抽样与抽样分布概论(PPT 43页)
合集下载
统计学--抽样与抽样分布 ppt课件

1 n
n i 1
xi ,
S2
1 n 1
n i 1
( xi
x )2
n
1
1
n i 1
xi 2
nx
2
,
S
1 n 1
n i 1
( xi
x)2 .
ppt课件
11
抽样方法
ppt课件
12
概率抽样
(pro概b率ab抽il样ity也s叫am随机pl抽in样g),是指按随机原则抽取样本。
ppt课件
14
简单随机抽样
(simple random sampling)
1. 从总体N个单位(元素)中随机地抽取n个单位作为 样本,使得总体中每一个元素都有相同的机会(概 率)被抽中
2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便
随机原则,就是排除主观意识的干扰,使总体每一个单位都有 一定的概率被抽选为样本单位,每个单位能否入选是随机的。
特点
能有效地避免主观选样带来的倾向性误差(系统偏差), 使样本资料能够用于估计和推断总体的数量特征,而且 这种估计和推断得以建立在概率论和数理统计的科学理 论之上
可以计算和控制抽样误差,说明估计的可靠程度。
(1) 样本均值 :
X
1 n
n i 1
Xi,
(2)
样本方差:
S2
1 n 1
n i 1
(Xi
X )2
1 n 1
抽样和抽样分布详解演示文稿

一、简单随机抽样 二、分层抽样 三、系统抽样 四、整群抽样 五、多阶段抽样
第18页,共83页。
简单随机抽样
(simple random sampling)
——对总体单位逐一编号,然后按随机原则 直接从总体中抽出若干单位构成样本
应用
仅适用于规模不大、内部各单位 标志值差异较小的总体
是最简单、最基本、最符合随机原则, 但同时也是抽样误差最大的抽样组织形式
生产性投资情况。
第一阶段:从该省所有县中抽取5个县 第二阶段:从被抽中的5个县中各抽4个乡 第三阶段:从被抽中的20个乡中各抽5个村 第四阶段:从被抽中的100个村中各抽10户
样本n=100×10=1000(户)
第25页,共83页。
抽样组织方式的选择 在实际工作中,选择适当的抽样组织方 式主要应考虑:
例:总体群数R=16 样本群数r=4
A D
E
B F G
CM N
J
LP KO
HI
LP HD
样本容量
n nd np nl nh
简单、方便,能节省人力、物力、财 力和时间,但其样本代表性可能较差
第24页,共83页。
多阶段抽样
—— 指分两个或两个以上的阶段来完成抽取 样本单位的过程
例:在某省100多万农户抽取1000户调查农户
样本抽样分布特征的证明
设从总体中抽出的样本为x1,x2,x3…xn ,由于是重复抽样, 每个xi都是从总体中随机抽出的,都是与总体同分布的随机
变量,并且是相互独立的。总体的平均数为,方差为 2,则:
E(
x)
E(
x1 +x2
x3 n
xn
)
1 n
[E(x1)+E(x2 )+E(x3)
第18页,共83页。
简单随机抽样
(simple random sampling)
——对总体单位逐一编号,然后按随机原则 直接从总体中抽出若干单位构成样本
应用
仅适用于规模不大、内部各单位 标志值差异较小的总体
是最简单、最基本、最符合随机原则, 但同时也是抽样误差最大的抽样组织形式
生产性投资情况。
第一阶段:从该省所有县中抽取5个县 第二阶段:从被抽中的5个县中各抽4个乡 第三阶段:从被抽中的20个乡中各抽5个村 第四阶段:从被抽中的100个村中各抽10户
样本n=100×10=1000(户)
第25页,共83页。
抽样组织方式的选择 在实际工作中,选择适当的抽样组织方 式主要应考虑:
例:总体群数R=16 样本群数r=4
A D
E
B F G
CM N
J
LP KO
HI
LP HD
样本容量
n nd np nl nh
简单、方便,能节省人力、物力、财 力和时间,但其样本代表性可能较差
第24页,共83页。
多阶段抽样
—— 指分两个或两个以上的阶段来完成抽取 样本单位的过程
例:在某省100多万农户抽取1000户调查农户
样本抽样分布特征的证明
设从总体中抽出的样本为x1,x2,x3…xn ,由于是重复抽样, 每个xi都是从总体中随机抽出的,都是与总体同分布的随机
变量,并且是相互独立的。总体的平均数为,方差为 2,则:
E(
x)
E(
x1 +x2
x3 n
xn
)
1 n
[E(x1)+E(x2 )+E(x3)
抽样误差与抽样分布概述ppt(48张)

表 4-2 样本量为 25 从 N(72.5,6.32)共随机抽取 10 个样本
样
样 样 最最抽
本
本 本 小大样
编
n=9
均 标 值值误
号
数准
差
差
1 65 68 68 76 84 6480 63 84 72.4 8.6 63 84 -0.10
2 74 61 65 75 67 78 72 70 67 69.9 5.4 61 78 -2.60
每次抽取10000个样本并计算各自的样本均 数
以10000个样本均数作为一个新的样本制作 频率密度分布图
72 74 74 73 66 67 80 73 64 75 78 69
4 74 80 76 64 66 71 82 78 67 79 56 64 6571.6 7.1 56 83-0.90
69 74 64 66 62 75 71 80 83 77 76 71
5 75 72 79 74 76 65 80 71 74 75 79 74 7373.5 4.4 65 80 1.00
72 81 60 76 77 69 73 74 76 71 76 79
10 79 82 75 64 77 74 73 67 67 84 79 78 7373.9 6.8 60 84 1.40
80 83 78 76 60 80 79 72 72 66 61 69
6
x
1 10
10 i 1
xi
1 10
7 74 67 71 77 70 61 66 70 73 69.9 4.8 61 77 -2.60
8 62 73 80 64 84 66 74 69 76 72.0 7.4 62 84 -0.50
9 73 68 62 73 73 69 76 71 68 70.3 4.1 62 76 -2.20
抽样与抽样分布PPT-PPT精品文档

特点:
(1)遵循随机原则; (2)推断被调查对象的总体特征; (3)计算推断的准确性与可靠性。 江西财经大学统计学院
1
统计学
所谓抽样
第三章
抽样和抽样分布
抽签 编号 摇号 随机数字表
75 18 26 53 86
90 85 89 64 97
96 18 48 81 06
91 63 57 95 12
江西财经大学统计学院
7
统计学
第三章
抽样和抽样分布
[例]10人年龄资料如下。N=10 n=3。 人: A B C D E F G H I J 年龄: 5 8 12 40 42 46 48 70 72 76 分类: N1=3 N2=4 N3=3 N=10 1=2.87 2=3.16 3=2.49 =8.52 n1=? n2=? n3=? n=3 1、等额分配:n1= n2= n3= 1 2、等比例分配:n1/N1= n2/N2= … = n/N ∵ n/N =0.3 ∴n1/N1=0.3 n1=0.3×N1=0.3 ×3= 0.9 3、最优分配: i/ =ni/Ni ∵ 1/ =2.87/8.52=0.34 ∴ n1/N1=0.34 n1=0.34×3 =1.02 江西财经大学统计学院 8 二、抽样误差的计算
Z x
2
t 概率度 抽样平均误差 x n
s替代 不知 ˆ替代 p P不知
江西财经大学统计学院
3
x x x tx x x x tx
统计学
第三章
抽样和抽样分布
[例]某公司出口一种名茶,规定每包规格重量不低于150g,现用
x x P { x } 1 F ( t ) x x x x P { x x } 1 F ( t ) x x x x