第1课时解一元一次不等式

合集下载

三明市七中七年级数学下册第8章一元一次不等式8.2解一元一次不等式3解一元一次不等式第1课时一元一次

三明市七中七年级数学下册第8章一元一次不等式8.2解一元一次不等式3解一元一次不等式第1课时一元一次

2
3
23
简 , 再代入 数值进行计算
﹜ 1 x 2x 2 y2 3 x 1 y2
2
3 23
→去括号
将式子化简
3x y2
→合并同类项

x
2,
y
2 3
时,
原式
(3)
(2)
2 3
2
6
4 9
6
4 9
.
练习
1、计算 〔1〕3xy-4xy-〔-2xy〕
〔2〕- 1 3
ab -
1 a²+ 1 a²-(- 2
考试加油!奥利给~
2.立方根
复习导入
口答 : 〔1〕什么是平方根?如何用符号表示a〔a≥0 〕的平方根? 〔2〕正数有几个平方根?它们之间的关系是 什么? 负数有没有平方根?0的平方根是什么?
进行新课
问题2 要做一个容积是64m3的正方体木箱 , 如下图 , 问它的棱长是多少?
要求一个数 , 使它的立方等于64.
x<1
式的解集是________.
B
D
D
x=3
x=0 , 1 , 2
x≥1
D 2
x≤1
x>49
x≥-1 x<2
x≤2 x≤3
(1)依题意得3a-1-1<0,解得 a<5
23
9
(2)依题意得3a-1-1=0,解得 a=5
23
9
(3)依题意得3a-1-1≤1,解得 a≤11
23
9
(4)依题意得3a-1-1≥2a-1,解得 a≤1
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.

