【课堂内外】2016春七年级数学下册 第四章 三角形 第三节 角边角与角角边(第2课时)课件 (新版)北师大版
第3课时“角边角”和“角角边”习题课件

解析:根据SSA全等条件,如果两条边和一个非夹角分别相等,那么这两个三角形不一定全等。
题目:两个三角形中,如果两条边和它们的夹角分别相等,那么这两个三角形是否全等? 解析: 根据SAS全等条件,如果两条边和它们的夹角分别相等,那么这两个三角形全等。
相关定理的拓展学习
角边角定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形全等。
角角边定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形相似。
边边角定理的推广: 在三角形中,如果两 边和一边的对角相等, 则三角形相似。
三角形相似的判定定理: 如果两个三角形的两组 对应边成比例,且夹角 相等,则三角形相似。
掌握常见的解题方 法,如构造辅助线、 利用公共边和公共 角等。
学会分析题目中 的条件,寻找合 适的解题思路。
解题思维训练
掌握基本概念:理解角边角和角角边的定义及判定定理,是解题的基础。 分类讨论:根据不同情况,进行分类讨论,是解题的关键。 综合运用:综合运用相关知识,是解题的核心。 思维拓展:通过解题训练,拓展思维,提高解题能力。
添加副标题
角边角和角角边习题课件
汇报人:
目录
CONTENTS
01 添加目录标题
02 角边角定理及其应 用
03 角角边定理及其应 用
04 习题解答与解析
05 解题思路与技巧
06 习题拓展与延伸
添加章节标题
角边角定理及其应用
定义:角边角定理是指两个三角形 如果有两个角和一边分别相等,则 这两个三角形全等。
七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B
4.3.2 利用“角边角”“角角边”判定三角形全等 北师版数学七年级下册课件

∴△∠ACB=C∠≌F△. DEF(ASA ).
例4 如图,已知:在△ABC中,∠BAC=90°, AB=AC,直线m经过点A,BD⊥直线m,CE⊥直 线m,垂足分别为点D、E.试说明: (1)△BDA≌△AEC;
解:(1)∵BD⊥m,CE⊥m,
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
∴ △ABC≌△ A′ B′ C′ (AAS). B ′
C′
例3:在△ABC和△DEF中,∠A=∠D,∠B= ∠E,
BC=EF.求说明:△ABC≌△DEF.
解: 在△ABC中,∠A+∠B+∠C=180°. ∴ ∠C=180°-∠A-∠B. 同理 ∠F=180°-∠D-∠E. 又 ∠A=∠D,∠B= ∠E, ∴ ∠C=∠F.
思考: 这里的条件与1中的条件有什么相同点与不同点?
你能将它转化为1中的条件吗?
60°
75°
归纳总结
两角分别相等且其中一组对角的对边相等的两个三角形 全等.简写成“角角边”或“AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
4.3第2课时角边角、角角边(教案)

在今天的教学中,我发现学生们对角边角、角角边概念的理解普遍存在一些困难。在讲解过程中,我意识到需要用更直观、更贴近生活的方式去解释这些抽象的几何关系。例如,我尝试用学生们熟悉的物体,如三角板、纸飞机等,来说明全等三角形的判定条件,这样似乎更能激发他们的兴趣。
课堂上,我注意到有些学生在案例分析时显得有些迷茫,可能是因为案例与他们的生活经验距离较远。这时,我及时调整策略,引入了一些更接近他们日常生活的例子,如校园里的几何图案、建筑物的结构等,帮助他们建立起几何概念与现实世界的联系。
4.3第2课时角边角、角角边(教案)
一、教学内容
本节课选自教材第四章第三节,第2课时,主题为“角边角、角角边”。教学内容主要包括:
1.理解并掌握角边角、角角边的基本概念及其在几何图形中的应用。
-角边角:两个角共享一条边,且这两个角的非公共边分别是这两个角的邻边。
-角角边:两个角共享一个顶点,且这两个角的另一边分别是这两个角的邻边。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角边角、角角边的基本概念。角边角是指两个角共享一条边,而角角边是指两个角共享一个顶点。这些概念在几何图形的判定中起着关键作用,帮助我们识别全等或相似的三角形。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将了解如何在实际问题中应用角边角、角角边的关系来解决几何问题。
