实验四三相电路功率的测量(精)

实验四三相电路功率的测量(精)
实验四三相电路功率的测量(精)

实验四三相电路功率的测量

一、实验目的

1. 掌握用一瓦特表法、二瓦特表法测量三相电路有功功率的方法

2. 进一步熟练掌握功率表的接线和使用方法二、原理说明

1.对于三相四线制供电的三相星形联接的负载(即 Y o 接法 ,可用一只功率表测量各相的有功功率 P A 、 P B 、 P C ,则三相功率之和(ΣP =P A +P B +P C 即为三

相负载的总有功功率值。这就是一瓦特表法,如图 32-1所示。若三相负载是对称的,则只需测量一相的功率, 再乘以 3 即得三相总的有功功率。

图 32-1 图 32-2

2. 三相三线制供电系统中,不论三相负载是否对称,也不论负载是 Y 接还是△接,都可用二瓦特表法测量三相负载的总有功功率。测量线路如图 32-2所示。若负载为感性或容性, 且当相位差φ>60°时, 线路中的一只功率表指针将反偏 (数字式功率表将出现负读数 , 这时应将功率表电流线圈的两个端子调换(不能调换电压线圈端

子 ,其读数应记为负值。而三相总功率∑ P=P1+P2(P 1、 P 2本身不含任何意义。

3. 对于三相三线制供电的三相对称负载,可用一瓦特表法测得三相负载的总无功功率 Q ,测试原理线路如图 32-3所示。

图示功率表读数的 3倍,即为对称三相电路总的无功功率。除了

此图给出的一种连接法(I U 、 U VW 外,还有另外两种连接法,即接成图 32-3 (I V 、 U WU 或(I W 、 U UV 。

四、实验内容

1. 用一瓦特表法测定三相对称 Y 0接以及不对称 Y 0接负载的总功率ΣP 。实验按图 32-4线路接线。线路中的电流表和电压表用以监视该相的电流和电压, 不要超过功率表电压和电流的量程。

经指导教师检查后,接通三相电源, 调节调压器输出, 使输出线电压为 220V ,按表 32-1的要求进行测量及计算。

首先将三只表按图 32-4接入 B 相进行测量, 然后分别将三只表换接到 A 相和C 相, 再

进行测量。

2. 用二瓦特表法测定三相负载的总功率

(1 按图 32-5接线,将三相灯组负载接成 Y 形接法。

U V N

U 1

V 1

W

图 32-5

经指导教师检查后,接通三相电源,调节调压器的输出线电压为 220V ,按表 32-2的内容进行测量。

(2 将三相灯组负载改成△形接法,重复 (1的测量步骤, 数据记入表 32-2中。

五、实验注意事项

1. 每次实验完毕,均需将三相调压器旋柄调回零位。每次改变接线,均需断开三相电源,以确保人身安全。

六、预习思考题

1. 复习二瓦特表法测量三相电路有功功率的原理。

2. 测量功率时为什么在线路中通常都接有电流表和电压表?

七、实验报告

1. 完成数据表格中的各项测量和计算任务。比较一瓦特表和二瓦特表法的测量结果。

2. 总结、分析三相电路功率测量的方法与结果。

3. 心得体会及其它。

实验三功率放大电路实验报告

实验三功率放大电路实验 报告 The following text is amended on 12 November 2020.

集成功率放大电路一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1)测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz的正弦频率信号;Vi置最小 (Vi<20mV);在放大器的输出端街上示波器和毫伏表,逐渐增大Vi, 使示波器显示出最大不失真波形,用毫伏表测出电压有效值mox O V,则最大不失真输出功率为: (2)测量功率放大器的效率 : 在保持Vo为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc的输出电流E I,此时电源Vcc提供的直流输出功率为: 注:此处Vcc应为正负电源之差。 功率放大器的效率为:

集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC、-V EE) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E

3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。 负载电阻R L=时, 按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E 和效率η,填表。 实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下: 实验注意事项: 功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放; I时刻监视电流表防止电流超过电流表在测量最大不失真电压时的E 量程; V时,一定使输入电压Vi置最小,然后逐渐测量最大不失真电压max O 慢慢增大输入Vi 。

