2x +2x ﹣3,求f (x )的不动点;(2)已知函数f (x )在定义域内单调递增,求证:“x 0为函数f (x )的不动点”是“x 0为函数f (x )的稳定点”的充分必要条件; (3)已知a >﹣1,讨论函数()()2211f x lnx a x x e =++−的稳定点个数.7参考答案一.填空题(共9小题)1.已知集合A ={(x ,y )|2x +y =5},B ={(x ,y )|3x +2y =8},则A ∩B = {(2,1)} . 【分析】根据交集的定义,解方程组25328x y x y +=+=即可得出A ∩B .【解答】解25328x y x y +=+= 得21x y = =,∴A ∩B ={(2,1)}.故答案为:{(2,1)}. 【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.已知集合A ={x |﹣2≤x ≤10,x ∈Z },m ,n ∈A ,方程221x y m n+=表示焦点在x 轴上的椭圆,则这样的椭圆共有 45 个.【分析】根据题中方程表示焦点在x 轴上的椭圆,得m >n >0.由m 、n ∈A ,得m 、n 在从1到10的十个正整数中取值,由此利用排列组合公式,即可得到本题答案. 【解答】∵方程221x y m n+=表示焦点在x 轴上的椭圆,∴m >n >0又∵集合A ={x |﹣2≤x ≤10,x ∈Z },m ,n ∈A , ∴m 、n 在正整数1、2、3、…、9、10的十个数中取值根据排列组合原理,可得符合题意的(m ,n )共有210C =45个故答案为:45【点评】本题给出含有字母参数的椭圆,求满足焦点在x 轴的椭圆的个数.着重考查了椭圆的标准方程、排列组合公式等知识点,属于中档题. 3.设随机变量X 服从二项分布193B,,则D [X ]= 2 .【分析】直接利用二项分布的方差公式求解. 【解答】∵X ~B (9,13),∴D [X ]=911133 ××−= 2.故答案为:2.【点评】本题主要考查了二项分布的方差公式,属于基础题. 4.设实数x 、y 满足|x +y |=1,则xy 的最大值是.8【分析】易知x +y =±1,利用完全平方和公式(x +y )2=x 2+y 2+2xy ,再结合基本不等式,即可得解.【解答】因为|x +y |=1,所以x +y =±1,所以(x +y )2=x 2+y 2+2xy ≥2xy +2xy =4xy , 即1≥4xy ,当且仅当x =y 12=时,等号成立,所以xy 14≤,所以xy 的最大值是14. 故答案为:14. 【点评】本题考查基本不等式的应用,考查逻辑推理能力和运算能力,属于基础题. 5.已知点A 的坐标为(1,2),将OA 绕坐标原点O 逆时针旋转4π至OA ′,则点A ′的坐标为 (【分析】结合三角函数的定义可先求出经过点的角的三角函数值,然后结合两角和的正弦及余弦公式及三角函数定义可求.【解答】设点A ′的坐标(x ,y ),则OA =OA′= 设A为α终边上的一点,则sin α=,cosα,则cos(4πα+))cos sin =α−α==,sin (4πα+)=(sin α+cosα),即x =,y=,故点A ′的坐标为().故答案为:(). 【点评】本题主要考查了三角函数的定义及两角和的正弦及余弦公式,属于基础题. 6.如图所示,在矩形ABCD 中,2AB BC =,点E 在边CD 上,且2DE EC =,则AE BE ⋅ 的值是9【分析】由平面向量的线性运算,结合平面向量数量积运算求解即可.【解答】23AE AD DE AD DC =+=+ ,1133BE BC CE BC DC AD DC =+=−=−,则22212123242339399AE BE AD DC AD DC AD DC AD DC ⋅=+⋅−=−+⋅=−×=,故答案为:329.【点评】本题考查了平面向量的线性运算,重点考查了平面向量数量积运算,属基础题. 7.设点P 是曲线22145x y −=右支上一动点,F 为左焦点,点Q 是圆x 2+(y ﹣4)2=1上一动点,则|PF |+|PQ |的最小值是 8 .【分析】由双曲线的方程,可得a ,b 的值,进而求出c 的值,由双曲线的定义及三点共线的性质可得|PF |+|PQ |的最小值.