发电厂电气部分课程设计.doc

发电厂电气部分课程设计.doc
发电厂电气部分课程设计.doc

一煤矸石电厂基础资料

1.1电厂基本情况

煤矸石电厂装机为两台高温高压循环流化床锅炉配两台50MW冷凝式汽轮机2*50MW发电机;采用发电机变压器单元接线,发电机出口电压为6KV,经变压器升压为110KV送入电网;常用高压工作电源由发电机主回路经限流电抗器接引,发电机出口电压为6KV,发电机至110KV升压变压器的引线采用封闭母线。

1.2环境条件

该所位于某乡镇,有公路可达,海拔高位86米,土壤点阻系数P=25000,土壤地下0.8米处温度20摄氏度;该地区年最高温度40摄氏度,最低温度-10摄氏度,最热月7月份其最高气温月平均34.0摄氏度,最冷月1月份其最低气温月平均值为1摄氏度;年雷暴雨日数为58天。

1. 3电源情况

厂用高压工作电源由发电机主回路经限流电抗器接引,启动备用电源由110KV系统电源降为6KV取得。

二设计说明书

电力系统要求发电厂的电能生产要安全、可靠、节能,技术经济合理,能够长期稳定的向电力系统输送电能。此设计有2*50MW的两台发电机,本文根据2*50MW煤矸石发电厂的实际情况,并适当考虑生产的发展。按供电的基本要求,首先对该电厂的原始资料进行分析处理:首先对厂用电的接线方式的初步选择,电厂容量的大概估算等;其次,根据电厂的容量进行厂用变压器的初步选择,并对其相关的参数进行计算;再者,因为该发电机的机压为6KV与该电厂的6KV 高压母线为同一等级,所以不用设厂用高压变压器,为了限制发电机出口处的短路电流,所以这里采用分列电抗器,待选完厂用变压器以及分离电抗器后,开始进行短路计算,断路器的选择以及电动机的选择和校验做准备。

此发电厂共包含四个车间五类负荷,它们包括6KV厂用高压负荷、0.4KV主厂房厂用负荷、电除尘车间的常用负荷、气力除灰车间的厂用负荷以及化水车间的厂用负荷。在主厂房内(按1#机组说明)共需厂用低压变压器两台,它们的

容量是相同的都为1000KVA,型号为SL7—1000/6,在电除尘车间,由于常用负荷的容量减小,故变压器的容量也相对减小,该车间内我们采用的变压器型号为SL7—800/6,在气力除灰车间,我们采用的变压器的型号为SL7—250/6,在化水车间我们采用的变压器的型号为SL7—400/6。

选择厂用的低压变压器型号后,对发电机出口处的分裂电抗器的选择,在这次厂用电的设计当中我们采用的分裂电抗器的型号为FKL6—2*1000—6,它的额定电压为6KV,额定电流为2000A,电抗百分数为6%,动稳定电流为42.5KA,热稳定电流为40.4KA。

短路电流的计算,由于厂用的6KV高压母线上接的全是常用的高压负荷,且我们在计算短路电流的时候不考虑负载效应的影响,故在该设计的厂用电的短路计算中,我们只选取了五个点进行短路计算,它们是厂用6KV母线处的短路计算,主厂房内0.4KV母线处的短路计算,化水车间的短路计算,电除尘车间的短路计算和气力除灰车间的短路计算。经过短路计算之后,我们发现,短路电流最大的短路母线为主厂房内的0.4KV低压厂用母线,这其实也在意料之中,因为计算时,我们选取了统一的容量,而电压为各级电压的平均值,在6KV母线上的基准电流小,而在0.4KV母线上的基准电流大,且0.4KV主厂房内的变压器容量较大电抗较小,最终使得主厂房内0.4KV 的母线上的短路电流最大。

对相关的设备进行选型。在小型发电厂内一般有两个电压等级,6KV和0.4KV,6KV由于设备容量大,一般均为一类负荷,故可靠性要高,一般选用手推车式断路器,而厂用的0.4KV,由于母线电压等级较低,一般采用抽屉式空气自动开关。在本次设计中我们采用的手推车式断路器的型号为ZN85—6/1250—25,它的额定电压为6KV,额定电流为1250A,短路关合电流为80KA。我们采用的低压开关为GCS型低压抽出式低压开关柜,它的额定电压为400V,额定电流为小于等于4KA,母线的额定短时峰值电流为176KA。

三设计计算书

3.1 各车间的计算负荷

(1)高压厂用负荷的计算

负荷表如下:

6KV厂用高压负荷

电除尘负荷计算表

化水车间负荷计算表

气力除灰系统计算表

各车间单机组总负荷:

高压厂用负荷的计算容量为: 6876KVA

主厂房低压负荷的计算容量为:1192.4KVA

电除尘车间的计算容量为:666.72KVA

化水车间的负荷计算容量为:356.56KVA

气力除灰车间的计算容量为:193.64KVA

3.2、厂用低压变压器的选择

6kv母线与0.4kv母线之间变压器(T1,T2)的选择

分析:T1,T2分别互为备用为主厂房的0.4KV母线供电,当其中一台发生故障时,另一台至少应该承担起所用负荷的70%的负荷。设S为T1对应所供母线上所有负荷容量,则

T1变压器容量为:ST1=70%S=834.68KVA

T1,T2选用SL7—1000/6

T3,T4的选择

分析:T3,T4分别互为备用为1#机组的静电除尘车间母线供电,当其中一台发生故障时,另一台应该承担起所有负荷。

容量为:ST3=S=666.72KVA

故T1,T2选用SL7—800/6

T5的选择:

T5和T5’是由1#和2#机组共同承担的为气力除灰车间供电的变压器,应该互为明备用,即当其中一台发生故障时,另一台应该承担起所有负荷。

气力除灰车间的容量为:193.64KVA

故T5选用SL7—250/6

T6的选择:

T6和T6’是由1#和2#机组共同承担的为化水车间供电的变压器,应该互为明备用,即当其中一台发生故障时,另一台应该承担起所有负荷。

化水车间的容量为:356.56KVA 故T5选用SL7—400/6

由于1#机组和2#机组的容量以及接线的方式都相同,故对1#机组所选的变压器对2#机组同样适用。 3.3 发电机端分裂电抗器的选择

分析:按1#机组进行选择。由于1#机组所承担的负荷为1#机组的所有厂用负荷,包括高压厂用负荷,和低压厂用负荷。而他们的总的容量为9285.32KVA ,故所选的分裂电抗器的容量至少应该大于或等于该值。而分裂电抗器的额定电压应为发电机的机端电压,即6KV 。

在本次设计当中,我们采用的分裂电抗器的型号为FKL6—2*1000—6,它的额定电压为6KV ,额定电流为2000A ,电抗百分数为6%,动稳定电流为42.5KA ,热稳定电流为40.4KA 。

3.4 短路电流的计

取全厂的额定容量为s=100MVA 、 Un=Vav 2.4.1 计算厂用低压变压器的阻抗

=??=2

2

2

,1100%av B n K V S

S U U X 0.045*100=4.5 =??=2

2

4

.3100%av

B n K V S S U U X 0.045*100/0.8=5.6 =??=2

25100%av B n K V S

S U U X 0.04*100/0.25=16 =??=2

2

6100%av B n K V S

S U U X 0.04*100/0.4=10 3.0200

63100100%6=???=

K MVA X L 2.4.2、1#机组各处短路时的等效电路

如图,当1处发生短路时的等效电路

由图可知,当一处发生短路时的短路阻抗为 58.01=X 则有 KA KV

MVA V S I B

B d 6.9631003=?=

?=

KA X I I d

6.161

==

KA I i sh 2.4255.2== 当2处发生短路时的等效电路如图

由图可知,当二处发生短路时的短路阻抗为 6.22=X 则有 KA KV

MVA V S I B

B d 3.1444.031003=?=

?=

KA X I I d

5.552

==

KA I i sh 5.14155.2== 当3处发生短路时的等效电路如图:

由图可知,当三处发生短路时的短路阻抗为 3.33=X 则有 KA KV

MVA V S I B

B d 3.1444.031003=?=

?=

KA X I I d

4.423

==

KA I i sh 2.10855.2== 当四处发生短路时的等效电路如图:

由图可知,当四处发生短路时的短路阻抗为 6.104=X 则有 KA KV

MVA V S I B

B d 3.1444.031003=?=

?=

KA X I I d

7.134

==

KA I i sh 7.3455.2== 当五处发生短路时的等效电路如图:

由图可知,当四处发生短路时的短路阻抗为 6.165=X

则有 KA KV

MVA V S I B

B d 3.1444.031003=?=

?=

KA X I I d

7.85

== KA I i sh 3.2255.2== 2.4.3、对所选的分裂电抗器进行校验如下: 电压波动校验:

()0018.16.07.05.06.03.006.01100%12

111=??-??-=?????????? ??-?-=Sinb I I f SinB I I X U U N N L 同理

()[]998.06.03.05.06.07.006.012=??-??-=U 短路时残压及电压偏移校验如下:

()%7.94947.0%1006.07.05.01606.0%100100%%2

1==???-?=????