交流电路参数的测定实验报告

交流电路参数的测定实验报告 一、实验目的: 1.了解实际电路器件在低频电路中的主要电磁特性,理解理想电路与实际电路的差异。明确在低频条件下,测量实际器件哪些主要参数。 2.掌握用电压表、电流表和功率表测定低频元件参数的方法。 3.掌握调压变压器的正确使用。 二、实验原理: 交流电路中常用的实际无源元件有电阻器、电感器和电容器。 在低频情况下,电阻器周围的磁场和电场可以忽略不计,不考虑其电感和分布电容,将其看作纯电阻。可用电阻参数来表征电阻器消耗电能这一主要的电磁特征。 电容器在低频时,可以忽略引线电感,忽略其介质损耗和漏导,可以用电容参数来表征其储存和释放电能的特征。 电感器的物理原型是导线绕制成的线圈,导线电阻不可忽略,在低频情况下,线匝间的分布电容可以忽略。用电阻和电感两个参数来表征。 交流电流元件的等值参数R、L、C可以用专用仪器直接测量。也可以用交流电流表、交流电压表以及功率表同时测量出U、I、P,通过计算获得,简称三表法。 本实验采用三表法,由电路理论可知,一端口网络电压电流及 将测量数据分别记入表一、表二、表三。每个原件各测三次,求其平均值。 三、仪器设备

1.调压变压器 2.交流电压表 3.功率表 4.交流电流表 5.电感电容电阻。 四、注意事项: 1.测量电路的电流限制在1A以内。 2.单相调压器使用时,先把电压调节手轮调在零位,接通电源后再从零位开始升压。每做完一项实验随手把调压器调回零再断开电源。 六、报告要求: 根据测试结果,计算各元件的等效参数,并与实际设备参数进行比较。 五、思考题 若调压变压器的输出端与输入端接反,会产生什么后果,

测量小灯泡的电功率实验报告

测量小灯泡的电功率实验报告 学校姓名实验日期同组人 【实验目的】测量小灯泡的电功率。 【实验要求】分别测量小灯泡在实际电压等于额定电压、略大于额定电压、小于额定电压时的电功率。 【实验原理】根据公式,测出灯泡和,就可以计算出小灯泡的电功率。 【实验电路图】根据实验的目的和原理设计实验电路图,并按电路图连接实物。 【实验器材】小灯泡、电压表、电流表、滑动变阻器、电源、开关、导线。 【实验步骤】 1.按电路图连接实物电路。 2.合上开关,调节滑动变阻器,使小灯泡两端电压为额定电压,观察小灯泡发光情况,记录电流表、电压表示数。 3.调节滑动变阻器,使小灯泡两端电压为额定电压值的1.2倍,观察灯泡发光情况,记录电流表、电压表示数。 4.调节滑动变阻器,使小灯泡两端电压低于额定电压,观察并做记录。 5.分析实验数据,论证交流得出实验结论。 6.评估交流,断开开关,整理实验器材,写实验报告单。 【注意事项】 1.按电路图连接实物电路时注意:

(1)连接过程中开关应始终处于断开状态。 (2)根据小灯泡的额定电压值,估计电路中电流、电压的最大值,选择合适的量程,并注意正负接线柱的连接及滑动变阻器正确接法。 (3)连接好以后,每个同样检查一遍,保证电路连接正确。 2.合上开关前,应检查滑动变阻器滑片是否在最大值的位置上,若不是,要弄清楚什么位置是最大位置并调整。 3.调节滑动变阻器的过程中,要首先明白向什么方向可以使变阻器阻值变大或变小,怎么调能使小灯泡两端电压变大或变小。 4、电压表、电流表使用前要调零,读数时要认清仪表所选量程和对应的分度值,读数时视线要正对刻度盘指针所指位置。 [实验结论] 由公式P=IU计算小灯泡的功率。(将计算结果填入表中,通过分析和比较得出) 实验数据(记录)表格:小灯泡的额定电压是 [结论] (1)不同电压下,小灯泡的功率。实际电压越,小灯泡功率越。 (2)小灯泡的亮度由小灯泡的决定,越大,小灯泡越亮。

