初一数学PPT课件

合集下载

人教版初一数学 8.8.4 三元一次方程组的解法PPT课件

人教版初一数学 8.8.4 三元一次方程组的解法PPT课件
= . ③
探究新知
用代入消元法解
+ + = ,
将③代入①,②,得ቊ
+ + = .
+ = ,
= ,
即ቊ
解得ቊ
代入①得出x=8.
+ = ,
ቐ = ,
探究新知
消元思想
解三元一次方程组的基本思路:
2.七彩作业.
例3:若|a-b-1|+(-2+) +2|c-b|=0,求a,b,
c的值.
解析:本题考查非负数性质的综合应用,要使等式成立必须
使每个非负数都为0.
探究新知
解:因为三个非负数的和等于0,所以每个非负数都为0.
− − = ,
= −,
可得方程组ቐ − + = ,解得ቐ = −,
求1元、2元和5元的纸币各多少张?
设1元、2元、5元的纸币分别
为x张、y张、z张
x+y+z=12

x+2 y+5 z=22

x=4 y

这样的方程组我们叫它什么呢,该怎样解呢?
探究新知
学生活动一【一起探究】
+ + = ,
三元一次方程组ቐ + + = ,
= .
3.在知识的学习过程中,感受事物之间的相互联系.
学习重难点
学习重点:解三元一次方程组的基本思路,会解
三元一次方程组.
学习难点:会选择适当的方法消元并熟练解三元
一次方程组.
回顾复习
问题1:二元一次方程组的概念?
方程组中含有两个未知数,含有每个未知数的项
的次数都是1,并且一共有两个方程,像这样的方程

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得

新人教版七年级数学上册专题复习课件(共105张ppt)

新人教版七年级数学上册专题复习课件(共105张ppt)
15
(3)原式=-6.(4)原式=-35.
3. 计算: (1)2(x+y)-(-5x+2y); (2)(8mn-3m2)-5mn-2(3mn-2m2); (3)2(4x2-3x+2)-3(1-4x2+x); (4)3x2-[7x-(4x-3)-2x].
解:(1)原式=7x. (2)原式=-3mn+m2. (3)原式=20x2-9x+1. (4)原式=3x2-x-3.
4.化简求值: (1)5x2-[4x2-(2x-1)-3x],其中x=3; (2)-2(a2b- 1 ab2)-(-2a2b+3ab2)+ab,其中 a=1,b=-3. 2
解:(1)原式=5x2-(4x2-2x+1-3x)= 5x2-4x2+2x-1+3x=x2+5x-1. 当x=3时,原式=32+5×3-1=9+15-1=23. (2)原式=-2a2b+ab2+2a2b-3ab2+ab=-2ab2+ab. 当a=1,b=-3时,原式=-2×1×(-3)2+1×(-3) =-18-3=-21.
4
(8)23×(
1
3
)2=____2____.
2
2.计算 (1)1+(-2)+|-2-3|-5-(-9); (2) 11 1 1 3 5 ;
3 3 2 11 4
(3) 5 2 3 12 ; (4)-1322+(3 -42)2×(-5)-|-6|.
解:(1)原式=8.(2)原式= 2 .
10.现规定 , 其中x=2,y=1.
=a-b+c-d,试计算
解:原式=(xy-3x2)-(-2xy-x2)+(-2x2-3)(-5+xy)=-4x2+2xy+2. 当x=2,y=1时, 原式=-4×22+2×2×1+2=-16+4+2=-10.

等式的性质 课件(共41张PPT) 人教版数学七年级上册

等式的性质  课件(共41张PPT) 人教版数学七年级上册
第五章 一元一次方程 5.1 从算式到方程 5.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程. (难点)
导入新课
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
怎样从等式
a 100
b 100
得到等式
a
=
b?
1 4
.
依据等式的性质2两边同时除以1010 或同乘100.
(5) 从 x = y 能不能得到
x 9
y 9
,为什么?
能,根据等式的性质2,两边同时除以9
(6) 从 3ac=4a 能不能得到 3c=4,为什么? 不能,a可能为0
注意:此类判断等式变形是否正确的题型中,尤其注 意利用等式的性质2等式两边同除某个字母参数,只 有这个字母参数确定不为0时,等式才成立.
用等号表示相等关系的式子,叫等式。
通常用a b表示一般的等式.
试一试
等式的两个基本事实: 等式两边可以交换,如果a=b,那么b=a. 相等关系可以传递,如果a=b,b=c。那么a=c.
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
(2) 0.3x = 45 ;
(3) 5x+4 = 0 ;
(4)2- 1 x=3
解:(1)两边同时加5,得x=11.
4
(2)两边同时除以0.3,得x=150.
(3)两边同时减4,得5x=-4.