【解答】由双曲线的方程可得a =2,b =c 3,设双曲线的右焦点F ',则F ′(3,0),圆x 2+(y ﹣4)2=1的圆心C (0,4),半径r =1,由题意可得|PF |+|PQ |=2a +|PF '|+|PQ |≥4+|F 'C |﹣r =4−1=8, 当且仅当C ,P ,F '三点共线,且P 在C ,F '之间时取等号.即|PF |+|PQ |的最小值为8. 故答案为:8.【点评】本题考查双曲线的性质的应用及三点共线时线段和最小的性质的应用,属于中档题. 8.函数f (x )=|x ﹣a |+cos x 在[0,b ]上的值域为312π−,,则b a 的值为【分析】先由绝对值、余弦函数的有界性以及f (0)求出a ,分类讨论求出b ,即可求解.10【解答】因为|x ﹣a |≥0,cos x ≥﹣1,所以当且仅当|x ﹣a |=0且cos x =﹣1时f (x )=﹣1,所以a =x =π+2k π,k ∈N ,又()30112f a π=+∈−,,所以a =π,所以f (x )=|x ﹣π|+cos x ,易知f (x )在(0,π)上单调递减,在(π,+∞)单调递增, 所以当b ≤π时,f (x )≤f (0)=π+1,不满足题意; 当b >π时,因为3()2max f x π=,所以()32f b b cosb π=−π+=, 注意到5322f ππ= ,且f (x )在(π,+∞)单调递增,所以52b π=,所以52b a =.故答案为:52.【点评】本题主要考查了三角函数的图象和性质,属于中档题.9.数列{a n }的前n 项和为S n ,若数列{a n }与函数f (x )满足:①f (x )的定义域为R ; ②数列{a n }与函数f (x )均单调递增;③∃n ∈N *使S n =f (a n )成立,则称数列{a n }与函数f (x )具有“单调偶遇关系”.有下面四个结论:①a n =2n +1与f (x )=x 具有“单调偶遇关系” ②a n =2n 与f (x )=2x ﹣2不具有“单调偶遇关系” ③与数列{2n +1}具有“单调偶遇关系的函数有有限个④与数列{2n }具有“单调偶遇关系”的函数有无数个,其中正确结论的序号为 ①④. . 【分析】根据“单调偶遇关系”的新定义可判断选项①,②;以一次函数为例,f (x )=kx +b 可判断③;令f (a n )=λa n ,通过计算可判断④,进而可得正确选项.【解答】对于①:数列{a n }中,由a n =2n +1可知任意两项不相等,f (x )=x 定义域为R 满足①,数列a n =2n +1和f (x )=x 均单调递增满足②, {a n }的前n 项和S n()3212n n ++=n 2+2n ,由S n =f (a n )得n 2+2n =2n +1,解得n =1, 所以∃n ∈N *使S n =f (a n )成立,满足③,故①正确;对于②:数列{a n }中,由a n =2n 可知任意两项不相等,f (x )=2x ﹣2定义域为R 满足①, 数列a n =2n 和f (x )=2x ﹣2均单调递增满足②,11a n 的前n 项和S n =2n +1﹣2,由S n =f (a n )得2n +1﹣2=2×2n ﹣2恒成立,所以∃n ∈N *使S n =f (a n )成立满足③,故a n =2n 与f (x )=2x ﹣2具有“单调偶遇关系”,故②说法不正确; 对于③:以一次函数为例,f (x )=kx +b ,S n =n 2+2n ,S n =f (a n ), 即n 2+2n =k (2n +1)+b ,整理得n 2+(2﹣2k )n ﹣(k +b )=0,只要方程有正整数解且k >0即可,如方程中取n =1,则有3=3k +b ,即k =13b −,对b 进行不同的取值即可保证数列{2n +1}具有“单调偶遇关系”的函数有无数组,故③说法不正确;对于④:中S n =2n +1﹣2令f (a n )=λa n .由S n =f (a n )得2n +1﹣2=λ×2n ,取λ=222n−,即可保证S n =f (a n )恒成立,故选项④正确.故答案为:①④.【点评】本题主要考查数列与函数的综合,考查运算求解能力,属于难题. 二.选择题(共4小题)10.若复数z 满足z (1﹣i )=1+3i (i 是虚数单位),则|z |=( ) ABC.D .2【分析】根据已知条件,运用复数的运算法则,可得z =﹣1+2i ,再结合共轭复数的概念和复数模的公式,即可求解. 【解答】∵z (1﹣i )=1+3i ,∴()()()()13113111i i i z i i i +++===−−−+1+2i ,∴z =.