太空服的原理

合集下载

宇航员的衣服课程设计

宇航员的衣服课程设计

宇航员的衣服课程设计一、课程目标知识目标:1. 学生能理解宇航员服装的基本结构和功能,掌握其材料特点及在太空环境中的作用。

2. 学生能描述宇航员服装的设计原理,了解太空服与地球服装的差异性。

3. 学生了解宇航员服装的发展历程,认识到科技对航天事业的影响。

技能目标:1. 学生通过观察、分析宇航员服装的图片和模型,提高观察能力和逻辑思维能力。

2. 学生能运用所学知识,设计出具有基本保护功能的简易宇航员服装。

3. 学生学会合作、交流,提高团队协作能力。

情感态度价值观目标:1. 学生培养对航天事业的热爱,增强民族自豪感。

2. 学生认识到科技发展对人类进步的重要性,激发创新精神。

3. 学生通过学习宇航员勇敢、坚韧的精神,树立积极向上的人生态度。

分析课程性质、学生特点和教学要求,本课程旨在让学生在掌握宇航员服装相关知识的基础上,提高实践操作能力和团队协作能力,培养对航天事业的热爱和民族自豪感。

课程目标具体、可衡量,为后续的教学设计和评估提供明确的方向。

二、教学内容本课程依据课程目标,结合教材内容,制定以下教学大纲:1. 宇航员服装的基本结构- 介绍宇航员服装的各部分名称及功能- 分析宇航员服装的材料特点2. 宇航员服装的设计原理- 探讨太空环境对宇航员服装的要求- 比较太空服与地球服装的设计差异3. 宇航员服装的发展历程- 回顾宇航员服装的演变过程- 认识科技发展对宇航员服装的影响4. 宇航员服装的实际应用- 分析宇航员在太空行走、作业时服装的作用- 了解宇航员服装在极端环境下的保护功能5. 简易宇航员服装设计实践- 分组讨论,设计具有基本保护功能的宇航员服装- 学生展示、交流设计成果,互相评价教学内容安排与进度:第一课时:宇航员服装的基本结构及材料特点第二课时:宇航员服装的设计原理与太空环境要求第三课时:宇航员服装的发展历程及科技影响第四课时:宇航员服装的实际应用与简易设计实践教学内容与教材紧密关联,保证科学性和系统性,注重培养学生的实践操作能力和团队协作能力。

宇航服仿生长颈鹿原理

宇航服仿生长颈鹿原理

宇航服仿生长颈鹿原理嘿,朋友们!今天咱来聊聊宇航服和长颈鹿之间那奇妙的联系。

你说这宇航服和长颈鹿,一个是高科技的产物,在浩瀚宇宙中保护着宇航员;一个是生活在陆地上的可爱动物,它们能有啥关系呢?嘿嘿,这关系可大着呢!咱先说说长颈鹿那长长的脖子。

那脖子可真是厉害啊,能让它们吃到高处的树叶,这可是它们生存的绝招之一。

那宇航服呢,其实也有类似的“绝招”。

宇航服得保证宇航员在极端环境下的安全,就像长颈鹿的脖子能帮它应对食物获取的挑战一样。

你想想看,宇航服得有良好的密封性能吧,不然太空里的各种危险物质不就进来啦?这就好比长颈鹿的皮肤,得完整无缺才能保护自己呀。

而且宇航服还得能调节温度,热的时候能散热,冷的时候能保暖,这不就跟长颈鹿能适应不同季节的温度变化一个道理吗?还有啊,宇航服得轻便灵活,宇航员才能在太空中自由活动。

这就好像长颈鹿那看似庞大的身躯,却能灵活地在草原上奔跑、扭头、低头。

你说神奇不神奇?咱再看看宇航服的那些高科技装备,什么生命维持系统啦,通讯系统啦等等。

这就如同长颈鹿的眼睛、耳朵、鼻子,都是它们在自然界中生存的重要“装备”呀。

你说这大自然是不是很奇妙?它给了我们这么多的启示。

我们从长颈鹿身上学到了很多东西,然后运用到宇航服的设计中。

这不就是人类的智慧和大自然的馈赠相结合嘛!宇航服仿生长颈鹿原理,这可不是随便说说的。

这背后是科学家们无数的研究和努力啊。

他们仔细观察长颈鹿的特点,然后一点点地转化到宇航服的设计里。

这是多么伟大的工程啊!我们生活在这个世界上,到处都有可以学习的榜样。

就连一只长颈鹿都能给我们这么大的启发,让我们能创造出保护宇航员生命安全的宇航服。

那我们还有什么理由不好好观察周围的一切呢?所以啊,朋友们,不要小瞧了身边的任何事物。

也许下一个伟大的发明就隐藏在你最意想不到的地方。

就像宇航服和长颈鹿,谁能想到它们之间会有这么紧密的联系呢?这就是世界的奇妙之处啊!让我们一起用发现的眼睛,去探索更多的未知吧!。

太空中的物理知识

太空中的物理知识

太空中的物理考点与常识太空舱没有外界给它的压力,但是会有内部给它的压力.因为太空仓里有大量的空气.因此肯定会有压强,再说人也不能生活在无压强的环境里,不然人体就会发生爆炸.宇航服很坚固宇航服我们一般所说的太空服,分为舱内太空服和舱外太空服。

舱内太空服其实严格来说还算不上是太空服,它的制作比起真正的太空服来说,简直是天壤之别。

我们这里只说舱外太空服。

宇宙太空是非常恶劣的环境。

那里没有可供人类呼吸的空气,也就没有大气压力,那里的温度也非常奇怪,炎热的太阳直接照射一侧,温度上升很高,而没有太阳照射时,寒冷的太空温度极低。

另外,强烈的宇宙辐射和飞来的天空陨石,也是威胁宇航员的巨大危险。

一旦宇航员离开了飞船以后,太空服外面是真空的情况下,宇航服里头是一个大气压强;从强度来说可以想象,必须是非常结实,否则外面是真空,里面一个大气压强,就爆了,所以宇航服装的强度要非常高。