4.培养学生的合作交流意识,通过小组讨论和互助学习,使学生学会倾听他人观点,表达个人想法,共同探索几何图形中的规律和性质,提升团队协作能力。
这些核心素养目标与新教材要求相符,有助于学生在掌握知识的同时,培养其综合能力和学科素养。
三、教学难点与重点
1.教学重点
-核心内容:本节课的教学重点是使学生掌握角边角、角角边的基本概念,并能够运用这些概念进行几何图形的判定和证明。
北师大版数学七年级下册:4.3 探索三角形全等的条件——“角边角”“角角边”判定 教学设计

第四章 三角形“角边角”“角角边”判定----4.3 探索三角形全等的条件(2)一、教学目标:1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.使学生理解并掌握全等三角形的“角边角”“角角边”判定定理的条件;3.培养学生有条理的思考并进行简单的推理,继续渗透分类思想和转化思想的应用。
二、教学重、难点:教学重点:掌握全等三角形的“角边角”“角角边”判定定理,能应用其来判定两个三角形是否全等。
教学难点:使学生能够有条理的思考和理解简单的推理过程。
三、课时设计:1课时 四、教学策略:1.采用交互式一体机辅助教学,既能激发学生求知的兴趣,又能增加课堂教学的知识容量和时效性;2.采用启发式—合作探究的方式展开教学,有利于突出学生的主体地位, “以人为本”,实现让每个学生都享有优质的教育。
五、课前准备:教师:教学设计、课件等;学生:一副三角尺、铅笔、直尺等。
六、教学过程:1.引入美(情境导入)⑴ 学生展示锚图,分享探索三角形全等的条件的收获。
⑵ 问题情境:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中的理由吗?设计意图:从生活实际出发,以故事的形式自然引入课题,既能引起学生对本节课学习的重视,又能激发学生求知的强烈欲望。
AB2.寻找美(师生合作)师:如果给出三个条件画三角形,共有几种可能性?生:4种可能性。
分别是:⑴三边(SSS);⑵三角(不一定全等)两角及夹边⑶两角及一边两角及其中一角的对边⑷两边及一角设计意图:通过复习,帮助学生用分类思想构建知识框架,为课堂教学的顺利进行做好铺垫。
3.冶炼美(自主-合作式探究)【做一做】(探究一)(1)已知:三角形的两个内角分别是600和300,它们所夹的边为3cm。
问:你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?学生活动:画图---对比。
教学课件:第3课时-“角边角”、“角角边”

证明与推导
总结词
掌握“角边角”定理的证明与推导过 程是深入理解该定理的关键。
详细描述
“角边角”定理的证明可以通过构造 辅助线,利用已知条件和三角形的基 本性质进行推导。具体证明过程可以 参考数学教材或相关资料。
应用实例
总结词
通过应用实例,可以更好地理解和运用“角边角”定理。
详细描述
应用“角边角”定理可以解决一些实际问题,例如在几何图 形中证明两个三角形全等,或者在解题过程中利用全等关系 简化计算。
教学课件:第3课时-“角边角” 、“角角边”
目录
• 引言 • “角边角”定理 • “角角边”定理 • 习题与解答 • 总结与回顾
01 引言
主题简介
01
角边角(ASA)和角角边(AAS) 是三角形全等的两种重要判定方法。
02
通过学习这两种判定方法,学生 将能够理解三角形全等的条件, 并能够在实际问题中应用这些条 件。
学生还需要注意理解和掌握定理的证 明过程,了解数学证明的基本方法和 思路,提高自己的数学素养和逻辑思 维能力。
在学习过程中,学生需要积极思考和 参与课堂讨论,通过实际操作和探究, 培养自己的数学思维能力和解决问题 的能力。
THANKS FOR WATCHING
感谢您的观看
答案3
由于$angle A = 45^circ$,$angle B = 30^circ$,所以$angle C = 180^circ - 45^circ - 30^circ = 105^circ$。根据三角形内角和定理, 我们可以得到$triangle ABC$是等腰 三角形。因此,三角形的高等于底边 的一半,即$h = frac{BC}{2} = 1$。 所以,三角形$ABC$的面积为 $frac{1}{2} times BC times h = fra04 习题与解答
北师大版七年级数学下册教学课件4.3探索三角形全等的条件——角边角和角角边
A.1个
B.2个
C.3个
D.4个
仿例2.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ. 求证:HN=PM.
