近世代数期末考试试卷及答案(正)
近世代数试题及答案

近世代数试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是群的三个基本性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律2. 在有限群中,以下哪个命题是正确的?A. 群的阶数等于群中元素的数量B. 群中每个元素的阶数都是群的阶数的因子C. 群中存在唯一的单位元D. 群中每个元素都有唯一的逆元3. 若一个群G是阿贝尔群,那么以下哪个性质一定成立?A. 群G中的任意两个元素都满足交换律B. 群G中存在唯一的单位元C. 群G中的每个元素都有唯一的逆元D. 群G的阶数是奇数4. 以下哪个不是环的基本性质?A. 环中加法满足交换律B. 环中加法满足结合律C. 环中加法存在单位元D. 环中加法和乘法都满足分配律二、填空题(每题5分,共20分)1. 一个群的阶数是______个元素的集合。
2. 群的单位元在群中具有唯一的______性质。
3. 阿贝尔群的元素满足______律。
4. 一个环的乘法如果满足交换律,则该环称为______环。
三、解答题(每题10分,共60分)1. 证明:若群G的阶为素数,则G是循环群。
2. 给定一个群G和一个子群H,证明:若H是G的正规子群,则G/H 是群。
3. 描述群同态的基本性质,并给出一个具体的例子。
4. 证明:若环R是整环,则R中每个非零元素都有逆元。
5. 给定一个环R和一个理想I,证明:若I是R的主理想,则R/I是域。
6. 描述环同构和群同构的区别,并给出一个具体的例子。
四、计算题(每题10分,共20分)1. 计算群Z_6(整数模6的加法群)的子群,并确定它们是否是正规子群。
2. 给定环Z[x](多项式环),计算理想(x^2+1)和(x-1)的和,并证明你的结论。
答案:一、选择题1. D2. B3. A4. A二、填空题1. 有限2. 唯一3. 交换4. 整三、解答题1. 略2. 略3. 略4. 略5. 略6. 略四、计算题1. 略2. 略。
[精华版]近世代数期末考试试卷及答案
![[精华版]近世代数期末考试试卷及答案](https://img.taocdn.com/s3/m/19251ecf185f312b3169a45177232f60ddcce702.png)
[精华版]近世代数期末考试试卷及答案[精华版]近世代数期末考试试卷及答案⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1、设G 有6个元素的循环群,a是⽣成元,则G的⼦集( )是⼦群。
33,,,,aa,e,,e,a,,e,a,aA、 B、 C、 D、 2、下⾯的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法C、G为有理数集合,*为加法D、G为有理数集合,*为乘法3、在⾃然数集N上,下列哪种运算是可结合的,( ) A、a*b=a-b,,,B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b|,,,,,,3322114、设、、是三个置换,其中=(12)(23)(13),=(24)(14),= ,3(1324),则=( )22,,,,,,122121A、 B、 C、 D、 5、任意⼀个具有2个或以上元的半群,它( )。
A、不可能是群,,,B、不⼀定是群C、⼀定是群D、是交换群⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
1、凯莱定理说:任⼀个⼦群都同⼀个----------同构。
2、⼀个有单位元的⽆零因⼦-----称为整环。
4Gaa3、已知群中的元素的阶等于50,则的阶等于------。
4、a的阶若是⼀个有限整数n,那么G与-------同构。
5、A={1.2.3} B={2.5.6} 那么A?B=-----。
6、若映射既是单射⼜是满射,则称为-----------------。
,,a,a,?,a01n,FF7、叫做域的⼀个代数元,如果存在的-----使得na,a,,?,a,,001n。
x,A8、是代数系统的元素,对任何均成⽴,则称为---------。
ax,a,xa(A,0) GG9、有限群的另⼀定义:⼀个有乘法的有限⾮空集合作成⼀个群,如果满⾜对于乘法封闭;结合律成⽴、---------。
近世代数期末试题

近 世 代 数 试 卷一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都就是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( )4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 就是循环群,那么G 也就是循环群。
( )6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( )8、若环R 满足左消去律,那么R 必定没有右零因子。
( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( )10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ⨯⨯⨯Λ21到D 的一个映射,那么( )①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ⨯⨯⨯Λ21中不同的元对应的象必不相同;④一个元()n a a a ,,,21Λ的象可以不唯一。
2、指出下列那些运算就是二元运算( )①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο;③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。
近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得10=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a *b=a-bB 、a*b=max {a,b}C 、 a*b=a+2bD 、a*b=|a —b |4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分。
1、凯莱定理说:任一个子群都同一个---—-----—同构.2、一个有单位元的无零因子-———-称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于---———.4、a 的阶若是一个有限整数n,那么G 与-————--同构。
5、A={1。
2。
3} B={2.5。
6} 那么A ∩B=-—---.6、若映射ϕ既是单射又是满射,则称ϕ为—---—-——----—-———。
7、α叫做域F 的一个代数元,如果存在F 的----—n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为——----—-—。