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

实验十五 交流电路功率的测量

实验十五 交流电路功率的测量 实验目的 1.学习交流电路中功率及功率因数的测定方法; 2.加深对功率因数概念的理解,进一步了解交流电路中电阻、电容、电感等元件消耗功率的特点; 3.学习一种提高交流电路功率因数的方法. 仪器和用具 负载(铁芯电感为 40W 日光灯镇流器,阻值为 300Ω左右的变阻器)、电动型瓦特表(低功率因数瓦特表W -D34型额定电流为 0.5A 、1A ,额定电压为 150V 、300V 、600V ,功率因数20.φcos =)、铁磁电动型交流电压表、电磁型电流表、电容(0.5μF 、l μF 、2μF 、4μF 、10F 各一个)、调压变压器、示波器、音频信号发生器.-MF 20型晶体管万用表、双刀双掷开关两个等. 实验原理 一、交流功率及功率因数 在直流电路中、功率就是电压和电流的乘积,它不随时间改变.在交流电路中,由于电压和电流都随时间变化,因而它们的乘积也随时间变化,这种功率称为瞬时功率p . 设交流电路中通过负载的瞬时电流i 为 t ωI i sin m = (C.13.1) 负载两端的瞬时电压u 为 ()φt ωU u +=sin m (C.13.2) 则瞬时功率 ()()φt ωt ωI U i u p +=?=sin sin m m (C.13.3) 平均功率 R 图C.13.1

()()()[]???+-?=+==T T T dt φt ωφI U T dt φt ωt ωI U T pdt T P 0m m 0 m m 02cos cos 2 1 1sin sin 11 其中第二项积分为零,所以 φUI φI U dt φI U T P T cos cos 2 1 cos 211m m 0m m ===? (C.13.4) 平均功率不仅和电流、电压的有效值有关,并和功率因数φcos 有关. 由图C.13.1所示可知 I U φUI P R ==cos (C.13.5) 故平均功率也就是电路中电阻上消耗的功率,也称有用功率.由于电压与电流有效值的乘积称为总功率,也称视在功率S ,即 UI S = (C.13.6) 故 φUI φ UI S P cos cos == (C.13.7) 功率因数φcos 就是电源送给负载的有用功率P 和总功率S 的比值,它是反映电源利用率大小的物理量. 测量功率的方法很多,最常用的是瓦特表,此外示波器也可测量功率(示波器适用于测量高频情况下较小的功率). 二、瓦特表测量功率及功率因数 1.瓦特表测功率 本实验采用电动型瓦特表,电动型瓦特表的测量机构示意图如图C.13.2所示. 电动型瓦特表内部测量机构有两个线圈,线圈A 为固定线圈,它与负载串联而接人电路,通过固定线圈的电流就是负载电 流,因此称固定线圈A 为瓦特表的电流线圈;线圈B 为动圈,线圈本身电阻很小,往往与扩程用的高电阻相串联,测量时与负载相并联,动圈支路两端的电压就是负载电压1U ,因此图C.13.2 电动型仪表测量机构示意图 1.固定线圈;2.可动线圈;3、4.支架; 5.指针;6.游丝

测量电功率的实验

测量电功率的实验 测量电功率实验的目的和原理: 1. 实验目的: 1)测定小灯泡额定电压下的电功率; 2)测定小灯泡略高于额定电压下的电功率; 3)测定小灯泡略低于额定电压下的电功率。 2. 实验原理:P=UI 应测量的物理量:小灯泡两端的电压U,和通过的电流I。 3. 实验方法:伏安法 伏安法测小灯泡的电功率:

伏安法测电阻与测功率的异同点: 补充: (1)伏安法测功率。滑动变阻器的作用是保护电路和控制灯泡两端电压。多次测量的目的是为了测量不同电压下小灯泡的实际功率,不是为了多次测量求平均值。所以设计的表格中没有“平均功率”这一栏。 (2)伏安法测定值电阻时,滑动变阻器的作用是保护电路和改变电路中的电流和电阻两端电压,因电阻阻值不变,这是为了多测几组对应的电压、电流值,多测几次电阻值,用多次测量求平均值来减小误差。 (3)伏安法测小灯泡电阻时,由于灯丝电阻大小与温度有关。在不同的工作状态下,