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)

③百米直跑道的两边.
A.3个
B.2个
C.1个
D.0个
2 下列说法中,正确的有( B ) ①在同一平面内不相交的两条线段必平行; ②在同一平面内不相交的两条直线必平行; ③在同一平面内不平行的两条线段必相交; ④在同一平面内不平行的两条直线必相交. A.1个 B.2个 C.3个 D.4个
3 a,b,c是平面内任意三条直线,交点可以有 ( B) A.1个或2个或3个 B.0个或1个或2个或3个 C.1个或2个 D.以上都不对
例6 如图,P是三角形ABC内部的任意一点. (1)过P点向左画射线PM∥BC交AB于点M,过 P点向右画射线PN∥BC交AC于点N; (2)在(1)中画出的图形中,∠MPN的度数一定等 于180°,你能说明其中的道理吗?
导引:在(1)中,按照过直线外一点画已知直线的平行线 的方法画图即可.在(2)中,要说明∠MPN=180°, 可转化为说明点M, P, N在同一条直线上.
(来自《教材》)
解:(1)如图(1)所示. (2)如图(2)所示. (1)
(来自《教材》)
(2)
2 在如图所示的各图形中,过点M画PQ∥AB. 解:略.
知识点 3 平行线的基本事实1:确定性
(1) 经过点C可以画几条直 a
线与直线AB平行? A
(2) 过点D画一条直线与
AB平行.
b
C
B D
(3) 通过画图,你发
解:与棱AD平行的棱有A′D′,B′C′,BC, 记作AD∥A′D′,AD∥B′C′,AD∥BC. 与棱D′C′平行的棱有DC,AB,A′B′, 记作D′C′∥DC, D′C′∥AB, D′C′∥A′B′.
总结
找平行线要注意两点: (1)在同一平面内; (2)不相交(无限延伸).

人教版初一数学 1.2.4 绝对值PPT课件

人教版初一数学 1.2.4  绝对值PPT课件

-1 5
= 1; 5
|-2.8|=2.8.
当堂训练
能力提升题
化简: | 0.2 |=__0_.2___;
-2 3 7
=__2_73___;
| b |=__-_b___ (b<0); | a – b | =__a_-_b__(a>b).
当堂训练
拓广探索题 正答式:排第五球个比排赛球对的所质用量的好一排些球,重因量为是它有的严绝对格值规最定小的,,也现就检是离查标5个准排重 球量的的重克数量最,近超.过规定重量的克数记作正数,不足规定重量的克数 记作负数,检查结果如下:
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
导入新课
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
探究新知
知识点 2 绝对值的性质 观察这些表示绝对值的数,它们有什么共同点?
|5|=5 |100|=100 |-4.5|=4.5
|-10|=10 |-3|=3 |-5000|=5000
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作