故选:A .【点评】本题考查了共轭复数的概念,以及复数代数形式的乘除法运算和复数模公式,需要学生熟练掌握公式,属于基础题.11.已知l ,m ,n 是三条不同的直线,α,β,γ是三个不同的平面,给出下列命题,其中真命题是( )A .若l ⊥α,l ⊥m ,则m ∥αB .若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥m ,则m ∥nC .若α⊥β,l ⊂α,m ⊂β,则l ⊥mD.l⊂α,l⊥m,l⊥n,m∥β,n∥β,则α∥β【分析】由空间中直线与直线、直线与平面的位置关系判断即可.【解答】若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若α∩β=l,β∩γ=m,γ∩α=n,l∥m,则由线面平行的判定定理与性质定理易得m∥n.故B正确;若α⊥β,l⊂α,m⊂β,则l与m不一定垂直,故C错误;若l⊂α,l⊥m,l⊥n,m∥β,n∥β,则不能得到α∥β.故D错误.故选:B.【点评】本题考查空间中直线与平面的位置关系,考查空间想象能力与思维能力,考查推理论证能力,是中档题.12.若a,b∈R,则“|a|>|b|成立”是“a2>b2成立”的()条件.A.充分非必要B.必要非充分 C.充要 D.既非充分又非必要【分析】根据不等式的性质,利用充分条件和必要条件的定义即可得到结论.【解答】若|a|>|b|,则|a|2>|b|2成立,即a2>b2成立,若a2>b2成立,则等价为|a|2>|b|2成立,即|a|>|b|成立,∴“|a|>|b|成立”是“a2>b2成立”的充要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.4.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布N(38,72),从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布N(44,22),下地铁后从地铁站步行到单位要5分钟.从统计的角度出发,下列说法中合理的是()参考数据:若Z∼N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974.A.若8:00出门,则开私家车不会迟到B.若8:02出门,则开私家车上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大1213D .若8:12出门,则乘坐地铁几乎不可能上班不迟到【分析】对于A ,由P (Z ≥59)=0.0013即可判断;对于BC ,分别计算开私家车及乘坐地铁不迟到的概率即可判断;对于D ,计算P (Z ≤38)=0.0013即可判断. 【解答】对于A ,由题意,当满足()()1175910.9974590.001322P Z P Z −≤−≥===<时,江先生仍旧有可能迟到,只不过发生的概率较小,故选项A 错误; 对于B ,若8:02分出门,①江先生开私家车,由题意,当满足()()()124525224520.97722P Z P Z P Z −≤=+=<<<<,此时江先生开私家车不会迟到;②江先生乘坐地铁,由题意,当满足()()()140484840480.97722P Z P Z P Z −≤=+=<<<<,此时江先生乘坐地铁不会迟到;此时两种上班方式,江先生不迟到的概率相当,故选项B 错误;对于C ,若8:06分出门,①江先生开私家车,由题意,当满足P (Z ≤48)()()()131454531450.84132P Z P Z P Z −≤=+=<<><<,此时江先生开私家车不会迟到;②江先生乘坐地铁,由题意,当满足()1440.52P Z ≤==时,此时江先生乘坐地铁不会迟到; 此时两种上班方式,显然江先生开私家车不迟到的可能性更大,故选项C 错误;对于D ,若8:12分出门,江先生乘坐地铁上班,由题意,当满足()()13850380.00132P Z P Z −≤==<<时,江先生乘坐地铁不会迟到,此时不迟到的可能性极小,故江先生乘坐地铁几乎不可能上班不迟到,故选项D 正确.故选:D .【点评】本题考查正态分布,考查考生的数据处理能力,分析问题解决问题的能力以及运算求解能力,属于中档题. 三.解答题(共7小题)14.设f (x )=(1+x )m +(1+x )n (m ,n ∈N +),若展开式中关于x 的一次项系数和为11,试问m ,n 为何值时,含x 2项的系数取得最小值.