天元区第一中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式第1课时解一元一次不等式教案新

天元区第一中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式第1课时解一元一次不等式教案新

9.2 一元一次不等式第1课时解一元一次不等式【知识与技能】1.掌握一元一次不等式的解法.2.列一元一次不等式解决简单的实际问题.【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式.【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心.【教学重点】一元一次不等式的解法.【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式.一、情境导入,初步认识问题 1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________.当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________.(3)在乙店花费小,列不等式:__________________.问题 2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果.二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1.注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向.三、运用新知,深化理解1.解下列不等式,并在数轴上表示解集.(1)256x-≤314x+;(2)10.5x--210.75x+≥18.2.当x取什么值时,3x+2的值不大于732x-的值.3.一次知识竞赛共30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了___道题.4.已知方程组2315x y ax y a-=⎧⎨+=-⎩,的解x与y的和为正数,求a的取值范围.5.已知关于x的不等式52x+-1>22ax+的解集是x<1/2,求a的值.6.已知不等式4x-3a>-1与不等式2(x-1)+3>5的解集相同,求a的值.7.当k是什么自然数时,方程2/3x-3k=5(x-k)+6的解是负数?8.当x取什么值时,代数式546x+的值不小于7/8-13x-的值,并求出此时x的最小值.【教学说明】题1可由两名学生在黑板上板书解题过程.其它学生在草稿纸上解答,教师巡视,适时指导有困难的学生;板书完后,教师给予点评,加深印象:题2~3,教师给予提示,帮助学生理解题意,寻找不等关系;题4~8,先让学生自主思考,交流,寻找解题思路.然后,师生共同完成解答.教师可根据实际情况选取部分习题来讲解.【答案】1.解:(1)去分母得:2(2x-5)≤3(3x+1),4x-10≤9x+3,-5x≤13,x≥-13/5.解集在数轴上表示为:(2)化简得:2(x-1)-4/3(2x+1)≥18, 6(x-1)-4(2x+1)≥54,6x-6-8x-4≥54,-2x≥64,x≤-32.解集在数轴上表示为:2.解:由题意得:73 322xx-+≤6x+4≤7x-3-x≤-7.x≥73.24 解析:设小明答对了x道题,则4x-(30-x)≥90,5x≥120,x≥24.即小明至少答对了24道题.4.解:将两个方程相加得2x+2y=1-3a.∴x+y= 123a -.∵x+y>0,∴123a->0,∴a<1/3.5.解:化简不等式得(1-a)x>-1.∵x<1/2,∴1-a<0.∴x<1 1a --∴11a--=1/2,∴a=3.6.解:解不等式4x-3a>-1得,4x>3a-1,x>31 4a-;解不等式2(x-1)+3>5得,2x-2+3>5,2x>4,x>2;由于上述两个不等式的解集相同,∴314a-=2,∴a=3.7.解:解方程得x=61813k-<0,6k-18<0,k<3,故自然数可取k=2,1,0.8.解:依题意:546x+≥78-13x-,解得x≥-1/4,即当x≥-1/4时,代数式546x+的值不小于78-13x-的值,此时x的最小值为-14.四、师生互动,课堂小结1.解一元一次不等式的一般步骤与解一元一次方程相同,只是在系数化为1时,若遇到运用不等式性质3,一定要改变不等号方向.2.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.1.布置作业:从教材“习题9.2”中选取.2.完成练习册中本课时的练习.本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( ) A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.一元一次方程的解法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程变形是移项的是( )A.由3=x得,9=8xB.由x=-5+2x,得x=2x-5C.由2x-3=x+5,得x-=+D.由y-1=y+2,得y-y=2+1【解析】选D.A是根据等式性质2,两边同乘以3得到的,B是利用了加法交换律得到的,C是将方程两边同除以2得到的,D中变形是移项.2.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1,②移项,得4x+x-2x=1+4,③合并同类项,得3x=5,④两边都除以3,得x=,经检验,x=不是原方程的解,说明解题的四个步骤中有错误,其中开始出现错误的一步是( )A.①B.②C.③D.④【解析】选B.步骤②中等号左边的-x没有移动,不能变号.3.(2013·淄博中考)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )A.70 cmB.65 cmC.35 cmD.35 cm或65 cm【解析】选 A.设一段木棍长为xcm,则另一段长为(2x-5)cm,根据两段木棍共长100cm,可列方程x+(2x-5)=100,解得x=35,2x-5=65,因为这两段没有顺序,所以锯出的木棍的长可能为65cm或35cm.二、填空题(每小题4分,共12分)4.(2013·贵阳中考)方程3x+1=7的解是.【解析】移项,得3x=7-1,合并同类项,得3x=6,方程两边同除以3,得x=2.答案:x=25.若单项式-4x m-1y n+1与x2m-3y3n-5是同类项,则m= ,n= .【解析】根据同类项的概念可得m-1=2m-3,n+1=3n-5,由m-1=2m-3,移项,得m-2m=-3+1,合并同类项得-m=-2,两边都除以-1,得m=2.由n+1=3n-5,移项,得n-3n=-5-1,合并同类项,得-2n=-6,两边都除以-2,得n=3.答案:2 36.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.【解析】设鸡有x只,则兔有(33-x)只,根据题意可得2x+4(33-x)=88,解得x=22,33-x=11,即鸡有22只,兔有11只.答案:22 11三、解答题(共26分)7.(8分)解方程:(1)2(y-2)-(4y-1)=9(1-y).(2)4(y-7)-2[9-4(2-y)]=22.【解析】(1)去括号,得2y-4-4y+1=9-9y,移项,得2y-4y+9y=9+4-1,合并同类项,得7y=12,两边都除以7,得y=.(2)去小括号,得4y-28-2[9-8+4y]=22,去中括号,得4y-28-18+16-8y=22,移项,得4y-8y=22+28+18-16,合并同类项,得-4y=52,两边都除以-4,得y=-13.8.(8分)关于x的方程4x+2m=3x+1和3x+2m=4x+1的解相同,求m的值和方程的解. 【解析】解两个方程得x=1-2m和x=2m-1.因为它们的解相同,所以1-2m=2m-1,解得m=.将m=代入x=1-2m或者x=2m-1,得x=0.所以m=,方程的解为x=0.【培优训练】9.(10分)当m取何值时,关于x的方程2mx=(m+1)x+6的解是正整数?【解析】2mx=(m+1)x+6,去括号,得2mx=mx+x+6,移项,合并同类项,得(m-1)x=6,当m-1=0时,原方程无解,当m-1≠0时,两边都除以m-1,得x=(m-1≠0).因此当m-1=1或2或3或6时,方程的解是正整数,因此,m的值为2或3或4或7.。

数学六年级下册第九章-一元一次不等式-课件与答案

数学六年级下册第九章-一元一次不等式-课件与答案

<-4
七年级 下册
配RJ版
第九章
9.2
时,式子3x-5的值大于5x+3的值;
(2)若关于x的不等式2x-m≥0的负整数解为-1,-2,-3,则m的取
值范围是 -8<m≤-6
.
数学
5.解下列不等式:
(1)5x-1<2(x+1);
x<1
(2)3(x+2)-1≥5-2(x-2);

x≥

(3)8-2(x+2)<4x-2;
B.3x-x+1>1
C.3x-x-1>6
D.3x-x+1>6
配RJ版
第九章
( D )
9.2
数学
七年级 下册
配RJ版
第九章
3.(2022·莲池区校级开学)如果关于x的不等式(a+1)x>a+1
的解集为x<1,则a的取值范围是 ( B )
A.a<0
B.a<-1
C.a>1
D.a>-1
9.2
数学
4.(1)当x
第九章
9.2
【变式1】(1)(2022·南京模拟)下列各式中,是一元一次不等
式的是
( B )
A.x2+1>1
B.2x-5>x

C. +2≥10

D.3x+2y<0
数学
七年级 下册
配RJ版
(2)若(m+1)x|m|+2>0是关于x的一元一次不等式,则
1
m=
.
第九章
9.2
数学

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
数学 七年级下册 人教版
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:

人教版七年级数学下册《一元一次不等式第1课时:一元一次不等式的概念和解法》精品教学课件

人教版七年级数学下册《一元一次不等式第1课时:一元一次不等式的概念和解法》精品教学课件

概念:含有一个未知数,未知数的次数是1的不等式,叫做一元一 次不等式(linear inequality in one unknown).