太空服从基本设计上有这么几层:第一道为内衣层,要求又轻、又软、又有弹性,能传热、又能透气。

这里有一条奇妙的腰带,藏有一套复杂的微型监测系统,负责生理上(心率、体温、呼吸)各种数据的记录,以及太空服内部的温度,辐射剂量的数据,作为对宇航员的动态监控。

第二道为调温层,用的是新技术“热管液体调温”,在这一层排列有大量聚氯乙烯细管,管中流有一种液体,通过液体的流动可以调节太空服的温度,效率很高。

温度有三个档次可供选择,由宇航员自己控制。

第三道为加压层,是用特种橡胶制成的密封充气层,充满一个大气压强的空气,因为在宇宙真空中必须防止低气压。

第四道为约束层,有两个作用,把第三层约束成衣服外形,同时协助最外层抵御微小陨石的袭击。

它还有极好的隔热效能,阻止内外热量交流。

第五道为保护层,利用特殊合成纤维制成的高强度“防弹衣”,要抵御像枪弹一样飞来的微小陨石的袭击,又要能吸收宇宙射线的能量。

事实上真正的太空服还不止这几层,像美国的太空服多达15层。

这还不算宇航员背负的背包。

航天服

航天服
这种航天服在关节周围制成伸缩自如的褶皱,大大提高了运动性能。但是,必须穿着特殊的“内衣”。这种 几乎盖住全身的状内衣缝入了长达100米犹如意大利空心面条那么粗的盘成状的管子,管内流过冷水,吸走航天 员身上散发的热量,并排到宇宙空间,所以航天员穿上后感到十分舒适。穿在内衣外的航天服由内绝热层、压力 层、限制层(抑制压力层的膨胀)几层重叠,最外面还蒙上聚四氟乙烯与玻璃纤维制成的保护层。再戴上强化树 脂制成的盔帽、与航天服几乎一样多层的手套,穿上金属眼的长统靴,就是完整的阿波罗航天服了。
阿波罗航天服与过去的航天服相比,根本的差别是采用了便携式生命保障系统,即将生命保障系统固定在背 上,以进行供氧、二氧化碳的净化和排除体热。
航天飞机上的航天员使用的航天服可以说是第四代航天服了。在此之前,航天服是定做的,不仅开发和制作 上耗费巨资和时间,而且一件航天服只能用一次,已远远不能适应新的需要了。
除上述各种要求外,面窗还应有良好的光学性能和广阔的视野。
舱内航天服用于飞船座舱发生泄漏,压力突然降低时,航天员及时穿上它,接通舱内与之配套的供氧、供气 系统,服装内就会立即充压供气,并能提供一定的温度保障和通信功能,让航天员在飞船发生故障时能安全返回。 飞船轨道飞行时,航天员一般不穿航天服。
航天服航天服由头盔、服装、手套和靴子组成。头盔通过颈圈与服装连接。头盔上的面窗平时可随意启闭, 紧急时可在数秒钟内自动或手动关锁。舱外用的航天服由外罩、真空隔热层、气密限制层、通风结构和液冷服组 成。手套与衣袖通过腕部断接器连结,脱戴很方便。靴子有的与服装连成整体有的与服装分开穿着。全套航天服 重约30~40千克。
2021年6月17日,神舟十二航天员出征仪式上,3名航天员手里都拎着小箱子。专家介绍,进舱之前,航天服 需要通风,航天员手中提的小方箱子就是一个手持的小型便携通风装置,带电源和风扇,为航天服提供一定的通 风量,来保证人体的热舒适性。

舱外航天服的原理

舱外航天服的原理

舱外航天服的原理
舱外航天服是宇航员在太空中进行任务时穿戴的服装。

它的主要功能是保护宇航员免受太空环境的危害,例如极低的温度、极低的压力和宇宙射线等。

舱外航天服通常由多层材料组成,包括防辐射材料、防寒材料和防撞击材料。

这些材料可以有效地隔离宇航员与太空环境的接触,同时提供必要的保护。

舱外航天服还包括氧气供应系统、通信系统、温度控制系统和运动系统。

氧气供应系统提供宇航员所需的氧气,通信系统允许宇航员与地面控制中心进行通信,温度控制系统可以调节服装内部的温度,而运动系统则允许宇航员在太空中自由移动。

在舱外航天服中,还有一个重要的部件,即"热辐射板"。

这个部件可以将宇航员身体散发出的热量反射回身体,保持宇航员的身体温度稳定。

总的来说,舱外航天服的原理是在极端的太空环境中,为宇航员提供必要的保护和支持,使他们能够在太空中进行任务,并确保他们的安全和健康。

航天服的仿生原理

航天服的仿生原理

航天服的仿生原理
最近随着科技的发展,人类试图创造出新的皮肤给服装提供全新的贴合性质,
仿生材料也相应地进入了太空航天领域。

太空航天服“仿生”试图创造出机体更完美无瑕地适应太空环境,降低服装的负担和重量,增强服装的力学性能,使太空旅行更加安全舒适。

“仿生”技术的本质是以人类和生物体为基础,利用微缩技术将自然植物和动
物表现形式有效地复制到机器制造中去,以满足人类在日常生活中的需求。

它会采用细胞层面的结构与物质,同时保持机体强壮性和充电性,能够有效地承受强大的力学负荷。

此外还可以通过化学反应,制造出一种具有抗污性、防水性、阻力性、耐热性等特性的“织物”,有效预防危及宇航员的安全。

而最重要的是,“仿生”的服装是改变的速度达到最大,能够迅速调节围绕服
装体积,减少表面光泽,保持表面温度,抑制紫外线。

它是完美地模仿了鱼类自身控制水分失血,保持体温恒定,这有助于维持宇航员在太空漫长航行过程中的安全。

因此可以看出,太空仿生机体的仿生原理是一种更为有效的应用技术,其核心
理念是利用自身的机体体系及其他生物体之间的相似性,将机体结构形状、它的性能等等从单位化程度提高到数量化,在实现机体的运动、能量、力学性能等方面取得理想结果。