【分析】利用二项展开式的通项公式求出展开式中含x 的一次项系数和,列出方程求出m ,14n 的关系;利用二项展开式的通项公式求出含x 2项的系数,通过等量代换转化成二次函数的最值,求出二次函数的最值. 【解答】由题意知∁m 1+∁n1=11,即m +n =11,又展开式中含x 2项的系数()()221112m n C C m m n n +−+−221199115524n n n=−+=−+, ∴当n =5或n =6时,含x 2项的系数最小,最小值为25. 此时n =5,m =6;或m =5,n =6. 故答案为n =5,m =6;或m =5,n =6.【点评】本题考查二项展开式的通项公式的应用;等量代换;二次函数的最值的求法. 15.采矿、采石或取土时,常用炸药包进行爆破,部分爆破呈圆锥漏斗形状(如图),已知圆锥的母线长是炸药包的爆破半径R ,它的值是固定的.问:炸药包埋多深可使爆破(圆锥)体积最大?【分析】先将圆锥的体积转化为关于深处h 的关系式,再利用导数与函数性质的关系求得V 的最大值点,从而得解.【解答】合图形,可知圆锥的体积为213V r h =π,又因为R 2=h 2+r 2,即r 2=R 2﹣h 2, 所以()2223111333V R h h R h h =π−=π−π,h ∈(0,R ),则221'3V R h =π−π, 令V ′≥0,得0h <;令V ′≤0R h R <<; 所以231133V R h h =π−π在0上单调递增,在R,上单调递减,15所以在h =处231133V R h h =π−π深处. 【点评】本题主要考查圆锥体积的求法,导数的应用,考查运算求解能力,属于中档题.16.设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c (a ,b ,c ∈N *),若12cosB sinBcosA sinA+=−. (1)求a cb+的值; (2)若a <b 且三个内角中最大角是最小角的两倍,当△ABC 周长取最小值时,求△ABC 的面积.【分析】(1)变形得到sin A +sin C =2sin B ,由正弦定理得到a +c =2b ,得到答案; (2)由题意得到C =2A ,由正弦定理和余弦定理得到532c c a a c −=,求出32c a =,54b a =,由a ,b ,c ∈N *,求出当a =4时,周长最小,进而由三角形面积求出答案. 【解答】(1)因为12cosB sinBcosA sinA+=−,所以sin A +sin A cos B =2sin B ﹣cos A sin B , 因为C =π﹣(A +B ),所以sin C =sin (A +B )=sin A cos B +cos A sin B , 所以sin A +sin C =2sin B ,由正弦定理a b csinA sinB sinC==,得a +c =2b ,即2a c b +=.(2)由a +c =2b 可得:c ﹣b =b ﹣a >0,故c >b >a ,于是C =2A , 由正弦定理a csinA sinC=及余弦定理2222b c a cosA bc +−=可得: ()()()22222222b c a c a b b c a c sin A b c a cosA a sinA bc bc bc ++−+−+−===== ()()245322b c a c a c a c a c c c +−++−−==,解得:c =a (舍)或者32c a =,故54b a =, 因为a ,b ,c ∈N *,所以当a =4时,周长最小,此时345624c a b c cosA a =====,,,,所以sinA ,所以△ABC的面积为115622bcsinA =××=. 【点评】本题主要考查解三角形,考查转化能力,属于中档题.17.随着人脸识别技术的发展,“刷脸支付”成为了一种便捷的支付方式,但是这种支付方式也带来了一些安全性问题.