3.1 第1课时 代数式 课件(共19张PPT) 人教版七年级数学上册

3.1   第1课时 代数式  课件(共19张PPT)  人教版七年级数学上册

(p-0.9p)元
不一样.在(1)中,0.9p表示每千克苹果的售价,在(2)中,0.9p表示长为0.9,宽为p的长方形的面积
(3n-10)件;(n-10)件
一定是
1.请同学们指出下列各式中,哪些是代数式,哪些不是代数式? ① 2x-1;②a=1;③S=πR2;④π;⑤
①④是代数式,②③⑤不是代数式
2. 请同学们根据引言和例1、2的作答,试着说一说用字母表示数时有哪些需要注意的地方.
①数与字母相乘或字母与字母相乘时,通常将乘号写作“·”或省略不写;②数与字母相乘时,数写在前;③字母可以像数一样参与运算,相同字母相乘,结果写成幂的形式;④Байду номын сангаас果代数式是带加、减运算且须注明单位的代数式要加括号,后面注明单位;⑤式子中出现除法时一般按分数形式写
A
D
例3:小明每月从零花钱中捐出x元给希望工程,一年下来小明共捐款_______元.变式:如图,某长方形广场的四角各铺设了四分之一圆形的草地,若圆形的半径均为r m, 则草地的面积是_______m2, 空地的面积是__________m2.
【题型二】用代数式表示实际问题中的数量或数量关系
【题型三】代数式的意义及实际意义
D
解:某人以a km/h的速度骑行3 h,以b km/h的速度骑行4 h,所骑行的路程是(3a+4b)km(答案不唯一,合理即可).
1.本节课主要学习了哪些知识?2.本节课你还有哪些疑惑?说一说.
学习了代数式的概念、书写规则,代数式的意义及实际意义
同学们,大家体会到代数式的意义了吗?它能够帮助我们用更加简洁的数学语言表述数量关系,希望同学们课后好好感受.
知识点:代数式的概念及书写(重难点)
注:1.同一个代数式可以表示不同实际问题中的数量或数量关系.2.同一个问题中,相同的字母必须表示相同的量,不同的量必须用不同的字母表示.3.用字母可以表示任意数或式子.4.用字母表示数可以反映事物的规律,更具有一般性.

初一数学课件(共47张PPT)

初一数学课件(共47张PPT)

(4)比-3大2的数是(
)。
(2)(-7)+11+(-2)+3+2
(3)0-(-6)=___;
, 0 , +0. (1) 16+(-25)+24+(-32)
a – b = a + (-b)
(1) (-3)+(+4)+(-8)+(+7)
=-(3+9) =-12
1、把下列各数分别填在相应的括号里。
解(1) (-3)+(-9)
=- 9
2、( -6) + 2
(取相同的符号) (把绝对值相加)
(绝对值不相等的异 号两数相加)
=-(
) (取绝对值较大的加数
符号)
=-(6 – 2 )
=- 4
(用较大的绝对值减 去较小的绝对值)
例二: 计算
(1) (-3)+(-9)
(2) (-
1 2
)+(+
1)
3
(3) 0 +( -0.1 )
解(1) (-3)+(-9) =-(3+9) =-12
}
}
}
}
}
2、既不是正数,又不是整数的有理数是( )
(A)负数和分数
(B)零、负数和分数
(C)负分数
(D)零和负分数
3、下列说法是否正确,为什么?
(1)一个有理数,不是整数就是分数。
(2)一个有理数,不是正数就是负数。
4、在数轴上,与原点距离为2个单位的点所表示的数是
示-4的点距离为5个单位的点所表示的数是
(A)m<0
(B)m>1
(C)n>-1
(D)n<-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

想一想: 解一元一次方程有哪些步骤?
(x+15)= - (x-7)
解:
6(x+15 ) =15-10(x-7) 6x+90=15-10x+70
6x+10x=15+70-90 16x= -5
X=
-
课堂练习:


见课本159页随堂练习。
解一元一次方程的一般步骤
1.去分母,根据等式性质。注意点:不要漏乘不含分母的项, 分子是两项以上的代数式,需加括号。
课后作业: 一、课本160页习题5.5的1、2 题。 二、阅读课本160页 读一读《方 程小史》,并收集有关方程的 趣题及史料。
2.去括号,根据去括号法则。注意点:不要漏乘括号内的每一项, 括号前面是负号,括号内各项要变号。 3.移项,根据移项法则。注意点:移项要变号,不要漏项。 4.合并同类项,根据合并同类项法则。注意点:系数相加, 字母及它的指数不变。 5.系数化成“1”,根据等式性质。注意点:方程两边同除以 未知数的系数。
解方程:6(1+2x)=2x+16
解:去括号,得:6+12x=2x+16
移项,12x-2x=16-6
合并同类项 系数化为1
10x=10 X=1
5.解方程(三)
例5

(x+14)=
(x+20)

解法一、
x+2= x+5 x- x=5-2 - x =3 X=-28




解法二、 4(x+14)=7(x+20 ) 4x+56=7x+140 4x-7x=140-56 -3x=84 X=-28
相关文档
最新文档