毋庸置疑,它为机体服装提供了更多的可能性,而且这些技术同样可以运用到不同行业。

宇宙飞船飞行原理

宇宙飞船飞行原理宇宙飞船的飞行原理涉及到多个物理学领域,包括力学、热力学、流体力学,以及航天工程的特定原理。

以下是一些关键的概念和原理:1. 推进原理宇宙飞船的基本飞行原理是牛顿的第三运动定律:“作用力和反作用力总是大小相等、方向相反。

”在宇宙飞船中,这通常通过火箭发动机实现。

火箭发动机通过高速喷射燃料产生的气体,产生向相反方向的推力,从而使飞船移动。

2. 火箭方程齐奥尔科夫斯基火箭方程描述了火箭速度的变化与其质量流量(喷射物的质量和速度)之间的关系。

这个方程是理解火箭如何在空间中加速的基础。

3. 逃逸速度要使宇宙飞船离开地球并进入太空,它必须达到足够的速度来克服地球的重力。

这个速度被称为逃逸速度,大约为11.2公里/秒。

4. 轨道力学一旦宇宙飞船达到太空,它的运动就受到轨道力学的控制,这是牛顿引力定律和运动定律的直接应用。

轨道的选择取决于飞船的速度和方向。

5. 推进剂宇宙飞船的推进剂可以是液体、固体或两者的混合物。

这些推进剂在燃烧时产生气体,气体通过喷嘴高速喷出,产生推力。

6. 多级火箭为了有效地将载荷送入太空,宇宙飞船通常采用多级火箭设计。

每个级别含有自己的发动机和推进剂,用完后即被丢弃,以减轻总质量。

7. 微重力环境在太空中,由于远离大型天体或处于自由下落(轨道)状态,宇宙飞船经历微重力环境,这对飞船内的生命支持系统和设备运行有重大影响。

8. 热控制宇宙飞船必须管理极端的温度变化,这通常通过被动(如绝热材料)和主动(如热管和冷却系统)的热控制方法实现。

9. 航天动力学在飞行过程中,飞船的运动和方向由航天动力学控制,包括轨道机动、姿态控制和导航。

这些原理共同作用,使得宇宙飞船能够在地球上发射、进入和维持轨道、执行太空任务,并在任务完成后返回地球。

神舟载人飞船各大子系统及其工作原理

神舟号载人飞船神舟10号载人飞船- - - 1 -第1章 神舟号简介神舟十号是我国的第十艘神舟系列飞船,与前两艘神州八号和神州九号相比,它是我国一艘载人空间对接飞船,按计划它将与天宫一号目标飞行器进行对接,如果对接成功,则表明我国已经基本掌握了空间飞行器交会对接技术,将对后续的天宫二号即第二代空间实验室的建设打下坚实的基础。

【发射时间】预计在2012年【任务实施】预计会有三名宇航员同时升空,任务时间5~20天。

【飞行器名称】神舟十号【飞行器生产国家】中国【计划发射时间】2012年【发射项目】与神舟八号、神舟九号完成对接任务。

【发射成功意义】表明我国已经基本掌握了空间飞行器交会对接技术。

神舟10号载人飞船第2章神舟号的结构系统飞船由轨道舱、返回舱、推进舱和附加段组成,总长9530mm,总重8470kg。

飞船的手动控制功能和环境控制与生命保障分系统为航天员的安全提供了保障。

神州十号的结构系统,如图2-1所示。

图2-1 神舟号结构系统示意图2.1轨道舱轨道舱是飞船进入轨道后航天员工作、生活的场所。

舱内储备有食物、饮水和大小便收集器、睡袋等生活装置外,还有空间应用和科学试验用的仪器设备。

返回舱返回后,轨道舱相当于一颗对地观察卫星或太空实验室,它将继续留在轨道上工作半年左右。

- 2 -神舟10号载人飞船- - - 3 -2.2 返回舱图2-2 在着陆场 飞船的返回舱呈钟形,有舱门与轨道舱相通。

放回舱式飞船的指挥控制中心,内设供3名航天员斜躺的座椅,共航天员起飞、上升和返回阶段乘坐。

座椅前下方是仪表板、手控操纵手柄和光学瞄准镜等,显示飞船上个系统机器设备的状况。

航天员通过这些仪表进行监视,并在必要时控制飞船上系统机器设备的工作。

返回舱均是密闭的舱段,内有环境控制和生命保障系统,确保舱内充满一个大气压力的氧氮混合气体,并将温度和湿度调节到人体合适的范围,确保航天员在整个飞行任务过程中的生命安全。