小灯泡温度不同。灯丝电阻也不同。因此测灯丝电阻时滑动变阻器的作用是为了保护电路和改变电路中的电流,不是为了多次测量求平均值。 “伏安法测功率”中常见故障及排除: “伏安法测功率”是电学中的重要实验。同学们在实验过程中,容易出现一些实验故障,对出现的实验故障又束手无策,因此,能够找出实验故障是做好实验的“法宝”。下面就同学们在实验中易出现的故障从以下几方面进行分析。 1.器材选择不当导致故障 故障一:电流表、电压表指针偏转的角度小。 [分析原因]①电压表、电流表量程选择过大;②电源电压不高。 [排除方法]选择小量程,如果故障还存在,只有调高电源电压。实验中若电表指针偏转的角度太小,估读电流或电压时由于视觉造成的误差将增大。为了减小实验误差,选择量程时既不能使电表指针超过最大刻度,又要考虑到每次测量时应该使电表指针偏过刻度盘的中线。 2.器材连接过程中存在故障 故障二:电压表、电流表指针反向偏转。 [分析原因]两表的“+”“-”接线柱接反了,当电流从“一”接线柱流入时,指针反向偏转,甚至出现指针打弯、损坏电表的情况。 [排除方法]将两电表的“+”“-”接线柱对调。 故障三:滑动变阻器的滑片滑动时,电表示数及灯泡亮度无变化。 [分析原因]滑动变阻器连接有误,没有遵循“一上一下”的接线原则,把滑动变阻

三相电路功率的计算.

三相电路功率的计算. 1. 对称三相电路功率的计算 (1)平均功率 设对称三相电路中一相负载吸收的功率等于Pp=UpIpcosφ,其中Up、Ip 为负载上的相电压和相电流。则三相总功率为: P =3Pp =3UpIpcosφ 注意: 1) 上式中的φ为相电压与相电流的相位差角( 阻抗角) ; 2) cosφ为每相的功率因数,在对称三相制中三相功率因数: cosφA=cosφB=cosφC= cosφ; 3) 公式计算的是电源发出的功率( 或负载吸收的功率) 。 当负载为星形连接时,负载端的线电压,线电流,代入上式中有: 当负载为三角形连接时,负载端的线电压,线电流,代入上式中有: (2)无功功率 对称三相电路中负载吸收的无功功率等于各相无功功率之和: (3)视在功率 (4)对称三相负载的瞬时功率 设对称三相负载A 相的电压电流为: 则各相的瞬时功率分别为: 可以证明它们的和为: 上式表明,对称三相电路的瞬时功率是一个常量,其值等于平均功率,这是对称三相电路的优点之一,反映在三相电动机上,就得到均衡的电磁力矩,避免了机械振动,这是单相电动机所不具有的。

2. 三相功率的测量 (1) 三表法 对三相四线制电路,可以用图11.15 所示的三个功率表测量平均频率。若负载对称,则只需一个表,读数乘以3 即可。 图11.15 图11.16 (2) 二表法 对三相三线制电路,可以用图11.16 所示的两个功率表测量平均频率。测量线路的接法是将两个功率表的电流线圈串到任意两相中,电压线圈的同名端接到其电流线圈所串的线上,电压线圈的非同名端接到另一相没有串功率表的线上。显然除了图11.16 的接线方式,还可采用图11.17 的接线方式。这种方法称为两瓦计法。 图11.17 两瓦计法中若W1 的读数为P1 , W2 的读数为P2 ,可以证明三相总功率为:P = P1 + P2 证明:设负载是Y 连接,根据功率表的工作原理,有: 所以 因为代入上式有: 所以两个功率表的读数的代数和就是三相总功率。由于△联接负载可以变为Y 型联接,故结论仍成立。 注意: 1)只有在三相三线制条件下,才能用二瓦计法,且不论负载对称与否; 2)两块表读数的代数和为三相总功率,每块表单独的读数无意义; 3)按正确极性接线时,二表中可能有一个表的读数为负,此时功率表指针反转,将其电流线圈极性反接后,指针指向正数,但此时读数应记为负值; 4)负载对称情况下,有:

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

交流电路元件参数的测定

深圳大学实验报告 课程名称:电路与电子学 实验项目名称:交流电路元件参数的测定 学院:信息工程学院 专业:无 指导教师:吴迪 报告人:王文杰学号:2013130073 班级:信工02 实验时间:2014/5/22 实验报告提交时间:2014/5/26 教务部制

一、实验目的与要求: 1.正确掌握交流数字仪表(电压表、电流表、功率表)和自耦调压器的用法。 2.加深对交流电路元件特性的了解。 3.掌握交流电路元件参数的实验测定方法。 二、方法、步骤: 电阻器、电容器和电感线圈是工程上经常使用的基本援建。在工作频率不高的条件下,电阻器、电容器可视为理想电阻和理想电容。一般电感线圈存在较大电阻,不可忽略,故可用一理想电感和理想电阻的串联作为电路模型。 电阻的阻抗为:Z=R 电容的阻抗为:Z=jX C=-j(1/ωC) 电感线圈的阻抗为:Z=r+ jX L=r+jωL=|Z|∠ 电阻器、电容器、电感线圈的参数可用交流电桥等一起测出,若手头没有这些设备,可大减一个简单的交流电路,通过测阻抗算出元件参数值。 1.三表法 利用交流电流表、交流电压表、相位表(或功率表)测量元件参数称为三表法、这种方法最直接,计算简便。实验电路如图1所示。元件阻抗为: 对于电阻 对于电容 对于电感 由已知的电源角频率ω,可进一步确定元件参数。

2.二表法 若手头上没有相位表或功率表,也可只用电流表和电压表测元件参数,这种方法称为二表法。由于电阻器和电容器可看作理想元件,已知其阻抗为0或者90度,故用二表法测其参数不会有什么困难。 二表法测电感线圈参数如图2所示。途中的电阻R是一个辅助测量元件。由图2课 件,根据基尔霍夫电压定律有,而,其中和为假想电压,分别代表线圈中等效电阻r和电感L的端电压。各电压相量关系如图3所示,忧郁U、U1、U2可由电路中测的,故途中小三角△aob的各边长已知,再利用三角形的有关公式(或准确地画出图3,由图3直接量的)求出bc边和ac边的长度,即电压U r 和U L可求。最后,由式及已知的电源角频率ω可求得线圈的参数。 3.一表法 只用一个交流电压表测量元件参数的方法称为一表法,其原理与二表法相同,不同

三相电路功率的测量方法

三相电路功率的测量方法 F0403020班 5040309585方轶波 摘要:三相电路功率的测量是三相电路分析的重要内容,本文按三相三线制和三相四线制分类,较详细地讨论了三相电路功率测量的接线问题,总结了两表法和三表法各自的适用范围及功率表读数在不同接线方式下的物理意义,指出了它们的联系与区别。 关键词:三相电路,功率测量 0 引言 本文将围绕测量三相电路功率的两表法和三表法的原理和接线方法进行讨论,指出它们之间的联系与区别,希望对能对同学的理解以及总结归纳有所帮助。 1 对称三相电路功率的测量 1.1 对称三相电路功率的测量 对称三相电路即三相电源对称、三相负载均衡的三相电路。以下分别从三相四线制和三相三线制两种情况讨论。 对三相四线制系统,测三相平均功率的接线如图 1 所示。它的接线特点是每个功率表所接的电压均是以中线N 为参考点,三个功率表W AN,W BN 和W CN 的读数分别为P AN,P BN 和P CN,可用式(1)表示。 P AN=U AN I A cos? P BN=U BN I B cos?(1) P CN=U CN I C cos? 图1 三表法测三相四线制三相负载平均功率的接线示意图 三相的总功率为P = P CN+P BN+P AN。三个表的读数均有明确的物理意义,即P AN,P BN 和P CN 分别表示A 相、B 相和C 相负载各自吸收的平均功率。这就是三表法。这种接线方法是最容易理解的。 实际上,三表法测三相功率不止图 1 所示的一种接线方式,另外还有三种接线方式,如图2 所示,分别称作共A,共B 和共C 接法(与此相对应,图1 中的接法可称作共中线N 接法)。对应每一种接线中的三个表的读数的代数和均表示三相负载吸收的总功率(后面将给出证明)。实际上,因为是对称三相电路,有i N =0 ,所以图2(a),(b)和(c)中的W NA , W NB W NC的读数必为零,在测量时可不接,此时的三表法便简化为两表法。可见,此时的两表法是三表法的特例。当然,这里单个表的读数没有明确的物理意义。 上述四种三表法的接线的特点是每组接线中的三个表所接电压均以同一根线为参考点,即分别是共A, B, C 或N,而电流则分别是非参考线中的电流。功率表接线的极性端如图中所示。