近世代数期末考试试卷及答案

一、单项选择题《本大题共5小题,每小题3分,共分》在每小题列出的四个备选项中只有一个是符合题口要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
JL、设G 有6个元素的循环群,a是生成元,则G 的子集()是子群。
耳、{"} 1B、C.肛*} !>、ha"'}2、下面的代数系统(G,*)中,()不是群耳、G为整数集合,★为加法:B、G为偶数集合,★为加法C. G为有理数集合,★为加法Q、G为有理数集合,★为乘法3、在自然数集:NT上,下列哪种运算是可结合的?( )A. £L*lb=£L-l> B-、C、a*l>=a+251>设6、6、6 是三个置换,其中bu(jL2)(23) (13), 6=(24)(14),内二(13254),则内二( )耳、cr2i 耳、6 6 °、a22Q、6 65、任意一个具有2个或以上元的半群,它( )。
耳、不可能是群耳、不一定是群Q、一定是群Q、是交换群二、填空题C本大题共JLO小题,每空3分,共30分》请在每小题的空格中填上正确答案。
错填、不填均无分。
JL、凯莱定理说:任一个子群都同一个--------- 同构。
2、一个有单位元的无零因子——称为整环。
3、已知群G中的元素"的阶等于50,则“的阶等于------------ :4、a的阶若是一个有限整数n,那么G 与------------- 同构。
5、A={1.25.3) 13={2・5・6}那么耳QR -------------------------------- 。
6、若映射0既是单射乂是满射,则称0为----------------- 。
7、&叫做域尸的一个代数元,如果存在尸的——绻,也,…使得“° + 5 + a …+ a n a" = 0O导、"是代数系统(A,0)的元素,对任何x w A均成立兀。
近世代数期末考试试卷及答案
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算就是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能就是群B 、不一定就是群C 、一定就是群D 、 就是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若就是一个有限整数n,那么G 与-------同构。
5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。
6、若映射ϕ既就是单射又就是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。
8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。
近世代数期末考试题库
近世代数期末考试题库世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的, 请将其代码填写在题后的括号内。
错选、多选或未选均无分。
设A = B = R (实数集),如果 A 到B 的映射:x^x + 2, x € R, 满射而非单射B 单射而非满射一一映射 D 既非单射也非满射设集合A 中含有5个元素,集合B 中含有2个元素,那么, 2 1、 AC 2、 A 、则是从A 到B 的(c ) A 与B 的积集合A^B 中含有(d D 、10 )个元素。
3、在群G 中方程A 、不是唯一4、当G 为有限群, A 、不相等 B 、5 ax=b , ya=b , a,b € G 都有解,这个解是(b )乘法来说 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)子群 H 所含元的个数与任一左陪集 aH 所含元的个数(c ) 0 C 、相等 D 、不一定相等。
) 5、 n 阶有限群G 的子群H 的阶必须是n 的(d A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共10小题,每空3分,共设集合;,则有。
若有元素e € R 使每a € A 都有 ae=ea=a , 环的乘法一般不交换。
如果环偶数环是整数环的子环。
30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、 2、 3、 4、 5、 6、 7、 8 9、则e 称为环R 的单位元。
R 的乘法交换,则称 R 是一个交换环。
一个集合A 的若干个--变换的乘法作成的群叫做 A 的一个变换全。
每一个有限群都有与一个置换群同构。
全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是设和是环的理想且,如果是的最大理想,那么 --------- 。
一个除环的中心是一个 -域-----。
三、解答题(本大题共 3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。
近世代数试题及答案
近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。
A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。
A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。
A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。
A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。
A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。
答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。
近世代数期末考试试题库
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c )A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素.A、2B、5C、7D、103、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c )A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的(d )A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合;,则有。
2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个——变换的乘法作成的群叫做A的一个变换全.6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设和是环的理想且,如果是的最大理想,那么———————-—。
