立体几何的动态问题.pdf

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

高中数学动态性立体几何题

立体几何动态问题 所谓动态性立体几何题,是指在点、线、面运动变化的几何图形中,探寻点、线、面的位置关系或进行有关角与距离的计算。由于这类题情景新颖、解法灵活、极富思考性和挑战性,能更好地考察空间想象能力和思维能力,因此成了学考和高考的热点内容。解决这类问题一般来说有以下几种策略。 一、将空间问题转化为平面问题 【例1】 如图,直线l ⊥平面α,垂足为O ,已知直角三角形ACC 1中,CC 1=1, AC =2,A C 1 .该直角三角形在空间做符合以下条件的自由运动: (1)A l ∈, (2)C α∈, 求O ,C 1两点间的最大距离. 例2、在棱长为1的正方体1111D C B A ABCD -中,F E ,分别是棱111,D C D A 的中点,N 为线段C B 1的中点,若点M P ,分别为线段EF B D ,1上的动点,则PN PM +的最小值为( ) A. 1 B. 4 2 3 C. 4262+ D. 2 13+ 二、引人参数,把动态问题转化为计算问题,动中求静 例3、在直三棱柱中,,,已知和分 别为和的中点,与分别为线段和上的动点(不包括端点),若 ,则线段的长度的取值范围为 ( ) A . B . C . D . 例4、已知棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点 E , F 分别是棱BB 1,DD 1上的动点,且BE=D 1F=λ.设EF 与AB 所成的角为α,与BC 所成的角为β,则α+β的最 小值( ) A.不存在 B.等于60 C.等于90 D.等于120 ABC C B A -1112 π = ∠BAC 11= ==AA AC AB G E 11B A 1CC D F AC AB EF GD ⊥DF ??? ????1,55??????1,55???? ??1,552??????? 1,552M D 1C 1 B 1 A 1

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

高三数学选择填空难题突破—立体几何的动态问题

高三数学选择填空难题突破—立体几何的动态问题 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题 例1.【2015高考四川,理14】如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点 θθ cos M在线段PQ上,E、F分别为AB、BC的中点。设异面直线EM与AF所成的角为,则的最大值为.

【答案】 ,当时取等号.所以 ,当时,取得最大值. 【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M 在P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当M 点向左移动时,EM 与AF 所成角逐渐变小时,点M 到达点Q 时,角最小,余弦值最大。 【举一反三】 1、【2014四川,理8】如图,在正方体中,点为线段的中点.设点在线段上,直线与平面所成的角为,则的取值范围是() 2 5 281161 81455 2y y t t +=≥++-1t =2 211222 cos 511555451144 y y y θ-+==≤=?++?++0y =C 1111ABCD A B C D -O BD P 1CC OP 1A BD αsin α

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招

2018年高考数学压轴 题突破140之立体几何五种动态问题和解题 绝招 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招中高考数学名师张芙华2018-01-29 06:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题

【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF 所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

立体几何中的最值与动态问题

2 5 立体几何中的最值问题 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在 试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. 5 5 C. 2 D. 1 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当 OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当P 运动 5 到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平面α 于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥ 3 。 2 5 2 5 2 5 3

图 2 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是() A. 2a B. 2b C. 2c D. a+b+c 图3-1 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD, AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D' ,AB // CD' ,A、C、A’共 线,D、B、D’共线,AA'=DD' = 2BD 。又四边形PQRS 在展开图中变为折线S’PQRS,S’与S 在四面体中是同一点。因而当P、Q、R 在S’S 上时,S ' P +PQ +QR +RS 最小,也就是四边形PQRS 周长最小。又S ' A =SA',所以最小值L =SS '=DD' = 2BD = 2b 。故选B。 图3-2 四、利用向量求最值 例4. 在棱长为1 的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的最小值为。 解析:以A 为坐标原点,分别以AB、AD、AE 所在直线为x,y,z 轴,建立如图 4 所示的空间直角坐标 →→ 系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP=(x-1,0,x),GP=(x-1,-1,x-1),那么