哈工大 三相电路的测量讲解

电 路 实 验 实验三 三相电路的测量 —基于三相电能及功率质量分析仪测量 一、 实验目的 1. 验证三相电路的星形连接与三角形连接电路的线电压、相电压及线电流、相电流之间的关系 2. 了解负载中性点位移的概念、中线的作用和一相电源断线后对负载的影响。 3. 掌握三相负载星形联接的三相三线制、三相四线制接法和三角形联接的接法。 4. 掌握三相电路电压、电流、有功功率、无功功率和视在功率的测量方法。 5. 掌握三相电能及功率质量分析仪的使用方法。 二、简述实验原理 1. 三相电源和负载可接成星形(又称“Y”接)或三角形(又称"△"接)。当三相对称负载作Y 形联接时,线电压l U 是相电压P U l I 等于相电流P I ,即 l P U =,l P I 三相四线制接法中,流过中性线的电流0O I =,这种情况下可以省去中性线,变成三相三 线制接法。 当对称三相负载作△形联接时,有 l P I =,l P U U = 2. 不对称三相负载作Y 联接时,应采用三相四线制接法,而且中性线必须牢固联接,以保证三相不对称负载的每相电压维持对称。倘若中性线断开,会导致三相负载电压的不对称。致使负载轻的那一相的相电压过高,使负载容易遭受损坏;负载重的那一相的相电压过低,使负载不能正常工作,这对三相照明负载表现得尤为明显。 3. 当不对称负载作△联接时,l P I =,但只要电源的线电压l U 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 4.FLUKE 434-Ⅱ三相电能质量分析仪提供了广泛且强大的测量功能,利用434 三相电能质量分析仪可以测量有效值和峰峰值电压和电流、频率、功耗、有功功率、无功功率、视在功率、功率因数、高达50次的谐波等;并具有示波器波形和示波器相量功能,可随时显示所测电压及电流的波形及相量。 5. 电压/电流/频率的测量需要在分析仪的面板菜单选项中选择“电压//电流//频率”。进入测量界面后,即可读出相电压、线电压和电流的有效值,测量界面中显示的数字是当前值,这些值

实验三功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。 负载电阻R L = 时, 按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。 峰值 I E P O P E η

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

《测量电功率》观课报告

《测量电功率》观课报告 我选择以教师把控课堂,学生动手实验能力、合作学习、交流讨论得出结论为观察角度观察了李敏老师《测量电功率》一课。现将观课情况总结汇报如下: 李老师在本节课程的设置上旨在让学生知道了电功率的概念、单位以及电功率的计算公式P=I·U的基础上,实际测量小灯泡的电功率,让学生参与到科学探究中来,让学生充分讨论,制定探究的方案,自主完成探究实验活动,经历探究过程,使学生理解小灯泡在不同的电压下会有不同的电功率,只有在额定电压下的电功率为额定功率,小灯泡才正常发光。 通过实验,学生对所发生的现象有了更深刻的印象并很好地理解了灯的亮度可以用它的实际功率来表示。教师在授课过程中注意到了重点突出,本节教材的重点是使学生会用实验的方法来测量小灯泡的 电功率。 1、在让学生知道了电功率的概念、单位 以及电功率的计算公式P=I·U的基础上, 逐步让学生找到所需的仪器:电源、导线、 开关、滑动变阻器、电流表、电压表、小灯 泡(用电器)。 2、提示:让学生画出实验电路图 3、引导:(1)根据小灯泡的额定电压 选择几节干电池串联、电流表、电压表的量程等注意事项。(2)学

