常微分方程的基本概念
高等数学(第三版)课件:常微分方程的基本概念

y 1 (e2x e2x ). 4
y' |xx0 y'0 , 或 y'(x0 ) y'0 , 其中x0 , y0 , y'0都是已知值. 一般地,对于n阶微分方程需给出n个初值条件:
y(x0 ) y0,y'(x0 ) y'0 ,,y(n1) (x0 ) y0(n1) .
4.微分方程的解的几何意义 微分方程的解的图形称为微分方程的积分曲线.通
(11)
的特解.
解 将函数y C1e2x C2e2x分别求一阶及二阶导数, 得 y' 2C1e2x 2C2e2x,
y" 4C1e2x 4C2e2x,
把它们代入微分方程(10)的左端,得
y" 4 y 4C1e2x 4C2e2x 4C1e2x 4C2e2x 0
所以函数y C1e2x C2e2x是所给微分方程(10)的解. 又因这个解中含有两个独立的任意常数,任意常数
微分方程的基本概念
一、引例 二、微分方程的一般概念
一、引例
例1 一曲线通过点 (1,2),且该曲线上任意点P(x,y)处的切
线斜率等于该点的横坐标平方的3倍,求此曲线的方程.
解 设所求曲线的方程为y y(x).由导数的几何意义得
dy 3x2 , d(1,2),故y y(x)应满足条件:
解 设物体在时刻t所经过的路程为s s(t), 根据牛顿 第二定律可知,作用在物体上的外力mg(重力) 应等于物体的质量m 与加 速度的乘积,于是得
m d2s mg,即 d2s g
(5)
dt 2
dt 2
其中g是重力加速度.
将上式改写为
d dt
ds dt
g,
因此可得
常微分方程的概念

设制动后 t 秒钟行驶 s 米, s s( t )
d 2s 0.5 2 dt
s 0.5t C1
s t 0 0 v0 s t 0 30
s 0.25t 2 C1t C2
12
代入条件后得
C1 30, C2 0
v s 0.5t 30
6-1 常微分方程的概念
一、引例 二、微分方程的基本概念 三、应用举例
1
一、引例
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
M ( x , y ) 处的切线的斜率为2 x ,求这曲线的方程.
解
设所求曲线为 y y( x )
dy 2x dx
y 2 xdx
10
两边积分,得 根据条件有
1 y dx ln x C x
2 ln 1 C,
即
C 2.
故所求曲线方程为
y ln 线路上以 30 米/ 秒的速度行 2 0 . 5 驶, 当制动时列车获得加速度 米/ 秒 , 问开始 制动后多少时间列车才能停住?以及列车在这段 时间内行驶了多少路程?
z x y, x
实质: 联系自变量,未知函数以及未知函数的 某些导数(或微分)之间的关系式.
3
分类1: 常微分方程, 偏常微分方程.
微分方程的阶: 微分方程中出现的未知函数的最
高阶导数的阶数称之.
dy 2 3x y dx
d 2s 0.5 2 dt
y 2 y 3 y e x ,
14
k 2 (C1 cos kt C 2 sin kt ) k 2 (C1 cos kt C 2 sin kt ) 0.
大二常微分方程知识点