立体几何的动态问题翻折问题

立体几何的动态问题之二 ———翻折问题 立体几何动态问题的基本类型: 点动问题;线动问题;面动问题;体动问题;多动问题等 一、面动问题(翻折问题): (一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论 .DF AE ⊥一线:垂直于折痕的线即 五结论: 1)折线同侧的几何量和位置关系保持不变; 折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角; 3D DF ')在底面上的投影一定射线上; 二、翻折问题题目呈现: (一)翻折过程中的范围与最值问题 1、(2016年联考试题)平面四边形ABCD 中, , CD=CB= 且AD AB ⊥, 现将△ABD 沿对角线BD 翻折成'A BD ?,则在'A BD ?折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ . 解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A 运动到与圆相切的时候所称的角最大,所以tan 'A CB ∠= 【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误 1 2 进行分析,找出错误的原因。 2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是 D A B E C D A B C 4) ''D H DH 点的轨迹是以为圆心,为半径的圆;5AD'E AE .)面绕 翻折形成两个同底的圆锥C

A.( ,)63 ππ B. (,]62 ππ C. ( ,]32 ππ D. 2( ,)3 3 ππ 分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。 方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理: 222254cos 243 FH FC CH FHC CH FH FC +-∠==- ,有344CH ≤≤ 11cos ,22CFH ?? ∴∠∈-???? 异面直线BE 与CF 所成角的取值范围是(,] 32ππ 方法三:向量基底法: 111 ()()222BE FC BA BD FC BA FC BF FA FC =+==+ 111cos ,cos ,,222BE FC FC FA ?? <>= <>∈-???? 方法四:建系: 3、(2015年浙江·理8)如图,已知ABC ?,D 是AB 的中点,沿直线CD 将ACD ?折成 A CD '?,所成二面角A CD B '--的平面角为α,则 ( B ) A. A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≥ D. A CB α'∠≤ 方法一:特殊值 方法二:定义法作出二面角,在进行比较。 方法三:抓住问题的本质,借助圆锥利用几何解题。 4、 (14 年1月浙江省学业学考试题)如图在Rt △ABC 中,AC =1,BC =x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程 B

高考数学专题复习破解立体几何中的动态问题

破解立体几何中的动态问题 动态问题需要极高的空间想像能力与化归处理能力,在各省市的高考选择与填空中出现有较高的频次。动态立体几何指的是求由点、线、面的变化引起的相关变量的取值范围或最值问题。就变化起因大致可分为以下三类:一是移动;二是翻折;三是旋转。就所求变量可分为:一是相关线、面、体的测度;二是角度;三是距离。 1.简化图形——“大道至简” 从复杂的图形中分化出最简的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,从混沌中找出秩序是问题解决的关键。 例1(2006年浙江省数学高考理科试题第14题)正四面体ABCD 的 棱长为1,棱 α平面//AB (如图1),则四面体上的所有点在平面α 内的 射影构成的图形面积的取值范围是_______。 去掉与问题无关的面,将四面体看成是以AB 为棱的二面角C AB D --(二面角大小一定) ,用纸折出这个二面角,不妨将 AB 置于平面α 内,将二面角绕 AB 转动一周,观察点,C D 在平面α 上的 射影,可以发现点,C D 在平面α上的射影始终在 AB 的射影的中垂线上, 当//CD α平面时,四边形 ABCD 面积最大12 (如图3) ,当CD α⊥平面时(此时点)(D C 到AB 的距离即为异面直线AB 与CD 的距离) ,四边形'(')ABC D 面积最小4 (如图4),转动过程中D C ,在平面α上的射影从D C ,变化至''' ',D C 。 例2.(2017年台州市高三模拟试题)如图,在棱长为2正四面体A BCD -中,E 、F 分别为直线AB 、 图1 D C B A ααA B C D 图3 A 图4 α C B 图5 D " C "C'(D') D C B A

立体几何中的动态问题

立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等. 一、常见题目类型 (优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点 M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包 括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3 ,则点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分 【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为 θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角, 即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3 ,点P 在平面A 1B 1C 1D 1的投影为圆的一部分, 因为点P 是△A 1C 1D 内的动点(不包括边界), 所以点P 的轨迹是椭圆的一部分.故选B. 【答案】 B (优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A.43 B.163 C.49π D.83 π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所 以sin ∠AMB =sin ∠DMC ?AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