另外,舱内还安装了供着陆用的主、备两具降落伞。

电影太空救援中的物理知识

电影太空救援中的物理知识一、电影中的太空失重现象电影太空救援里有好多关于太空失重的画面。

就像宇航员在飞船里飘来飘去,那可不是为了耍帅哦。

这是因为在太空中,物体几乎不受地球引力的影响,所以就没有了我们在地球上的那种重量感。

比如说宇航员要从这个舱室到那个舱室,只能靠着推墙壁或者拉扶手来移动自己的身体。

这就跟咱们在地面上走路完全不一样啦,咱们在地上走是脚踏实地,有重力把我们“按”在地上,可在太空里,就只能这么飘着前进,想想还挺有趣的呢。

二、太空服的作用与其中的物理知识太空服那可是宇航员的保命装备。

它首先得抗压,在太空中没有大气层的保护,压力可不像咱们地球上这么适宜。

太空服里得有合适的气压,这样宇航员的身体才不会因为内外压力差而出现问题。

而且太空服还得隔热呢,在太空中,温度可极端了,向阳面热得要死,背阳面又冷得要命。

太空服就像是一个小空调房,让宇航员能在这种恶劣的温度环境里保持正常的体温。

这就涉及到热传导、热辐射这些物理知识啦。

太空服得能阻挡热量的传递,不能让宇航员被烤焦或者冻成冰棍。

三、飞船的轨道运行原理电影里的飞船在太空中沿着特定的轨道运行。

这是因为飞船要受到地球引力的作用,同时又得有一定的速度。

根据牛顿的万有引力定律,飞船的速度和它距离地球的距离得达到一个微妙的平衡,这样才能稳定地在轨道上运行。

就像咱们拿根绳子拴着一个小球转圈一样,要是转得太慢,小球就掉下来了,要是转得太快,绳子就断了。

飞船在太空中也是这个道理,速度不合适就会要么坠向地球,要么飞离地球的轨道。

四、通讯中的物理知识宇航员在太空中要和地球联系,这就涉及到通讯问题。

通讯靠的是电磁波,因为在太空中没有空气,声音是无法传播的。

电磁波就可以在真空中传播,把宇航员的信息传递回地球,同时也把地球的指令传递给宇航员。

这电磁波的频率啊、波长啊,都得设置好,才能保证通讯的清晰和稳定。

要是频率或者波长不对,就像收音机调错台了一样,啥也听不到啦。

五、太空救援中的能量问题救援的时候,飞船的能源是个大问题。

太空步的原理

太空步的原理
太空步是一种特殊的活动,它允许宇航员在太空中进行舒适和有效的移动。

太空步的原理可以归结为以下几个方面:
1. 宇航员的行动自由度受到太空服的限制。

太空服是宇航员在太空中使用的特殊服装,它提供气体、温度、压力等方面的保护。

太空服具有强大的外壳和连接器,以便宇航员可以与航天器和其他设备进行连接。

此外,太空服还有自己的空气供应和冷却系统,使宇航员在太空中保持正常的呼吸和体温。

2. 太空步的关键是宇航员通过手和脚的运动来推动自己在太空中移动。

宇航员使用手中的“手推车”来推进自己。

手推车上有许多手柄,宇航员可以通过推动这些手柄来推动自己。

此外,宇航员还可以使用脚上的脚踏板来提供额外的推力。

这种推力转化为反作用力,使宇航员能够移动。

3. 宇航员在太空中进行活动时,需要根据物理定律来调整自己的姿势和动作。

由于太空中没有重力,所以物体在太空中没有重力对其产生的影响。

这意味着宇航员在太空中进行移动时,需要通过推动和拉动来产生推力,并保持平衡。

总结一下,太空步的原理是通过太空服的保护和提供的空气供应,以及宇航员手和脚的动作对自身进行推动,在没有重力的太空中进行舒适和有效的移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.11 EXTRAVEHICULARACTIVITY (EVA)CONTENTS Description........................................... 2.11-1 Extravehicular Mobility Unit............. 2.11-2 Airlock.................................................. 2.11-11 EVA Support Equipment................... 2.11-15 Simplified Aid for EVA Rescue......... 2.11-17 Operations............................................ 2.11-19 EVA Summary Data............................ 2.11-22 EVA Rules of Thumb.......................... 2.11-22DescriptionAn EVA occurs when a crewmember leaves the protective environment of a spacecraft's pres-surized cabin and ventures out into the vacuum of space wearing a space suit. An EVA is com-monly referred to as a spacewalk. The current space suit, designed for a total maximum dura-tion of 7 hours, provides environmental protec-tion, mobility, life support, and communica-tions. Two suits are included in each baseline orbiter mission, and consumables are provided for three two-person, 6-hour EVAs. Two EVAs are available for payload use, with the third reserved for orbiter contingency operations. EVA has been demonstrated to be useful in satellite repair, retrieval, and refueling as well as with space station development.There are three basic categories of EVA: scheduled, unscheduled, and contingency. A scheduled EVA is defined as any EVA incorpo-rated into the nominal flight plan in order to complete a specific mission objective. An unscheduled EVA is not part of the flight plan; rather, it is conducted to achieve payload opera-tion success or to advance overall mission accomplishments. A contingency EVA is also unscheduled, but is required to ensure safe return of the orbiter and flight crew.A subcategory of scheduled EVA is the quick-response EVA. A quick-response EVA must be performed within a few hours after a problem is discovered, and it is usually associated with payload deployment. Quick-response EVAs are planned pre-flight, and the crew prepares for the EVA even though it may not be performed.Mission Date Purpose of EVA EVA crew No. EVA/missionDuration, man-hoursSTS-6Apr 4-9, 83System Functional Demo Musgrave/Peterson18 hr, 34 min STS-41B Feb 3-11, 84MMU Capability Demo NcCandless/Stewart223 hr, 14 min STS-41C Apr 6-13. 84Solar Max Satellite Repair Van Hoften/Nelson220 hr, 12 min STS-41G Oct 5-13, 84Orbiter Fuel Transfer Demo Leestma/Sullivan1 6 hr, 58 min STS-51A Nov 8-16, 84Westar/Palapa Satellite Retrieval Allen/Gardner224 hr, 28 min STS-51D Apr 12-19, 85Syncome F3 Satellite Repair Griggs/Hoffman1 6 hr, 20 min STS-51I Aug 27-Sep 3, 85Syncome F3 Satellite Repair Fisher/Van Hoften223 hr, 42 min STS-61B Nov 26-Dec 3, 85Large Structure Assembly Spring/Ross224 hr, 40 min STS-37Apr 5-10, 91GRO Satellite Repair/Locomotion Studies Ross/Apt220 hr, 58 minSTS-49May 10-14, 92Intelsat Repair and Assembly of Station byEVA Methods (ASEM)Thuot, Hieb, Akers,Hornton,459 hr, 51 minSTS-54Jan 17, 93First EVA Detailed Test Objective (DTO1210)Harbaugh, Runco18 hr, 56 minSTS-57Jun 25, 93EURECA Antenna Stow and Second EVADTO (1210)Low, Wisoff111 hr, 40 min STS-51Sep 16, 93Third EVA DTO (1210)Walz, Newman114 hr, 10 min STS-61Dec 4-8, 93Hubble Space Telescope Repair Mission Musgrave, Hoffman,Akers, Thornton570 hr, 58 min STS-64Sep 16, 94SAFER First Flight Lee, Meade113 hr, 42 min STS-63Feb 9, 95First EVA Development Flight Test (EDFT)(Spartan Mass Handling)Foale, Harris113 hr, 18 minSTS-69Sept 16, 95Second EDFT (Task board with station EVAinterfaces)Voss, Gernhardt113 hr, 32 minSTS-72Jan 14-16, 95Third EDFT (Station assembly andmaintenance hardware)Chiao, Barry, Scott226 hr, 4 minSTS-76Mar 27, 96Fourth EDFT (MEEP - Mir EnvironmentalEffects Payload)Godwin, Clifford112 hr, 4 minSpace Shuttle EVA ChronologyExtravehicular Mobility UnitExtravehicular activities are classified according to level of complexity: simple, intermediate, or complex. A simple payload EVA requires mini-mal unique tools, mockups, or mobility aids. Existing procedures and techniques may be adapted to particular EVA needs, thus requiring minimal crew training. An intermediate pay-load EVA requires development of new tools and equipment. Some procedure and technique development is required, with more extensive training necessary. A complex payload EVA requires the design and development of com-plex or elaborate tools and equipment. The tasks require extension of basic capabilities and may pose difficulty in access or restraint. Proce-dure and technique development is extensive, as are crew training requirements. Extravehicular Mobility UnitThe extravehicular mobility unit (EMU) is an independent anthropomorphic system that pro-vides environmental protection, mobility, life support, and communications for the crewmem-ber to perform EVA in Earth orbit. For EMU design considerations, an EVA is defined as any time the EMU external environmental pressure is below 4.0 psia. The EMU is designed toaccommodate an EVA mission with a total