解:∵MQ和NR是高, ∴∠MRN=∠MQP=90°. ∴∠PMQ+∠P=∠P+∠PNR, ∴∠PMQ=∠PNR. ∵MQ=NQ, ∴△MQP≌△NQH. ∴HN=PM.
练习
活动2 合作探究1 范例1.如图,AD∥BC, BE∥DF, AE=CF,试说明:△ADF≌△CBF.
证明:∵AD∥BC, BE∥DF, ∴∠A=∠C,∠DFE=∠BEC. ∵AE=CF, ∴AE+EF=CF+EF,即AF=CE.
∠A=∠C,
在△ADF和△CBE中,∵AF=CE,
∠DFA=∠BEC,
阅读教材P100—101,完成下列问题:
∴△ABC≌△A′B′C′(ASA).
所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形对应角相等).
③∠FAN=∠EAM;
在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形( )
练习
3. 如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形
是否全等,并说明理由.
A
不全等,因为BC虽然是公共边,但
不是对应边.
C B
D
练习
4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件 △ABC≌△DEF (写出一个即可).
AB=DE可以吗?×
AB∥DE
∠B=∠E (ASA)
掌解握:三 因解角为形△:全AB等因C条≌△为件A“′△BA′CSA′A,”B“ACAS”≌,并能△应A用′它B们′C来′判,定两个三角形是否全等.
4.3 课时2 角边角(ASA)、角角边(AAS) 北师大版数学七年级下册
新课讲授
两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成
“角角边”或“AAS ” .
书写格式:
A
在△ABC和△A′B′C′中, ∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
B′
C′
所以 △ABC≌△ A′ B′ C′(AAS).
典型例题
【例】 在△ABC和△DEF中,∠A=∠D,∠B= ∠E,BC=EF.试说 明:AC=DF.
为证明线段和角相等提供了新的证法
注 意 注意“角角边”、“角边角”中两角与边的区别
B′ C′
新课讲授
如图所示,AB 与CD 相交于点O,O 是 AB 的中点,∠A = ∠B,△AOC 与△BOD 全等吗?为什么?
解:因为点O 是AB的中点, 所以OA = OB. 又已知∠A = ∠B,且∠AOC = ∠BOD, 所以△AOC ≌ △BOD.
典型例题
【例】 已知:∠ABC=∠DCB,∠ACB= ∠DBC,试说明: △ABC≌△DCB.
AD
BE
C
F
新课讲授
如果“两角及一边”条件中的边是其中一角的对边,情况会怎样呢?你 能将它转化为具体的条件吗? 若三角形的两个内角分别是60°和40°,且40°所对的边为2cm,你 能画出这个三角形吗?
2cm
60°
40°
新课讲授
这里的条件与“做一做”中的条件有什么相同点与不同点?你能将它 转化为“做一做”中的条件吗?