9、一个除环的中心是一个-域———--。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和.奇1、解:把和写成不相杂轮换的乘积:可知为奇置换,为偶置换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数期末考试试卷及答案
(正)
近世代数模拟试题一
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个
备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、
多选或未选均无分。
1、设G 有6个元素的循环群,a是生成元,则G的子集(C )是子群。
A、a B、ea, C、3,ae D、3,,aae
2、下面的代数系统(G,*)中,( )不是群
A、G为整数集合,*为加法 B、G为偶数集合,*为加法
C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法
3、在自然数集N上,下列哪种运算是可结合的?( )
A、a*b=a-b B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b|
4、设1、2、3是三个置换,其中1=(12)(23)(13),2=(24)(14),3=
(1324),则3=( )
A、12 B、12 C、22 D、21
5、任意一个具有2个或以上元的半群,它( )。
A、不可能是群 B、不一定是群
C、一定是群 D、 是交换群
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上
正确答案。错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----变换群------同构。
2、一个有单位元的无零因子的--交换环---称为整环。
3、已知群G中的元素a的阶等于50,则4a的阶等于--25----。
4、a的阶若是一个有限整数n,那么G与-模n乘余类加群------同构。
5、A={1.2.3} B={2.5.6} 那么A∩B=--{2}---。
6、若映射既是单射又是满射,则称为----一一映射-------------。
7、叫做域F的一个代数元,如果存在F的--不都等于零的元---naaa,,,10使
得010nnaaa。
若x∈G也是a*x=b的解,则x=e*x=(a-1*a)*x=a-1*(a*x)
=a-1*b=x。所以,x=a-1*b是a*x=b的惟一解。
2、设m是一个正整数,利用m定义整数集Z上的二元关系:a〜b当且仅当m︱
a–b。
证明:容易证明这样的关系是Z上的一个等价关系,把这样定义
的等价类集合Z记为Zm,每个整数a所在的等价类记为[a]={x∈Z;
m︱x–a}或者也可记为a,称之为模m剩余类。若m︱a–b也记为a
≡b(m)。
当m=2时,Z2仅含2个元:[0]与[1]。
近世代数模拟试题二
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个
备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、
多选或未选均无分。
1、6阶有限群的任何子群一定不是( )。
A、2阶 B、3 阶 C、4 阶 D、 6 阶
2、设G是群,G有( )个元素,则不能肯定G是交换群。
A、4个 B、5个 C、6个 D、7个
3、有限布尔代数的元素的个数一定等于( )。
A、偶数 B、奇数 C、4的倍数 D、2的正整数次幂
4、下列哪个偏序集构成有界格( )
A、(N,) B、(Z,)
C、({2,3,4,6,12},|(整除关系)) D、 (P(A),)
5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)
交换的所有元素有( )
A、(1),(123),(132) B、12),(13),(23)
C、(1),(123) D、S3中的所有元素
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上
正确答案。错填、不填均无分。
1、群的单位元是---唯一-----的,每个元素的逆元素是----唯一----的。
2、如果f是A与A间的一一映射,a是A的一个元,则aff1--a--------。
3、区间[1,2]上的运算},{minbaba的单位元是--2-----。
4、可换群G中|a|=6,|x|=8,则|ax|=——24————————。
5、环Z8的零因子有 -----------------------。
6、一个子群H的右、左陪集的个数--相等--------。
7、从同构的观点,每个群只能同构于他/它自己的---商群------。
8、无零因子环R中所有非零元的共同的加法阶数称为R的---特征--------。
9、设群G中元素a的阶为m,如果ean,那么m与n存在整除关系为
---nm-----。
三、解答题(本大题共3小题,每小题10分,共30分)
1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?
解: 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用
黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2
种,…等等,可得总共8种。
2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗?
证: 由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩
S2:
因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 ,
因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。
S1+S2不一定是子环。在矩阵环中很容易找到反例:
3、设有置换)1245)(1345(,6)456)(234(S。
1.求和1;
2.确定置换和1的奇偶性。
解: 1.)56)(1243(,)16524(1;
2.两个都是偶置换。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)
1、一个除环R只有两个理想就是零理想和单位理想。
证明:假定是R的一个理想而不是零理想,那么a0,由理想的定义
11aa
,因而R的任意元•1bb
这就是说=R,证毕。
2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。
证: 必要性:将b代入即可得。
充分性:利用结合律作以下运算:
ab=ab(ab2a)=(aba)b2a=ab2a=e,
ba=(ab2a)ba=ab2 (aba)=ab2a=e,
所以b=a-1。