§9[1].3“动态”立体几何题

“动态”立体几何题 本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。 一、截面问题 截面问题是立体几何题中的一类比较常见的题型,由于截面的“动态”性,使截得的结果也具有一定的可变性。 例1、用一个平面去截正方体,所得的截面不可能是( D ) A 六边形 B 菱形 C 梯形 D 直角三角形 例2、已知正三棱柱A 1B 1C 1—ABC 的底面积为S,高为h,过C 点作三棱柱的与底面ABC 成α角的截面△MNC,(0<2 π α< ),使MN//AB ,求截面的面积。 分析:由于截面位置的不同,它与几何体的交线MN 可能在侧面A 1B 上,也可能在A 1B 1C 1上,由此得到两种不同的结果。 解:当交线MN 在侧面A 1B 内(或与A 1B 1重合时),S △MNC = α cos S ;当MN 在底面A 1B 1C 1内时,arctan ∴<<,234 2 π αS h S △MNC =α α 2 2sin 3cos 3h 。 B C 1 B C N B C 1 B C 二、翻折、展开问题 图形的翻折和展开必然会引起部分元素位置关系的变化,求解这类问题要注意对变化前后线 线、线面位置关系、所成角及距离等加以比较,一般来说,位于棱的两侧的同一半平面内的元素其相对位置关系和数量关系在翻折前后不发生变化,分别位于两个半平面内的元素其相对关系和数量关系则发生变化。不变量可结全原图型求解,变化了的量应在折后立体图形中来求证。 例3、下图表示一个正方体的展开图,图中AB 、CD 、EF 、GH 这四条直线在原正方体中相互异面的有( B ) A 2对 B 3对 C 4对 D 5对 例4、从三棱锥P —ABC 的顶点沿着三条侧棱PA 、PB 、PC 剪开,成平面图形,得到△P 1P 2P 3,且

立体几何中的动点轨迹问题讲解

立体几何中的动点轨迹问题讲解 这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。 这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。 立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。 题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。 与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

立体几何动态问题(二轮)含答案

立体几何中的动态问题 一、轨迹问题 1.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点P 轨迹的面积( )D A .4π B .2π C .π D . 2 π 2.[2015·浙江卷] 如图, 斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB =30°,则点P 的轨迹是( )C A .直线 B .抛物线 C .椭圆 D .双曲线的一支 3.如图,AB 平面α的斜线段,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是 ( )B A .圆 B .椭圆 C .一条直线 D .两平行直线 4.如图,已知正方体ABCD -A 1B 1C 1D 1中,M 是平面ABCD 内的一个动点,且∠AD 1M =45°,则动点M 的轨迹是 ( )D A .圆 B .双曲线 C .椭圆 D .抛物线 5.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是底面ABCD 内的动点PE ⊥A 1C 于点E ,且PA =PE ,则点P 的轨迹是 ( )A A .线段 B .圆弧 C .椭圆的一部分 D .抛物线的一部分 图-2 A P B α 图-3

二、判断平行,垂直,夹角问题 1.已知矩形ABCD ,AB=1,BC=2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中, ( )B A.存在某个位置,使得直线AC 与直线BD 垂直. B.存在某个位置,使得直线AB 与直线CD 垂直. C.存在某个位置,使得直线AD 与直线BC 垂直. D.对任意位置,三对直线“AC 与BD ”, “AB 与CD ”,“AD 与BC ”均不垂直 2.如图,已知点E 是正方形ABCD 的边AD 上一动点(端点除外),现将△ABE 沿BE 所在直线翻折成△BE A ',并连结C A ',D A '.记二面角C BE A --'的大小为)0(παα<<.(D) A .存在α,使得⊥'BA 面DE A ' B .存在α,使得⊥'BA 面CD A ' C .存在α,使得⊥'EA 面C D A '. D .存在α,使得⊥'EA 面BC A ' 3.(浙江2015)如图,已知ABC ?,D 是AB 的中点,沿CD 将ACD ?折成CD A '?, 所成二面角B CD A --'的平面角为α,则 (B) A .α≤'∠DB A B .α≥'∠DB A C .α≤'∠CB A D .α≥'∠CB A 三、最值问题 1.在棱长为1的正方体中,点21,P P 分别是线段AB ,BD 1, (不包括端点)上的动点,且线段2 1P P 平行于棱1AD ,则四面体121,AB P P 的体积的最大值为( )D (A )481 (B )121 (C )81 (D )24 1 2.已知立方体ABCD -A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在棱AB ,CC 1上移动,若EF +GH = 2 1 ,A D A 'B C C E B A C E D B 'A A B C D E

“动态”立体几何题面面观

“动态”立体几何题面面观 本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。 一.定值问题 例1 如图 3,在棱长为 a 的正方体ABCD -A1B1C1D1 中,EF 是棱AB 上的一条线段,且 EF=b<a,若 Q 是A1D1 上的定点,P 在C1D1 上滑动,则四面体 PQEF 的体积(). (A)是变量且有最大值(B)是变量且有最小值(C)是变量无最大最小值(D)是常量 分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段 EF 的位置不定,点P 在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件? 仔细观察图形,应该以哪个面为底面?观察?PEF ,我们发现它的形状位置是要变化的,但是底边 EF 是定值,且 P 到 EF 的距离也是定值,故它的面积是定值.再发现点 Q 到面 PEF 的距离也是定值.因此,四面体PQEF 的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.