在△ABC和△ADC中,
∠1=∠2 (已知),
∠ B=∠D(已证),
AC=AC (公共边),
B
所以△ABC≌△ADC(AAS),
“角边角”“角角边”判定 优秀教案
第四章 三角形“角边角”“角角边”判定----4.3 探索三角形全等的条件(2)一、教学目标:1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.使学生理解并掌握全等三角形的“角边角”“角角边”判定定理的条件;3.培养学生有条理的思考并进行简单的推理,继续渗透分类思想和转化思想的应用。
二、教学重、难点:教学重点:掌握全等三角形的“角边角”“角角边”判定定理,能应用其来判定两个三角形是否全等。
教学难点:使学生能够有条理的思考和理解简单的推理过程。
三、课时设计:1课时 四、教学策略:1.采用交互式一体机辅助教学,既能激发学生求知的兴趣,又能增加课堂教学的知识容量和时效性;2.采用启发式—合作探究的方式展开教学,有利于突出学生的主体地位, “以人为本”,实现让每个学生都享有优质的教育。
五、课前准备:教师:教学设计、课件等;学生:一副三角尺、铅笔、直尺等。
六、教学过程:1.引入美(情境导入)⑴ 学生展示锚图,分享探索三角形全等的条件的收获。
⑵ 问题情境:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中的理由吗?设计意图:从生活实际出发,以故事的形式自然引入课题,既能引起学生对本节课学习的重视,又能激发学生求知的强烈欲望。
AB2.寻找美(师生合作)师:如果给出三个条件画三角形,共有几种可能性?生:4种可能性。
分别是:⑴三边(SSS);⑵三角(不一定全等)两角及夹边⑶两角及一边两角及其中一角的对边⑷两边及一角设计意图:通过复习,帮助学生用分类思想构建知识框架,为课堂教学的顺利进行做好铺垫。
3.冶炼美(自主-合作式探究)【做一做】(探究一)(1)已知:三角形的两个内角分别是600和300,它们所夹的边为3cm。
问:你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?学生活动:画图---对比。
《三角形全等的判定--角边角-角角边》说课稿-ppt市公开课获奖课件省名师示范课获奖课件
3、思索举证(探究7),全等小结
满足全等 三角形旳 六组条件 中旳三组
(1)三边(SSS)
(2)两边一角
两边、一夹角(SAS) 两边、一对角(不一定)
(3)两角一边 两角一夹边(ASA) 两角一对边(AAS)
∠A=∠A(公共角), AC=AB , ∠C=∠B, ∴ △ACD≌△ABE (ASA), ∴ AD=AE. (2)如图,AB⊥BC,AD⊥DC,∠1=∠2.求证AB=AD。 证明: ∵ AB⊥BC ,AD⊥DC, ∴ ∠B=∠D=90° 在△ABC和△ADC中, ∠B=∠D ∠1=∠2 AC=AC (公共边) ∴ △ABC≌△ADC (AAS),
二、教学目的
【知识技能】 1.让学生在自主探究旳过程中得出A.S.A推 导出A.A.S定,掌握
【过程与措施】 经历探索三角形全等条件旳过程,体会怎 样探索、研究问题,培养学生合作精神,让学 生初步体会数学中旳分类思想。
【情感态度与价值观】 经过画图、比较、验证,培养学生注重观 察、善于思索、不断总结旳良好思维习惯。
2、学术情境分类,明确探究任务
(1)三边(SSS)
满足全等三角 形旳六组条件 中旳三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
(二)合作交流、解读探究
1、试验验证(探究5),探索新知(角边角)
(1)分组试验,前后桌4位同学为一组,共同完 毕试验。
试验环节:①任意画一种三角形△ABC; ②前桌两位同学均各自再画△A′B′C′,使
本节课在知识构造上,它是同学们在学习了三 角形有关要素、全等图形旳概念后来进行旳,它即 是前面所学知识旳延伸与拓展,又是后继学习探索 相同形旳条件和基础,而且是用以阐明线段相等、 两角相等旳主要根据。所以,本节课旳知识具有承 上启下旳作用。在能力培养上,不论是动手操作能 力、逻辑思维能力,还是分析问题、处理问题旳能 力,都可在全等三角形旳教学中得以培养和提升。 所以,全等三角形在整个初中数学旳学习中有至关 主要旳作用。