解一元一次不等式的步骤:

去分母:不等号两边各项都乘所有分母的最小公倍数.

去括号:当括号前是“–”时,要注意括号内各项变号.

移项:从不等号的一边移到另一边,注意变号.
=
2x–1 3
.
如上解何表:在示去数呢分轴?母,得:3(2+x)= 2(2x–1).
去括号,得:6+3x=4x–2.
移项,得:3x – 4x≥–2– 6.
移项,得:3x – 4x= –2– 6.
合并同类项,得:– x ≥ –8. 系数化为1,得:x≤8.
合并同类项,得: – x = –8. 0 系数化为8 1,得:x = 8.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
解下列不等式,并在数轴上表示解集: (1) 2(1+ x)<3; (2)22+x≥2x3–1 .
总结一下,解一元 一次不等式的解题
步骤是什么?
解:(1) 2(1+ x)<3; 去括号,得:2+2x< 3.
(2)22+x≥2x3–1 . 去分母,得:3(2+x)≥ 2(2x–1).
配套人教版
9.2 一元一次不等式
一元一次不等式
学习目标
1.了解一元一次不等式的概念.

2.掌握一元一次不等式的解法.

3.能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据


一元一次不等式的性质,将一元一次不等式化简为x>a或x<a的形式.

北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法

不等式
第 1 课时 一元一次不等式的解法
1.不等式的两边都是
,只含有一个未
知数,并且整未式知数的最高次数是_______,像这
1
样的不等式,叫做一元一次不等式.
练习1:下列不等式中,属于一元一B 次不等式的是( )
A.4>1
B.3x-2<4
C. <2
∴-x+2>-1+2,即-x+2>1. ∴数轴上表示数-x+2的点在A点的右边. ∵-2x+3-(-x+2)=-x+1,x<1,∴-x+1>0, ∴-2x+3-(-x+2)>0,∴-2x+3>-x+2, ∴数轴上表示数-x+2的点在B点的左边. 综上所述,数轴上表示数-x+2的点应落在线段AB上.
16.已知一元一次不等式mx-3>2x+m.
A5..去在分解母,不得等5(式错2+误3x的)>一3(2步x-是的1)(过程中) ,开始B 出现
B.去括号,得10+5x>6x-3 C.移项,得5x-6x>-3-10 D.系数化为1,得x<13
6.若代数 +1的值不小于
-B 1的值,
则x的取值范围是( )
7.关于x的一元一次不等式ax-2>0的解集在 数轴上表示如图所示,则关于y的方程ay+2=0
B 的解为( )
A.y=-2 B.y=2 C.y=-1 D.y=1
8.一元一次不等式2x-7≤5-2x的正整数解是1,2,3.
1,2,3,
9.解下列一元一次不等式,并把它们的解集在
数轴上表示出来.
(1)(2018·桂林)
<x+1;
解:x<2,不等式的解集在数轴上表示如下:
(2)(2018·盐城)3x-1≥2(x-1).
(1)若它的解集是
,求m的取值范围;
(2)若它的解集是x> ,试问:这样的m是否存在?如果 存在,求出它的

一元一次不等式及其解法1

1 一元一次不等式及其解法 (第一课时) 一、基础知识扫描 A、不等式定义的理解 1、用不等式表示下列各式:

⑴a的31是非负数 ⑵m的2倍与1的和小于7 解: 解: ⑶a与4的和的20%不大于-5 ⑷x的16与x的3倍的和是非负数。

解: 解: 2、已知cba,,在数轴上如图1所示,请填空 (1)ba____ (2)ca_____ (3)cb____ (4)cbca____ (5)cbca_____ B、不等式的性质的理解

3、用a>b,用“<”或“>”填空:

⑴ a+2 b+2 ⑵ 3a 3b ⑶ -2a -2b ⑷ a-b 0 ⑸ -a-4 -b-4 ⑹ a-2 b-2; 4、 用“<”或“>”填空: ⑴若a-b<c-b,则a c ⑵若3a>3b,则a b ⑶若-a<-b,则a b ⑷若2a+1<2b+1,则a b (5) 若a-b>a则b 0 (6) 若2ac>2bc则a b (7)若a<-b 则a -b (8)若a<b则a-b 0 (9)若a<0,b 0时ab≥0 5、已知a>b,若a<0则2a ab,若a>0则2a ab;