大二常微分方程知识点常微分方程是数学中非常重要的一个分支,它研究的是指导自然界中各种现象变化规律的方程。
在大二学习阶段,我们需要掌握一些常微分方程的基本知识点,接下来将逐一介绍。
1. 常微分方程的定义及基本概念常微分方程是指包含一个未知函数及其导数的方程,并且仅涉及一个自变量。
常微分方程的解是未知函数的函数表达式,它满足方程本身以及初值条件。
常微分方程一般可以分为初值问题和边值问题。
初值问题是指在给定某一时刻的初值条件下,求解方程的解;而边值问题是在给定一定边界条件下,求解方程的解。
2. 一阶常微分方程一阶常微分方程是指方程中最高导数的阶数为一的常微分方程。
它可以分为可分离变量的一阶常微分方程、线性一阶常微分方程和齐次线性一阶常微分方程等。
可分离变量的一阶常微分方程可以通过对方程两边进行变量分离,然后进行积分求解。
线性一阶常微分方程可以通过求解其特征方程,得到通解。
如果已知特解,可以通过通解加上特解得到特定解。
齐次线性一阶常微分方程则可以转化为线性一阶常微分方程,并且其特征方程只有一个解。
3. 高阶常微分方程高阶常微分方程是指方程中最高导数的阶数大于一的常微分方程。
它可以分为常系数线性高阶常微分方程和非齐次线性高阶常微分方程等。
常系数线性高阶常微分方程可以通过求解其特征方程,得到通解。
如果已知特解,可以通过通解加上特解得到特定解。
非齐次线性高阶常微分方程则可以转化为常系数线性高阶常微分方程,并且其特征方程有多个解。
4. 常微分方程的解法技巧在解常微分方程时,我们可以借助一些常见的解法技巧,如变量分离法、齐次方程法、常数变易法、欧拉方程等。
变量分离法是指通过将方程中的变量分离,然后进行积分求解。
齐次方程法适用于齐次的高阶常微分方程,在此方法中,我们需要进行代换,将齐次方程转化为一阶常微分方程。
常数变易法适用于非齐次的高阶常微分方程,我们通过猜测特解的形式,并代入方程,再确定常数的值。
欧拉方程是针对常系数线性高阶常微分方程的解法,其中特解形式为 e^rx。
常微分方程的基本概念及其求解方法

常微分方程的基本概念及其求解方法常微分方程是数学中一种基础而又普遍的模型,它描述了自然界中大量的现象,例如物理运动、化学反应、生物生长等。
在科学和工程中,常微分方程的应用十分广泛,因此学习和掌握它是非常重要的。
本文将从常微分方程的基本概念和求解方法两方面,为读者介绍常微分方程。
一、常微分方程的基本概念1.1 定义常微分方程是指一个包含一个或多个未知函数及其导数的等式。
通常情况下,未知函数是一个关于一元变量的的函数。
例如,下面这个方程就是一个一阶常微分方程:y' = f(x, y)其中,y'表示y关于自变量x的导数,f(x, y)是一个已知的函数。
1.2 阶数常微分方程的阶数是指方程中导数的最高阶数。
例如,y'' + 2y' + y = 0 是一个二阶常微分方程。
1.3 初值问题常微分方程有时也被称为初值问题,因为为了求解方程,我们需要先给出初值。
初值问题指的是给定某个时刻的函数值和导数值,以及常微分方程本身,求解函数在其他时刻的值。
例如,y' = f(x, y),y(x0) = y0 就是一个初值问题,其中y(x0) = y0表示在x = x0时函数y的值为y0。
二、常微分方程的求解方法2.1 分离变量法分离变量法是求解一阶常微分方程最基本的方法。
它的基本思路是将未知函数的导数通过分离变量的方法移到等式的一侧,将其他项移到另一侧,从而实现变量的分离。
例如,对于y' =f(x)g(y),我们可以将其改写成dy/g(y) = f(x) dx,然后对两边积分得到:ln |g(y)| = F(x) + C其中F(x)和C是常数,|g(y)|表示g(y)的绝对值。
通过取指数,我们可以得到g(y)的表达式,从而求得未知函数。
2.2 变量代换法当分离变量法难以应用时,可以采用变量代换法。
变量代换的基本思路是将因式分解,然后进行替换。
例如,对于y' + 2y/x =x^2,我们可以将y = ux^m代入方程,其中m是一个待定的整数。
常微分方程主要内容