为了调查不同年龄层的人对“刷脸支付”所持的态度,研究人员随机抽取了300人,并将所得结果统计如下表所示.16年龄 [20,30)[30,40)[40,50) [50,60)[60,70] 频数 30 75 105 60 30 持支持态度2466904218(1)完成下列2×2列联表,并判断是否有99.9%的把握认为年龄与所持态度具有相关性;年龄在50周岁以上(含50周岁)年龄在50周岁以下总计持支持态度 不持支持态度总计(2)以(1)中的频率估计概率,若在该地区所有年龄在50周岁以上(含50周岁)的人中随机抽取4人,记X 为4人中持支持态度的人数,求X 的分布列以及数学期望; (3)已知某地区“万嘉”连锁超市在安装了“刷脸支付”仪器后,使用“刷脸支付”的人数y 与第x 天之间的关系统计如下表所示,且数据的散点图呈现出很强的线性相关的特征,请根据表中的数据用最小二乘法求y 与x 的回归直线方程y b x a =+.i1 2 3 4 5 6 7 第x i 天 24812222638使用人数y iy 1 y 2y 3 y 4 y 5 y 6 y 7参考数据:75588i i x y =∑,7294i y =∑.,a y b x =−.【分析】(1)由频数分布表直接填写即可,再结合独立性检验公式,即可求解;17(2)由频数分布表可判断支持态度的人数符合243X B~,,结合二项分布的概率公式可求X 的分布列以及数学期望;(3)先求出x y ,,再由1712277 7i i ii ix yx y b xx==−⋅=−∑∑求出b ,再由a y b x =− 求出a,进而求出线性回归方程.【解答】(1)完成列联表如下:年龄在50周岁以上(含50周岁)年龄在50周岁以下 总计持支持态度 60 180 240 不持支持态度30 30 60 总计90210300()2030060301803010014.28610.82824060902107k ××−×==≈×××>, 故有99.9%的把握认为年龄与所持态度具有相关性;(2)依题意,243X B~,,X 所有可能的值为0,1,2,3,4,故()4110()381P X ===,()1341281()3381P X C === ,()222412242()()3381P X C ===,()33412323()3381P X C ===,()42164()381P X ===, 故X 的分布列为:故()28433E X =×=; (3)依题意,71167i i x x ===∑,7212832ii x ==∑,由71294i i y ==∑得42y =,18()()()771177222211 75588162940.852832716 7i i i i i i i ii i x x y y x y xy bx x x x====−−−−×===−×−−∑∑∑∑,420.851628.4a y b x =−=−×=,故y 关于x 的线性回归方程是0.8528.4y x =+.【点评】本题主要考查离散型随机变量分布列的求解,以及期望公式的应用,属于中档题. 18.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,△ABD为底面圆O ,E在母线PC 上,且AE =,CE =1,EC ⊥BD . (1)求证:平面BED ⊥平面ABD ;(2)设线段PO 上动点为M ,求直线DM 与平面ABE 所成角的正弦值的最大值.【分析】(1)设AC 交BD 于点F ,连接EF ,由题意可证得BD ⊥平面AEC ,进一步可得EF ⊥平面ABD ,最后结合面面垂直的判断定理可得平面BED ⊥平面ABD ;(2)建立空间直角坐标系,由题意得到直线DM 与平面ABE 所成角的正弦值的表达式,然后由基本不等式求解其最值即可.【解答】(1)证明:如图所示,设AC 与BD 交于点F ,连接EF ,则PO ⊥BD , 又EC ⊥BD ,EC ∩PO =P ,EC ,PO ⊂平面AEC ,由线面垂直的判断定理可得BD ⊥平面AEC ,又EF ⊂平面AEC ,∴EF ⊥BD ,△ABD 是底面圆的内接正三角形,则AD =,32AF =,AC =2, 又AE =,CE =1,则AC 2=AE 2+CE2,由勾股定理可得∠AEC =90°,19AE AF AC AE ==,∴△ACE ∽△ACE ,∴∠AFE =∠AEC =90°,即EF ⊥AC , AC ,BD ⊂平面ABD ,AC ∩BD =F ,∴EF ⊥平面ABD ,又EF ⊂平面BED ,∴平面BED ⊥平面ABD . (2)易知2PO EF==以点F 为坐标原点,建立如图所示的空间直角坐标系F ﹣xyz ,则30000002A B D − ,,,,,,110000022E P O ,,,,,,∴(33100000222AB AE DO OP =−=−=,,,,,, 设平面ABE 