生在连接实际电路的过程中的注意事项:教师巡视提醒(如开关处于什么状态、滑动变阻器的接法、闭合开关前滑动片的位置等等)。 4、管理好学生,使学生自己操作又不损坏器材,是上课教师的成功典范,是值得学习的地方。因为多年以来在做这个实验时,很多学生总是把小灯泡烧坏。以上几点反应了教师把控课堂的能力超群。 本节教材的难点有两个,其一是为什么要进行多次测量,其二是为什么说“平均功率”是没有意义的。本次探究实验,要求学生独立设计实验方案,讨论实验方案,交流分析数据,在操作中去发现问题并通过交流来解决问题,独立完成实验报告,新课标所倡导的自主学习、合作学习的精神,在本节教材中得到了充分的体现。以学生为主体,是新课标的基本理念之一。让学生自主设计实验方案,甄选方案,锻炼学生设计实验的能力。学生把在操作过程遇到的困难和发现的问题能及时记录下来,培养学生实事求是的科学态度,使他们养好严谨治学的习惯。体现在: 1、学生分工明确、积极配合、人人有事做、气氛热烈,充分体现了合作学习。 2、放手让学生去做,学生不但学到了实际操作的经验,具体观察到实际电压U实与U额的关系联系到灯泡的亮度。

三相电路的功率测量

三相电路的功率测量 一、实验目的 1.学习并验证用“二瓦计“法测量三相电路的有功功率 2.学习并应用“三表跨相”法测量三相电路的无功功率 二、实验原理与说明 1.三相电路的有功功率的测量 (1)三瓦计法:三相负载所吸收的有功功率等于各相负载有功功率之和。在对称三相电路中,因各相负载所吸收有功功率相等,所以可以只用一只单相功率表测出一相负载的有功功率,再乘以3即可;在不对称三相电路中,因各相负载所吸收的有功功率不等,就必须测出三相各自的有功功率,再相加即可。三瓦计法适用于三相四线制电路。三瓦计法是将三只功率表的电流回路分别串入三条线中(A、B、C线),电压回路的“*”端接在电路回路的“*”端,非“*”端共同接在中线上。三只功率表读数相加就等于待测的三相功率。 (2)二瓦计法:对于对称电路中的三线三相制电路,或者不对称三相电路中,因均是三相三线制电路,所以可以采用两只单相功率表来测量三相电路的总的有功功率。接法如图13-1所示。两只功率表的电路回路分别串入任意两条线中(图示为A、B线),电压回路的“*”端接在电路回路的“*”端,非“*”端共同接在第三相线上(图示为C线)。两只功率表读数的代数和等于待测的三相功率。 图13-1 二表法测有功功率 2.三相电路无功功率的测量 (1)对称三相电路无功功率的测量

(a )一表跨相法:即将功率表的电流回路串入任一相线中(如A 线),电压回路的“*”端接在按正相序的下一相上(B 相),非“*”端接在下一相上(C 相),将功率表读数乘以3即得对称三相电路的无功功率Q 。 (b )二表跨相法:接法同一表跨相法,只是接完一只表,另一只表的电流回路要接在另外两条中任一条相线中,其电压回路接法同一表跨想法。将两只功率表的读数之和乘以 3/2即得三相电路的无功功率Q 。 (c )用测量有功功率的二瓦计法计算三相无功功率:按式子213()Q P P =-算出。 (2)不对称三相电路的无功功率测量 三表跨相法:三只功率表的电流回路分别串入三个相线中(A 、B 、C 线),电压回路接法同一表跨相法。最后按式子123()/3Q W W W =++算出。 三表跨相法也可适用于三相四线制电路。 三、实验内容 1.测量三相星形(无中线)负载的有功功率和无功功率 (1)按图13-2电路正确接线。接通电源前,各调压器的手柄应置于输出电压为0的位置,接通电源后,调节其输出电压为120V ,并维持不变。 (2)根据测量要求测量各种情况下有功功率和无功功率。将各自对应数据记入表一中。 (3)注意不同情况下测有功功率时二瓦计法和三瓦计法的异同,验证二者得出的三相电路的有功功率是否相同,并验证用二瓦计法和三表跨相法得出的三相电路无功功率是否相同。 图13-2 负载星形联结的功率测量 2.测量三相三角形联接的有功功率和无功功率