常微分方程主要内容
摘要:
1.常微分方程的概述
2.常微分方程的主要内容
3.常微分方程的应用
4.学习常微分方程的方法和技巧
正文:
一、常微分方程的概述
常微分方程是微分方程的一个分支,主要研究变量随时间变化的规律。
它在数学、物理、化学、生物学等领域有着广泛的应用,是解决许多实际问题的关键工具。
二、常微分方程的主要内容
1.基本概念:常微分方程涉及的基本概念包括导数、微分、积分等,这些概念是理解常微分方程的基础。
2.基本定理:常微分方程的基本定理包括解的存在唯一性定理、解的延展定理等,这些定理是研究常微分方程的关键。
3.解法:常微分方程的解法包括初等基分法、线性微分方程组解法、n 阶线性微分方程解法等,这些解法是求解常微分方程的具体方法。
4.特殊类型:常微分方程中的特殊类型包括线性微分方程、非线性微分方程、隐式微分方程、显式微分方程等,这些特殊类型需要特殊的处理方法。
三、常微分方程的应用
常微分方程在实际应用中具有广泛的应用,包括数值计算、微分方程建模等。
例如,在物理学中,常微分方程可以用来描述物体的运动规律;在生物学中,常微分方程可以用来描述生物种群的演化规律等。
四、学习常微分方程的方法和技巧
学习常微分方程需要掌握一定的数学基础,包括微积分、线性代数等。
此外,学习常微分方程还需要掌握一些基本的数学分析方法,如极限、连续、导数、微分等。
在解决常微分方程问题时,需要灵活运用这些方法和技巧,以求得问题的解决。
总之,常微分方程是数学中的一个重要分支,它在实际应用中具有广泛的应用。
常微分方程期末考试练习题及答案

一,常微分方程的基本概念常微分方程:含一个自变量x,未知数y及若干阶导数的方程式。
一般形式为:F(x,y,y,.....y(n))=0 (n≠0).1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。
如:f(x)(3)+3f(x)+x=f(x)为3阶方程。
2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。
3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。
如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。
4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。
5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。
(方程线性与否与自变量无关)。
如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。
注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。
余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。
另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。
b.教材28页第八题不妨做做。
二.可分离变量的方程A.变量分离方程1.定义:形如dxdy=f (x)φ(y)的方程,称为分离变量方程。
这里f (x ),φ(x )分别是x ,y 的连续函数。
2.解法:分离变量法⎰⎰+=c dx x f y dy)()(ϕ. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。
需视情况补上φ(y )=0的特解。
(有时候特解也可以和通解统一于一式中)b.不需考虑因自变量引起的分母为零的情况。
例1.0)4(2=-+dy x x ydx解:由题意分离变量得:042=+-ydy x dx即:0)141(41=+--ydydx x x 积分之,得:c y x x =+--ln )ln 4(ln 41故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。
常微分方程的基本概念与常系数线性齐次方程

常微分方程的基本概念与常系数线性齐次方程常微分方程(Ordinary Differential Equation,ODE)是描述函数未知量及其导数之间关系的方程。
在数学和科学领域中,常微分方程是一种重要的数学工具,用于建立数学模型和解决实际问题。
本文将介绍常微分方程的基本概念,并着重讨论常系数线性齐次方程。
一、常微分方程的基本概念1.1 未知函数的定义在常微分方程中,未知函数是一个关于自变量的函数,我们通常用y表示。
常微分方程的解就是使得方程成立的函数。
1.2 阶数和次数常微分方程的阶数是指方程中最高阶导数的阶数。
次数是指方程中导数的最高幂次数。
1.3 解的定义对于给定的微分方程,如果存在一个函数满足方程的条件,那么这个函数就是方程的解。
1.4 初始条件为了确定微分方程的解,需要给出一些初始条件。
初始条件是指在某一点上给出的函数值及其导数值。
二、常系数线性齐次方程常系数线性齐次方程是一种形式为函数及其导数的线性组合,并且系数都是常数的微分方程。
2.1 常系数在常系数线性齐次方程中,系数都是常数,不随自变量的变化而变化。
2.2 齐次性一个微分方程是齐次的,意味着方程中只存在未知函数及其导数,没有非齐次项。
2.3 线性性一个微分方程是线性的,意味着未知函数及其导数只以一次幂出现,并且可以通过线性叠加来求解。
2.4 解的求解对于常系数线性齐次方程,可以通过特征根的方法来求解。
特征根是方程对应的齐次方程的根。
2.5 解的形式一般来说,常系数线性齐次方程的解可以表示为指数函数的线性组合。
特殊情况下,解还可以表示为三角函数的线性组合。
三、小节三在这一部分,我们将介绍常微分方程的应用领域和意义。
常微分方程广泛用于物理学、工程学、经济学等领域,用于建立数学模型和求解实际问题。
通过求解常微分方程,我们可以得到函数的解析解,更好地理解和预测自然界和社会现象的行为规律。
总结:本文介绍了常微分方程的基本概念和常系数线性齐次方程。
常微分方程的基本概念与解法