maximum duration of 7 hours, consisting of 15 minutes for egress, 6 hours for useful EVA tasks, 15 minutes for ingress, and a 30-minute reserve. The EMU also accommodates specific metabolic rate limits, including (1) an average metabolic rate not exceeding 1600 Btu/hr in any given EVA hour and not exceeding 1000 Btu/hr for the entire duration, (2) a peak metabolic rate not exceeding 2000 Btu/hr for a period of 15 minutes, and (3) a minimum metabolic rate not less than 400 Btu/hr for a period of 30 minutes. The EMU is an integrated assembly, primarily composed of the space suit assembly, life support system, and numerous items of associ-ated support and ancillary equipment.Space Suit AssemblyThe space suit assembly (SSA) is the anthro-pomorphic pressure vessel that encloses the crewmember's torso, limbs, and head. The SSA provides a variety of functions while the crewmember performs an EVA, including suit pressure retention, crewmember mobility, crew-member liquid cooling distribution, oxygen ventilation gas circulation, downlink of crew-member's electrocardiogram data via EMU radio, crewmember interface with EMU radio, crewmember in-suit drinking water, and urine containment. The SSA operates under specific pressure requirements and leakage criteria.The space suit assembly consists of the following:Hard upper torso/armsLower torso assemblyExtravehicular glovesHelmet/extravehicular visor assemblyLiquid cooling and ventilation garmentOperational bioinstrumentation systemCommunications carrier assemblyIn-suit drink bagUrine collection deviceMaximum absorption garment.The hard upper torso (HUT) provides pressure containment for the upper torso as well as being the central component from which the mechani-cal, electrical, and fluid interfaces of the EMU branch. The HUT is available in four sizes to accommodate 5th through 95th percentile-sized crewmembers. The planar HUT, which deletes the arm gimbal and bellows assembly, will be available in two sizes. The HUT includes the following components: fiberglass shell (with water tubes and oxygen ducts), assorted mounting brackets, waterline and vent tube assembly, multiple water connector, EMU electrical harness, shoulder bearing assemblies, waist disconnect ring (passive half), helmet disconnect ring, and thermal micrometeoroid garment (TMG). The right and left arm assem-blies are flexible, anthropomorphic pressure vessels that encompass the arms. Each arm assembly includes the following components: upper arm assembly, rotating scye bearing, lower arm assembly, rotating arm bearing, wrist disconnect ring, urethane pressure bladders, cloth restraint systems, and TMGs for the upper and lower arm assemblies.The lower torso assembly (LTA) consists of a flexible anthropomorphic pressure vessel that encompasses the waist, lower torso, legs, and feet. The LTA includes the following compo-nents: waist assembly, waist disconnect ring, trouser assembly, rotating waist bearing between the waist and trouser assemblies, boot assembly, urethane pressure bladders, cloth restraint systems, and TMGs for the waist, trouser, and boot assemblies.The current sizing of the arm/leg assemblies is accomplished on the ground using different sizes of each assembly for a particular crew-member. An enhanced EMU has been devel-oped to provide an on-orbit capability of EMU resizing by using various arm/leg segments and sizing rings. The on-orbit quick-sizing capabil-ity, uses threaded quick-disconnects, softgood sizing elements, aluminum sizing rings, and adjustable-length restraint lines. This suit incor-porates dual lip seal mobility bearings and low-torque fabric joints. The enhanced EMU will phase out the current space suit for future station and shuttle operations.SSA Arm AssemblyLower Torso Assembly with TMG RemovedThe extravehicular gloves consist of a detach-able, flexible pressure vessel, encompassing each hand for use during EVA. The extrave-hicular gloves include the following compo-nents: urethane pressure bladder and cloth restraint system, wrist disconnect ring with rotating wrist bearing, wrist gimbal ring,adjustable palm restraint bar/strap, wrist tether strap, and TMG with palm restraint bar. The current 4000 series gloves incorporate a stan-dard nine-size system to size the gloves for a comfortable fit. The glove fingers use a sizing feature that consists of a pair of polyester dacron cords to provide finger length adjust-ments. Customized gloves can be manufactured for the crewmember if a proper fit cannot beobtained from the standard size glove.Enhanced Arm AssemblyThe helmet, a "one-size-fits-all" model, consists of a detachable, transparent, hard pressure vessel encompassing the head. The helmet includes the following components: hard trans-parent bubble, helmet disconnect ring, helmet purge valve, and vent pad. Two crew optional items are also available for the helmet. One of these items is the Fresnel lens, which is mounted to the lower front inside of the helmet to improve display control module visibility for the crewmember. The other item is the valsalva device, attached to the inside of the bubble,which allows the crewmember to clear his or her ears during pressure changes. The extravehicu-lar visor assembly (EVVA) attaches to the helmet to provide the crewmember with visual,thermal, impact, and micrometeoroid protec-tion. The EVVA includes the following compo-nents: clear protective visor, sun visor, center and side eyeshades, fiberglass shell, and latch mechanisms and supporting structure for thevisor and eyeshades.Enhanced Lower Torso AssemblyThe liquid cooling and ventilation garment (LCVG) is a form-fitting elastic garment worn against the crewmember's body. The LCVG includes the following components: outer restraint fabric, inner liner assembly, crew optional comfort pads, biomed pocket, dosime-ter pocket, water tubing network, paramanifold assembly, ventilation ducting network, vent plenum assembly, multiple water connector,and full torso zipper. The garment supports a network of tubing that circulates water over the body to provide cooling to the crewmember. It also supports a network of ducting that draws ventilation gas from the suit extremities and routes it back to the primary life support system to complete the suit ventilation loop. Connec-tions to the ducting in the HUT for both cooling water and ventilation flow are made at the LCVG half of the multiple water