测量小灯泡的电功率》实验报告单

九年级物理实验报告 班级 :九年( )班 姓名: ________ 日期:____年____月___日 实验名称:《测量小灯泡的电功率》 一、实验目的:用_______测量小灯泡的电功率 二、实验器材: 电源、开关、导线(若干条)、小灯泡、_________、 ________、 ____________。 三、实验原理:_______ 四、 实验电路图:画在右边的方框内 五、实验步骤: (1)按电路图连接电路。注意连接过程中, 开关应该是__________的,滑动变阻器的滑片应该移至阻值_________处。 (2)检查电路无误后,闭合开关S ,移动滑动变阻器的滑片,使小灯泡的两端的电压等于额定电压,读出电流表的示数,观察小灯泡的发光情况,并填入对应的表格中。 (3)继续移动滑片,使小灯泡的两端的电压高于额定电压,读出电流表的示数,观察小灯泡的发光情况,并填入对应的表格中。 (4)继续移动滑片,使小灯泡的两端的电压低于额定电压,读出电流表的示数,观察小灯泡的发光情况,并填入对应的表格中。 ( 5)断开开关,整理器材。 六、实验数据记录表格: (U 额=2.5v ) 七、分析与论证(结论) 当U 实=U 额 时, P 实 P 额 ,正常发光 当U 实>U 额时, P 实 P 额 ,比正常发光更亮

当U 实

音频功率放大电路实验报告

. . . . 实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把

9. 三相交流电路功率测量

三相交流功率的测量 一、实验目的 1. 掌握用一瓦特表法、二瓦特表法测量三相电路有功功率与无功功率的方法 2. 进一步熟练掌握功率表的接线和使用方法 二、原理说明 1.对于三相四线制供电的三相星形联接的负载(即Y o接法),可用一只功率表测量各相的有功功率P A、P B、P C,则三相负载的总有功功率ΣP=P A+P B+P C。这就是一瓦特表法,如图9-1所示。若三相负载是对称的,则只需测量一相的功率,再乘以3 即得三相总的有功功率。 图9-1 图 9-2 2. 三相三线制供电系统中,不论三相负载是否对称,也不论负载是Y接还是△接,都可用二瓦特表法测量三相负载的总有功功率。测量线路如图9-2所示。若负载为感性或容性,且当相位差φ>60°时,线路中的一只功率表指针将反偏(数字式功率表将出现负读数), 这时应将功率表电流线圈的两个端子调换(不能调换电压线圈端子),其读数应记为负值。而三相总功率∑P=P1+P2(P1、P2本身不含任何意义)。 除图9 -2的I A、U AC与I B、U BC接法外,还有I B、U AB与I C、U AC以及I A、U AB与I C、U BC两种接法。 3. 对于三相三线制供电的三 相对称负载,可用一瓦特表法测得 三相负载的总无功功率Q,测试原 理线路如图9-3所示。 图示功率表读数的倍,即为 对称三相电路总的无功功率。除了 此图给出的一种连接法(I U、U VW) 外,还有另外两种连接法,即接成图 9-3 (I V、U UW)或(I W、U UV)。

三、实验设备 四、实验内容 1. 用一瓦特表法测定三相对称Y0接以及不对称Y0接负载的总功率ΣP。实验按图9-4线路接线。线路中的电流表和电压表用以监视该相的电流和电压,不要超过功率表电压和电流的量程。 图 9-4 经指导教师检查后,接通三相电源,调节调压器输出,使输出线电压为220V,按表9-1的要求进行测量及计算。

相关文档
最新文档