常微分方程的基本概念与解法常微分方程是数学中的一个重要分支,它研究的是描述变化规律的方程中出现的微分项。
本文将介绍常微分方程的基本概念和解法。
一、常微分方程的基本概念常微分方程是指未知函数的导数和自变量之间的关系方程。
一般形式可以表示为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,y为未知函数,x为自变量,y',y'',...,y^(n)为y的一阶、二阶,...,n阶导数,n为正整数。
常微分方程的阶数指的是方程中最高阶导数的阶数。
例如一阶常微分方程只包含y',二阶常微分方程包含y'和y'',依此类推。
常微分方程可以分为常系数微分方程和变系数微分方程。
常系数微分方程中的系数是常数,变系数微分方程中的系数可以是关于自变量x 的函数。
二、常微分方程的解法常微分方程的解法可以分为初值问题和边值问题。
1. 初值问题初值问题是指在方程中给定自变量x的某个初始值和未知函数y在该点的初值。
对于一阶常微分方程,求解初值问题的基本步骤如下:(1) 将一阶常微分方程改写成dy/dx = f(x, y)的形式;(2) 使用分离变量、全微分或变量代换等方法将方程转化为可分离变量的形式;(3) 对变量进行积分,得到通解;(4) 将初始条件代入通解中,求解常数,得到特解。
对于高阶常微分方程,可以通过转化为一阶常微分方程组的形式,然后利用类似的方法求解。
2. 边值问题边值问题是指在方程中给定自变量x在两个不同点上的值,要求找到满足这些条件的未知函数y。
对于二阶线性常微分方程的边值问题,可以使用常数变易法或格林函数法等求解方法。
三、常微分方程的应用常微分方程在科学和工程领域中具有广泛的应用。
以下是常见的几个应用领域:1. 物理学常微分方程在描述物理系统的运动规律中起着重要的作用。
例如,牛顿第二定律可以表示为二阶线性常微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程的基本概念
常微分方程 (Linear Ordinary Differential Equation) 是一类描述物理量随时间变化的线性微分方程,其一般形式为:
$$y"=f(t,y)$$
其中,$y$ 表示物理量,$t$ 是时间变量,$y"=dy/dt$ 表示物理量随时间的变化率,$f(t,y)$ 是与 $y$ 相关的函数。
常微分方程的分类可以根据 $f(t,y)$ 的特征进行。
具体来说,可以根据 $f(t,y)$ 的构成分为以下几类:
1. 常数变易法 (Constant Variation Method):适用于
$f(t,y)$ 是常数。
2. 变量替换法 (Variable Substitution Method):适用于
$f(t,y)$ 是线性函数。
3. 特征值法 (Eigenvalue Method):适用于 $f(t,y)$ 具有特
征值。
4. 谱方法 (Series Expansion Method):适用于 $f(t,y)$ 具有谱性质。
求解常微分方程的方法包括数值求解和解析求解两种方法。
数值求解是通过数值计算的方法求解常微分方程的解,而解析求解则是通过数学方法直接求解常微分方程的解。
解析求解的方法包括分离变量法、特征值法、积分法等。
常微分方程在物理学、工程学、经济学等领域有着广泛的应用,例如求解物体的运动轨迹、反应扩散方程、财务分析等。