connector. The LCVG is sized to fit the crewmember based on a sizing system with six size ranges.The communications carrier assembly (CCA) is a cloth aviator-type cap that positions and supports the electronics for interface with the EMU radio for crewmember communications. The CCA contains the microphones and ear-phones necessary for the EVA crewmembers to communicate with each other or with the orbiter. The CCA also allows the EVA crew-members to talk to Mission Control via the orbiter communications system. Six sizes allow the CCA to fit 5th through 95th percentile-sized crewmembers. The CCA includes the following components: skull cap, ear cups, ear phones, ear seals, microphone modules, microphone booms, summing module, interconnect wiring, interface cable, neck strap, crew-optional chin strap, and perspiration absorption strap.The in-suit drink bag is a dielectrically sealed bag assembly attached to the interior of the HUT that supplies drinking water to the crewmember during EVA. The drink bag is available in two sizes with the capacity for 21 or 32 fluid ounces of water. The in-suit drink bag includes the following components: bladder, inlet valve, drink valve, drink tube, and velcro attachments.The urine collection device (UCD) is a disposable, flexible container that has the capacity to hold up to 32 fluid ounces of urine. The UCD is worn under the LCVG by male crewmembers during EVA. It is designed for one-time use, then disposed of as wet trash. The UCD includes the following components: collection bag, attachment straps, one-way check valve, and disposable roll-on cuff.The maximum absorption garment (MAG) consists of multiple layers of material designed to rapidly absorb and store urine. The MAG is designed to be worn under the LCVG by male or female crewmembers during EVA. It has the capacity to hold 32 fluid ounces of urine and is disposable after use. The MAG includes the following components, multilayer absorbent material and tape attachment straps.Life Support SystemThe life support system (LSS) provides a safe living environment inside the EMU. The LSS provides a variety of functions while the crew-member performs an EVA, including provision of breathing oxygen, suit pressurization, crew-member cooling, crewmember communications, displays and controls for crewmember opera-tion of the EMU, and monitoring of EMU consumables and operational integrity. The life support system consists of the following:Primary oxygen systemSecondary oxygen packOxygen ventilation circuitLiquid transport systemFeedwater circuitElectrical interfacesExtravehicular communicator (EMU radio)Display and control moduleCaution and warning system.The primary oxygen system, oxygen ventilation circuit, liquid transport system, feedwater circuit, electrical interfaces, extravehicular com-municator, and the caution and warning system make up the primary life support subsystem (PLSS). The secondary oxygen pack is a separate unit that is attached to the bottom of the PLSS. Together, the PLSS and the secondary oxygen pack make up the backpack of the EMU. The primary oxygen system provides a crewmember with breathing oxygen and satisfies pressure requirements for EVA. The system stores 1.217 pounds of oxygen at 850 psia and 90° F. It delivers oxygen during EVA at 4.3 ± 0.1 psid, and maintains a metabolic use rate range of 0.02 to 0.33 lb/hr. The system is charged through a common multiple connection to the orbiter environmental control and life support system. Charging pressure is 850 ± 50 psig. The minimum usable pressure is 60 psi. The system performs various functions, including suit pressurization, provision of breathing oxygen, and water pressurization. The primary oxygen system includes the following components: oxygen tanks, oxygen tank pressure sensor, flow limiter, oxygen shutoff valve, oxygen actuator, suit pressure regulator, water pressure regulator, high mode relief valve, and low mode relief valve.The secondary oxygen system, also known as the secondary oxygen pack (SOP), is the backup assembly to the primary oxygen system. This backup system provides a minimum of 30minutes of emergency oxygen in the purge mode. The SOP functions include suit pressuri-zation, provision of breathing oxygen, and some degree of cooling in the purge mode. There is no required crewmember interface to activate the SOP; it automatically activates whenever the oxygen actuator is in the EVA position and suit pressure is less than 3.9 psid. The SOP includes two oxygen tanks, containing a total of 2.65pounds of oxygen at 5800 psia and 70° F. The system includes the following components:oxygen tanks, SOP inlet pressure gauge, first-stage regulator, interstage gauge, second-stage regulator/shutoff valve/flow restrictor, PLSS/SOP interface connector, and oxygen tank pressure sensor.The oxygen ventilation circuit forms a closed loop with the space suit assembly. The circuit provides oxygen for breathing, suit pressuriza-tion for intravehicular activity (IVA) and EVA operation, and ventilation for cooling and elimination of exhaled gases. The oxygen flow picks up heat, humidity, carbon dioxide, and other contaminants, which are removed from the EMU by the ventilation circuit components.The system includes the following components:fan/water separator, slurper/ sublimator, ventflow sensor/backflow check valve, suit pressure sensor, suit pressure gauge, contaminant control (lithium hydroxide) cartridge (CCC), carbon dioxide sensor, display control module purge valve, helmet purge valve, positive pressure relief valve, negative pressure relief valve, SOP checkout package, muffler, and SOP checkout fixture. Ventilation flow is picked up at the body extremities and returned to the upper torso via a vent duct manifold that is part of the LCVG. From the upper torso, the gas is routed back into the PLSS and the CCC. The CCC is sized to absorb 1.48 pounds of carbon dioxide associated with 7000 Btu of metabolic activity over a 7-hour EVA period. The cartridge is installed in the back of the PLSS and is replaceable on orbit. On the ground, the used cartridge can be recharged for future use.The liquid transport system uses the centrifugal pump to circulate approximately 240 lb/hr of water through the LCVG. The function served by the liquid transport system is to provide cooling to the crewmember. The system in-cludes the following components: pump, tem-perature control