6、若3a<2a,则a一定满足 ( ) A、a>0 B、a<0 C、a≥0 D、a≤0 7、若x>-y,则下列不等式中成立的有 ( ) A、x+y<0 B、x-y>0 C、2ax>2ay D、3x+3y>0

8、.已知a0,在下列空白处填上恰当的不等号: ①若ad>bd,则d____0;②(a-2)c_____(b-2)c; 9、若x>y,则ax>ay,那么a一定为( )。 A.a>0 B.a<0 C.a≥0 D.a≤0

图1abc 2

10、若m<n,则下列各式中正确的是( )。 A.m-3>n-3 B.3m>3n C.-3m>-3n D.m/3-1>n/3-1 11、若a<0,则下列不等关系错误的是( )。 A.a+5<a+7 B.5a>7a C.5-a<7-a D.a/5>a/7 12、下列各题中,结论正确的是( )。 A.若a>0,b<0,则b/a>0 B.若a>b,则a-b>0 C.若a<0,b<0,则ab<0 D.若a>b,a<0,则b/a<0 13、下列变形不正确的是( )。 A.若a>b,则b<a B.-a>-b,得b>a C.由-2x>a,得x>-a/2 D.由x/2>-y,得x>-2y C、一元一次不等式的解法 14、解下列不等式,并把解集在数轴上表示出来: ⑴ 13x<324x ⑵ 10―4(x―3)≤2(x-1);

一元一次不等式(第1课时)(沪科版)


讲授新课
一 一元一次不等式的概念 前面问题中涉及的数量关系是: 工人重 + 货物重 ≤ 最大载重量.
设能载x件25kg重的货物,因为升降机最大 载重量是1200kg,所以有
75+25x≤1200. ①
一元一次不等式的概念
像75 + 25x ≤1200 这样, 含有一个未知数,含未知数的项的次数是1、且不 等号两边都是整式的不等式叫作一元一次不等式.
例4 已知不等式 x+8>4x+m (m是常数)的解集是 x<3,求 m.
解:因为 x+8>4x+m, 所以 x-4x>m-8, 即-3x>m-8,
x 1 (m 8). 3
因为其解集为x<3, 所以 1 (m 8) 3 . 解得 m=3-1.
方法总结:已知解集求字母系数的值,通常是先解含有字 母的不等式,再利用解集唯一性列方程求字母的值.解题 过程体现了方程思想.
不等式的解
不等式的解集
定义 满足一个不等式的 满足一个不等式的
区别
未知数的某个值 未知数的所有值
特点
个体
形式 如:x=3是2x-3<7 的一个解
联系 某个解定是解集中
的一员
全体 如:x<5是2x-3<7 的解集
解集一定包括了 某个解
练一练
判断下列说法是否正确?
(1) x=2是不等式x+3<4的解;
2. 设 x<-6, 则 |3-|x+3|| 的 值是( )
(A)x
(B)6-x
(C)x-6 (D)-x-6
2、不等式的解: 使不等式成立的未知数的值.
例:-2是不是不等式2x-1>-3的解?4呢?
解:当X=-2时,2x-1=2×(-2)-1=5<-3,即不等式左边<右边,所以x=-2 不是不等式2x-1>-3.的解.当x=4时,2x-1=2×4-1=7>-3,即不等式左 边>右边,所以x=4是不等式2x-1>-3的解.

9.3.1 一元一次不等式组(第一课时)七年级数学下册(人教版)

解:(1)去括号,得 3x+6<2x-2
移项,得 3x-2x<-2-6
去括号,得 2x+2≥6x-15+9
合并同类项,得 x<-8
移项,得 2x-6x≥-15+9-2
合并同类项,得 -4x≥-8
系数化为1,得 x≤2
自学导航
问题:用每分可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的
污水超过1200t而不足1500t,那么将污水抽完所用时间的范围是什么?
迁移应用
12 + 1 ≥ −3
1.不等式组
的最大整数解为( C )
− 2 − 3 >0
A.8
B.6
C.5
D.4
3 + 1 > − 1
2.不等式组 +7
的非负整数解的个数是(B
≥ 2 − 1
2
A.3
B.4
C.5
D.6
)
迁移应用
3.解不等式组:
−1


2
3

2 − 5 ≤ 3( − 2)②
迁移应用
4.解下列不等式组:
4 − 3 ≤ 2 − 1 ①
(3) −1 3


2
4
(3)不等式组的解集为x≥1.
解集在数轴上的表示如图所示.
(4)

−2
2

1+4
3

1 + 3<2 2 − 1 ②
(4)不等式组无解.
考点解析
重点
2−7
例4.当x取哪些整数值时,-3≤
<7成立?
>0
+ 1<0
2.下列不等式组中,是一元一次不等式组的是_________.(填序号)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档