的法向量为()n x y z = ,,,则00n AB y n AE z ⋅+= ⋅+=,据此可得(1n = ,设()01OM OP =λ≤λ≤,则12DM DO OM=+=,设直线DM 与平面ABE所成的角为θ,则n DM sin n DM ⋅θ==⋅ , 令212131x y x +=+,x ∈[0,1],则212144493111144112612x y x x x +==≤=+++−+,当且仅当12x=时,等号成立,即当12x =时,212131x y x +=+有最大值4,于是当12λ=时,()2229124731sin λ+λ+θ=λ+有最大值为1,∴sin θ的最大值为1,故直线DM 与平面ABE 所成角的正弦值的最大值为1.【点评】本题主要考查面面垂直的证明,线面角的相关计算,空间向量及其应用,立体几何中的最值与范围问题,空间想象能力的培养等知识,属于中等题.2019.已知椭圆C :2222x y a b+=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为Q12−)在椭圆C 上.(1)P 是C 上一动点,求1PF •2PF的范围;(2)过C 的右焦点F 2,且斜率不为零的直线l 交C 于M ,N 两点,求△F 1MN 的内切圆面积的最大值.【分析】(1)由已知易示c ,把点Q 的坐标代入方程可求b ,进而可求椭圆的方程,可求1PF •2PF的范围;(2)设直线l 的方程为x =my ,M (x 1,y 1),N (x 2,y 2),联立方程组可得y 1+y2=,y 1y 2214m =−+,求得1F MNS 的最大值,利用r 124F MN S a = 可求圆的面积的最大值.【解答】(1)由题间知c =,∴a 2=b 2+3,将Q,12−)代入22223x y b b +=+1, 解得b =1,∴椭圆C 的方程为:24x +y 2=1,设点P (x ,y ),则1PF •2PF =(x ,﹣y )•−x ,﹣y )=x 2﹣3+y 234=x 2﹣2, 又∵x ∈[﹣2,2],∴1PF •2PF的取值范围是[﹣2,1].(2)依题意可设直线l 的方程为x =my ,M (x 1,y 1),N (x 2,y 2),联立2214x my x y =+ +=,得(14m 2+1)y214−=0,∴y 1+y2=,y 1y 2214m =−+,∴112F MN S =ו|y 1﹣y 2|=4, 又∵()()2222222221111912(4)(1)619161m m m m m mm ++==≤+++++++++,21当且仅当m时等号成立,∴1F MN S ≤=2, 设△F 1MN 的内切圆半径为r ,则r 1241482F MN S a ≤= , ∴△F 1MN 的内切圆面积的最大值为4π. 【点评】本题考查求椭圆方程,考查求向量的数量积的范围,考查求内切圆的面积的最大值,属中档题.20.对于函数y =f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数f (x )的一阶不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数f (x )的二阶不动点;依此类推,可以定义函数f (x )的n 阶不动点.其中一阶不动点简称不动点,二阶不动点也称为稳定点.(1)已知f (x )=2x +2x ﹣3,求f (x )的不动点;(2)已知函数f (x )在定义域内单调递增,求证:“x 0为函数f (x )的不动点”是“x 0为函数f (x )的稳定点”的充分必要条件;(3)已知a >﹣1,讨论函数()()2211f x lnx a x x e =++−的稳定点个数. 【分析】(1)设g (x )=f (x )﹣x =2x +x ﹣3,判断该函数单调性,确定其解,即可求得答案;(2)根据函数新定义的含义,结合充分性以及必要性的证明,即可证明结论;(3)由题意可知只需研究f (x )的不动点即可,令()()2210F x lnx ax x x e =+−∈+∞,,,求出其导数,判断其单调性,然后分类讨论a 的取值范围,判断F (x )的零点情况,即可判断()()2211f x lnx a x x e =++−的稳定点个数. 