valve, LCVG, gas trap, pump priming valve, pump check valve, sublimator temperature sensor, and service and cooling umbilical bypass valve. During IVA operation,the pump circulates water not only through the EMU, but also through the service and coolingumbilical to the orbiter heat exchanger.Secondary Oxygen PackLiOH CartridgeThe feedwater circuit contains the equipment and water to dissipate heat loads imposed on the system by the crewmember, the PLSS, and the environment. It also contains equipment to remove moisture from the ventilation circuit and gas from the transport circuit, to separate the water and gas, and to put them back in their respective loops. The feedwater circuit func-tions involve heat rejection, LCVG water makeup, and vent loop condensate separation and storage. The system includes the following components: feedwater tanks (2 primary/1 reserve), feedwater tank pressure sensors, reserve feedwater tank check valve, feedwater pressure regulator, feedwater shutoff valve, feedwater pressure sensor, sublimator, feed-water relief valve, condensate water relief valve, water separator, and coolant isolation valve. The primary and reserve tanks store approxi-mately 10 pounds of feedwater at 15 psig. The reserve feedwater tank provides 30 minutes of water for EMU cooling in the event that primary feedwater is depleted. Potable water from the orbiter ECLSS is used to fill or recharge the tanks. The EMU electrical system is composed of the following main components: battery, feedwater shutoff valve, coolant isolation valve, motor, instrumentation, extravehicular communicator,display and control module, and caution and warning system. Electrical interfaces exist between the display and control module and parts of the PLSS, SOP, and C/W. The power supply for operation of all electrical components of the EMU is a battery installed in the back of the PLSS. The EMU battery consists of eleven sealed, silver-zinc, high current density cells connected in series. The battery provides a minimum of 26.6 amp-hr of power over a 7-hour EVA mission at a nominal voltage of 16.5 V dc.The extravehicular communicator (EVC) is composed of two parts, the orbiter-based equip-ment and the EMU-based equipment. The orbiter equipment consists of the EVA/air traffic control transceivers and antennas. This configuration provides communication with the EVA crewmembers and relay between EVA crewmembers and the ground (including down-link ECG and real-time data system (RTDS) telemetry). The EMU equipment consists of the EMU radio and antenna. It provides voice communications with other EVA crewmembers and the orbiter, ECG/RTDS telemetry to the orbiter for recording and/or downlink, and caution and warning tones to alert the EVA crewmember of anomalies or other significant events. The EVC includes the following compo-nents: orbiter UHF system, EMU radio, EMU electrical harness, communications carrier assembly, biomed sensors, COMM MODE selec-tor switch, COMM switch, volume controls, and real-time data system. Orbiter panels O6, A1R,and R10 are the crew communication interfaces.The panels control UHF operation, air-to-air or ground transmission, and biomed data down-link/recording respectively.The display and control module (DCM) contains all controls and displays necessary for nominal operation and monitoring of EMU systems. The DCM includes the following components:POWER mode switch, DISPL switch, FAN switch, COMM switch, communications volume controls, display intensity control, oxygen actuator, temperature control valve, pressure gauge, DCM purge valve, alphanumeric display COMM mode selector, and WATER switch. The DCM is installed on the hard upper torso, with the surfaces covered with a TMG. This TMG contains the labels for the controls and displays.The EMU caution and warning system (CWS)consists of instrumentation and a microprocessor to obtain, process, and visually display information for use by the EVA crewmember in the operation and management of the EMU. The system contains built-in test equipment (BITE),consisting of software and hardware that verify proper CWS operation. CWS serial data are also routed to the ground by the real-time data system. The CWS functions involve displaying EMU leak check procedures, monitoring and displaying EMU consumables status, monitoring EMU operational integrity, and alerting crewmembers to EMU anomalies. The system includes the following components:alphanumeric display with BITE indicator, dis-play (DISPL) switch, alert/status/warning tones,sensors, and "black box" processor. The CWS receives inputs from EMU sensors and from the DISPL switch located on the DCM. Sensors gather information throughout the EMU system and relay it to the CWS. Information is provided onpressures, temperatures, currents, and voltages.Display and Control ModuleEMU Ancillary EquipmentThe EMU ancillary equipment consists of hardware necessary to support the EMU during all phases of EVA (prep/post/operation). The following list itemizes the components with a brief description of their functions.EMU helmet lights - attach to the helmet EVVA and provide two functionally independent sets of lights for portable lighting during an EVA task. EMU scissors - steel cutters with one serrated edge capable of cutting anything from fabric bags and straps to lightweight steel cable and Kevlar cord.EMU wrist mirror - attaches to the wrist of the EVA glove to allow the EVA crewmember to view the controls and displays on the front of the EMU.EVA cuff checklist - a set of reference cards bound by an aluminum alloy bracket attached to a wrist band. The reference cards, approxi-mately 4 inches by 5 inches in size, contain procedures and reference data for performing EVA tasks and for aiding in the diagnosis and resolution of EMU malfunctions.Food stick - a fruit bar contained in an edible wrapper, positioned just above the neck ring adjacent to the drink valve on the in-suit drink bag.In-suit drink bag syring e - a device used to remove gas from the water in the drink bag. The needle of the syringe is inserted in the inlet valve of the bag, and gas is suctioned out of the bag with the syringe.Thermal mitten s - an adjustable enclosure composed of several layers of thermal blankets and aluminized Mylar with a layer of Nomex felt on the palm and undersides of the fingers that fit conformally around the EV gloves to provide greater thermal hand protection