(1 - CP ) 2 + BQ 2 M B O N = 二、最值问题 例 2.如图,正方形 ABCD 、ABEF 的边长都是 1,而且平面 C ABCD 、ABEF 互相垂直。点 M 在 AC 上移动,点 N 在 BF 上移 动,若 CM=BN= a (0 < a < 2). (1)求 MN 的长; D (2)当 a 为何值时,MN 的长最小; (3)当 MN 长最小时, 求面 MNA 与面 MNB 所成的二面角的大小。 E 解析:(1)作 MP ∥AB 交 BC 于点 P ,NQ ∥AB 交 BE 于点 Q ,连接 PQ ,依题意可得 MP ∥NQ ,且 MP=NQ ,即 MNQP 是 A 平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1, ∴ AC = BF = CP a BQ , , 1 2 1 a , 即 2 CP = BQ = a , 2 ∴ MN = PQ = = = (a - 2 ) 2 + 1 (0 < a < 2) 2 2 (2)由(1)知: 当a = 时,MN = 2 , 即M , N 分别移动到AC , BF 的中点时 2 MN 的长最小,最小值为 2 2 (3)取 MN 的中点 G ,连接 AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN , ∴∠AGB 即为二面角α的平面角。又 AG = BG = 定理有 ,所以由余弦 D 4 E A F 2 2 2 (1 - a ) 2 + ( a ) 2 2 2 6 M B O N = F

立体几何中的动态问题

立体几何中的动态问题 [解题策略] 立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜. 1.去掉枝蔓见本质——大道至简 在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键. 例1 如图1,直线l⊥平面α,垂足为O.正方体ABCD-A1B1C1D1的棱长为2.点A 是直线l上的动点,点B1在平面α内,则点O到线段CD1中点P的距离的最大值为________. 图1 答案2+2 解析从图形分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆, 从而OP≤OQ+QP=1 2AB 1 +2=2+2, 当且仅当OQ⊥AB1,且点O,Q,P共线时取到等号,此时直线AB1与平面α成45°角. 2.极端位置巧分析——穷妙极巧

在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案. 例2 在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面 AEF 与平面ACD 所成二面角的正弦值的取值范围是________. 答案 ? ?? ?? 23,1 解析 本例可用极端位置法来加以分析. 先寻找垂直:记O 为△ACD 的中心,G 为OC 的中点,则BO ⊥面ACD ,EG ⊥面ACD .如图2,过点A ,E ,G 的平面交直线BD 于点F .此时,平面AEF 与平面ACD 所面二面角的正弦值为1. 由图形变化的连续性知,当点F 在直线BD 的无穷远处时,看成EF 和BD 平行,此时平面AEF 与平面ACD 所成二面角最小(如图3),其正弦值为 2 3 . 图2 图3 综上可知,平面AEF 与平面ACD 所成二面角的正弦值的取值范围为? ???? 23,1. 3.用法向量定平面——定海神针 在解决立体几何中的“动态”问题时,有关角度计算问题,用法向量定平面,可将线面角或面面角转化为线线角. 例3 在长方体ABCD -A 1B 1C 1D 1中,已知二面角A 1-BD -A 的大小为π 6 ,若空间有一条直线l 与直线CC 1所成的角为π 4 ,则直线l 与平面A 1BD 所成角的取值范围是________. 答案 ???? ?? π12, 5π12

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

高考数学压轴题突破之立体几何五种动态问题和解题绝招

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 中高考数学名师张芙华?2018-01-2906:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略

类型一立体几何中动态问题中的角度问题 【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题 【指点迷津】求两点间的距离或其最值。一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值。 类型三立体几何中动态问题中的面积、体积问题 【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD的距离的最大值,选择公式,可求最值。 类型四立体几何中动态问题中的轨迹问题 类型五?立体几何中动态问题中的翻折、旋转问题

相关文档
最新文档