【解答】(1)设g (x )=f (x )﹣x =2x +x ﹣3,则g ′(x )=2x ln 2+1>0恒成立, 故函数g (x )在R 上单调递增,又g (1)=0,故函数g (x )在R 上有唯一零点, 即f (x )有唯一不动点1;(2)证明:充分性:设x 0为函数f (x )的不动点,则f (x 0)=x 0,则f (f (x 0))=f (x 0)=x 0,即x 0为函数f (x )的稳定点,充分性成立;22必要性:设x 0为函数f (x )的稳定点,即f (f (x 0))=x 0,假设f (x 0)=y 0,而f (x )在定义域内单调递增,若y 0>x 0,则f (f (x 0))=f (y 0)>f (x 0)=y 0>x 0,与f (f (x 0))=x 0矛盾; 若y 0<x 0,则f (f (x 0))=f (y 0)<f (x 0)=y 0<x 0,与f (f (x 0))=x 0矛盾; 故必有y 0=x 0,即f (f (x 0))=f (y 0)=f (x 0)=y 0=x 0, 即f (x 0)=y 0=x 0,故x 0为函数f (x )的不动点,综上,“x 0为函数f (x )的不动点”是“x 0为函数f (x )的稳定点”的充分必要条件;(3)当a >﹣1时,函数()()2211f x lnx a x x e=++−在(0,+∞)上单调递增, 由(2)知f (x )的稳定点与f (x )的不动点等价,故只需研究f (x )的不动点即可; 令()()()2210F x f x x lnx ax x x e =−=+−∈+∞,,, 则()()2221'0F x a x e x x =++∈+∞,,,则F ′(x )在(0,+∞)上单调递减, ①当a ≥0时,F ′(x )>0恒成立,即F (x )在(0,+∞)上单调递增, 当x 无限接近于0时,F (x )趋向于负无穷小,且()2222224130F e ae ae e e e =+−=+>, 故存在唯一的()200x e ∈,,使得F (x 0)=0,即f (x )=x 有唯一解,所以此时f (x )有唯一不动点;②当a <0时,即﹣1<a <0时,()22'110F a e ++>, 当x 趋向无穷大时,221121e x x +趋近于0,此时F ′(x 1)<0, 存在唯一x 1∈(0,+∞),使得()1221121'0F x a e x x =++=, 此时f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减,故()()11111222221111212121222max F x F x lnx ax lnx lnx x x x x ee e e e ==+−=−−−=−−, 当x 趋近于0时,F (x )趋向于负无穷大,当x 趋向正无穷大时,F (x )趋向于负无穷大, 设()22222h x lnx x e e =−−,则h (x )在(0,+∞)上单调递增,且()22224220h e e e e =−−=,23 又221112a x e x =−−在x 1∈(0,+∞)时单调递增, 故(i )当()12212220max F x lnx x e e =−−=时,即21x e =, 此时43a e =−,方程F (x )=0有一个解,即f (x )有唯一不动点; (ii )当()12212220max F x lnx x ee =−−<shi ,即21x e <, 此时431a e−−<<,方程F (x )=0无解,即f (x )无不动点; (iii )当()12212220max F x lnx x e e =−−>时,即21x e >, 此时430a e −<<,方程F (x )=0有两个解,即f (x )有两个不动点; 综上,当a ≥0时或43a e =−时,f (x )有唯一稳定点; 当431a e −−<<时,f (x )无稳定点; 当430a e −<<,f (x )有两个稳定点. 【点评】本题考查了函数新定义问题,考查了分类讨论思想、导数的综合运用及逻辑思维能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅱ卷(非选择题,共100分)
二、填空题:(本大题共4小题,每小题5分,共20分,请把答案填在题中横
线上)
11. 一台机器生产某种产品,如果生产出一件甲等品,可获利50元,生产出
一件乙等品,可获利30元,生产出一件次等品,要赔20元.已知这台机器
生产出甲等品、乙等品、次等品的概率分别为0.6、0.3、0.1,则这台机器每生
产一件这种产品平均预期可获利
元.