at extreme high and low temperature worksites. Lower torso assembly donning handles - left and right handles that aid in the mating of the hard upper torso and lower torso assembly halves of the waist ring.Contingency tool - a pry bar used to disconnect the LTA and HUT halves of the waist ring in the event that the latching mechanism becomes jammed. Operation of the pry bar may damage the latching mechanism; therefore, it should be used only if the waist ring becomes jammed and the crewmember is entrapped in the space suit. Bends treatment adapter (BTA) - an emergency device that may be used on-orbit in the event an EVA crewmember contracts decompression sickness (bends). The BTA converts the EMU into a hyperbaric treatment chamber, pressuriz-ing the EMU to 8.0 psid over ambient cabin pressure.SOP checkout fixture - a flight support test item installed on the HUT half of the neck ring during pre-EVA operations.DCM plug - a cover that attaches to the multiple connector on the DCM in the event that water begins leaking from the connector after the service and cooling umbilical multiple connector is removed.Prep kit - items necessary for preparing the EMU for EVA, such as antifog wipes, tissue-type wipes, scissors, and urine collection device clamps.Maintenance kit - additional equipment neces-sary for routine EMU maintenance, including valsalva devices, stericide wipes, lubricant wipes, antifog wipes, and urine collection device roll-on cuffs.Bio kit - equipment associated with the biomed instrumentation, including EVA cables, over-tapes, electrode placement illustration, alcohol wipes, stoma seals, and electrode paste.Airlock stowage bag - a Nomex bag used for temporary storage and transfer of items used in prep- and post-EVA operations. When stowed in the airlock over the inner hatch, the bag and its contents are removed from the airlock prior to airlock depressurization.EVA bag - used to stow various items (camera, thermal mittens, tool caddy) in the airlock for possible use during EVA. The EVA bag remains in the airlock during the EVA.AirlockAn airlock on the orbiter accommodates astronaut EVA operations. The airlock permits EVA crewmembers to transfer from the mid-deck crew compartment into the payload bay in EMUs, without depressuring the orbiter crew cabin. The internal airlock provides launch and entry stowage of up to four EMUs, while the external airlock can stow two EMUs. Both types of airlock contain the interfaces and associated displays and controls for the orbiter systems that support EMU operation and servicing. Sized to accommodate a two-person EVA, the internal airlock dimensions have a diameter of 63 inches, a length of 83 inches, and two D-shaped 40-inch-diameter openings (three for external airlock). The internal airlock's volume measures 150 cubic feet, while the external airlock has a volume of 185 cubic feet. Support functions performed in the airlock include depressurization and repressurization, EVA equipment recharge, LCVG water cooling, and EVA equipment checkout, donning, and communications. All EVA gear, checkout panel, and recharge stations are located against the internal walls of the airlock.Airlock HatchesTwo pressure-sealing hatches are mounted on the internal airlock, while the external airlock contains three of these hatches. The inner hatch is located on the exterior of the airlock opening into the middeck. The inner hatch isolates the airlock from the crew cabin. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crewmembers to exit from the airlock to the payload bay when open. The external airlock's third hatch is an additional upper, outer hatch that will be used for docking operations. Each hatch has six interconnected latches with gearbox and actuator, a window, a hinge mechanism with hold-open device, a differential pressure gauge on each side, and two equalization valves.Airlock repressurization is controlled from the middeck or inside the airlock. It is performed by equalizing the airlock and cabin pressure with airlock-hatch-mounted equalization valves on the inner hatch. Depressurization of the air-lock is controlled from inside the airlock. The airlock is depressurized by venting the airlock pressure overboard. The two D-shaped airlock hatches are installed to open toward the pri-mary pressure source, the orbiter crew cabin, to achieve pressure-assist sealing when closed. Each hatch opening is 40 inches in diameter, yet with one side being flat, the minimum dimen-sion is 36 inches.The 4-inch-diameter window in each airlock hatch is used for crew observation from the cabin to the airlock and the airlock to the payload bay. The dual window panes are made of polycarbonate plastic and are mounted di-rectly to the hatch using bolts fastened through the panes. Each airlock hatch has dual pressure seals to maintain the airlock's pressure integrity. One seal is mounted on the airlock hatch and the other on the airlock structure. A leak check quick disconnect is installed between the hatch and the airlock pressure seals to verify hatch pressure integrity before flight.Each airlock hatch has the following design characteristics: (1) capable of being fully locked/unlocked from either side, (2) designed for 2000 open/close cycles, (3) one-handed operation by astronaut in pressure suit, (4) capable of opening against 0.2 psid maximum, (5) latches capable of withstanding 20 g's in the +X direction, and (6) actuator handle load of 30 pounds maximum.The gearbox with latch mechanisms on each hatch allows the flight crew to open or close the hatch during transfers and EVA operations. The gearbox and the latches are mounted on the low-pressure side of each hatch, with a gearbox handle installed on both sides to permit opera-tion from either side of the hatch. Three of the six latches on each hatch are double-acting with cam surfaces that force the sealing surfaces apart when the latches are opened, thereby acting as crew-assist devices. To latch or unlatch the hatch, the gearbox handle must be rotated 440°.The hatch actuator/gearbox is used to provide the mechanical advantage to open and close the latches. The hatch actuator lock lever requires a force of 8 to 10 pounds through an angle of 180°to unlatch the actuator. A minimum rotation of 440° with a maximum force of 30 pounds applied to the actuator handle is required to operate the latches to their fully unlatched positions.。

相关文档
最新文档