12. (x2+2x – 4)5 = a0 +a1x+a2x2 + a3x3 ++a10x10, 则x2的系数a2的值为
___________.
13. 若函数1)6()(23xaaxxxf有极大值和极小值,则实数a的取值
范围是 .
14. 下列函数:①y = x3 – x; ②y=|x+2| – |x – 2|; ③2ln(1)yxx;④
y=1xx;⑤y = x3 + sinx – 1. 其中既是奇函数,又在区间(0,1)上单调递增的
为 .(写上相应的序号即可)
三、解答题:(本大题共6小题,共80分)
15.(满分13分)
已知22{|4490,0}Axxxmm,{||12|5}Bxx,若A是B的真子
集,求实数m的取值范围.
16.(满分13分)
设函数3221()231,3fxxaxax 01a.
(1)求函数)(xf的单调区间、极值;
(2)若当]2,1[aax时,恒有axf|)(|,试确定a的取值范围.
17.(满分13分)
一种电路控制器在出厂时每四个一等品装成一箱,工人在装箱时不小心把
两件二等品和两件一等品装入了一箱,为了找出该箱中的二等品,我们对该箱
中的产品逐一取出进行测试.
(1)求前两次取出的都是二等品的概率;
(2)求第二次取出的是二等品的概率;
(3)用随机变量表示两个二等品都被取出时共取出产品的件数,求的分
布列及数学期望.
第 3页 共 4 页
18.(满分13分)
已知函数2()1 (,fxaxbxab,xR),且
() (0),()() (0).fxxFxfxx
(1)若(1)0f,且函数()fx的值域为0,,求)(xF表达式;
(2)在(1)的条件下,当[2,2],()()xgxfxkx是单调函数,求实数k的
取值范围;
(3)设)(0,0,0xfanmmn且为偶函数,判断)()(nFmF能否大于
0.
19.(满分14分)
已知数列na中,,1a1且点Nna,aP1nn在直线01yx上.
(1)若函数,2n,Nnannan3an2an1)n(fn321且
求证:)n(f 56 ;
(2)设nnnS,a1b表示数列nb的前n项和.试问:是否存在关于n的整式
ng
,使得
ng1SSSSSn1n321
对于一切不小于2的自然数n恒
成立?若不存在,试说明理由; 若存在,写出ng的解析式,并加以证明.
20.(满分14分)
如图所示, 曲线段OMB是函数2)(xxf(0<x<6)的图象, xBA轴于A,
曲线段OMB上一点))(,(tftM处的切线PQ交x轴于P,交线段AB于Q.
(1)试用t表示切线PQ的方程;
(2)设QAP的面积为)(tg,若函数)(tg在),(nm上单调
递减, 试求出m的最小值;
(3)]64,4121[QAPS, 试求出点P横坐标的取值范围.
x
Q
y
O
B
M
A(6,0) P
第 4 页 共 4 页