? ???-?=

SinB I I f I I X U N N K L ()()%1404.1%1006.07.0165.106.0%1001100%%2

1==??-??=????

? ??-?+?=

SinB I I I I f X U N N K L 经过校验可知我们所选的分裂电抗器时合理的 3.5 母线导体的选择 发电机端母线选择

已知 S=9285.3KVA U=6KV 则 A I 5.893max = 故选择矩形导体,截面积为23.663mm ?的导体 厂用6KV 高压母线的选择

由于负荷的平均分配,则可认为7.446max =I 故选择矩形导体,截面积为2450mm ?的导体 主厂房0.4KV 母线选择

已知 S=596.2KVA U=0.4KV 则 A I 5.860max = 故选择矩形导体,截面积为23.663mm ?的导体

电除尘车间母线的选择

已知 S=55.92KVA U=0.4KV 则 A I 7.80max = 故选择矩形导体,截面积为2450mm ?的导体 气力除灰车间母线的选择

已知 S=193.64KVA U=0.4KV 则 A I 5.297m ax = 故选择矩形导体,截面积为2450mm ?的导体 化水车间母线的选择

已知 S=356.56KVA U=0.4KV 则 A I 7.514max = 故选择矩形导体,截面积为2450mm ?的导体 3.6 电动机的选择及自启动校验 2.6.1 厂用电动机的选择

(1)型式的选择

(2)容量的选择 S N P P >

根据厂用电动机的选择原则所选的电动机的型号见附表 2.6.2 电动机的自启动校验(电压校验)

(1)1#机组6KV 母线所有电动机的自启动校验

校验的等效电路如下:

3.26

.

207848.076805*=??==CosB nS P K S t m av m

()70.065.088.03

.206.0111**0**

1->=?+=+=m t S X U U

由校验的结果可知厂用6KV 高压母线上的电机是可以自启动的。

(2)1#机组电动机经高压分裂电抗器和低压变压器串联自启动母线电压的校验

校验的等效电路图如下:

i)

高压厂用母线的校验 14.16

.207848.0276806.207848.023*********=??+???=+=t t H

S S CosB nS P K S ()70.065.093.014

.106.011

1*1*0*1*->=?+=+=H t S X U U ii)

低压厂用母线的校验

95.21000

8.04.4725222*=??==CosB nS P K S t L

05.0045,01.1100

%1.12

*=?=?=K t U X

55.069.095

.205.018.01*2*1*2

*>=?+=+=L t S X U U 由以上的电动机的自启动校验计算可知,该电厂的点击是可以安全启动的。 注:图中S0为高压厂用负荷,S1为电除尘、化水、气力除灰车间负荷及变压器,S2为主厂房0.4KV 母线负荷。 3.7 设备的选型 断路器的选择方法 (1) 型式的选择

(2) 额定电压及额定电流的选择 (3) 开断电流的选择 (4) 短路关合电流的选择 (5) 短路热稳定和动稳定校验

根据短路计算的结果,可以进行断路器等开关电器的选择,所选断路器的型号清单表:

1)厂用高压设备清单

2)0.4kv厂房设备正常工作电流如下:

3)电除尘车间设备清单

4)化水车间设备清单

5)气力除灰车间设备清单

7)6kv母线清单

电气控制课程设计题目模板

电气控制课程设计 题目

实验指导书 《电气控制与仪表课程设计》 课程设计 学院: 学号: 专业( 方向) 年级: 学生姓名: 福建农林大学机电工程学院电气工程系 9 月 1 日 第一节概述 要能够胜任电气控制系统的设计工作, 按要求完成好设计任务,

仅仅掌握电气设计的基础知识是不够的, 必须经过重复的实践, 深入生产现场, 不断积累经验。课程设计正是为这一目的而安排的一个实践性教学环节, 它是一项初步的工程训练。经过集中1~2周时间的设计工作, 了解一般电气控制系统的设计要求、设计内容和设计方法。课程设计题目不要太大, 尽可能取自生产中实用的电气控制装置。 本指导书主要讨论课程设计应达到的目的、要求、设计内容、深度及完成的工作量。并经过实例介绍, 进一步说明课程设计的设计步骤。 本指导书还收集了较多的设计参考题, 可作为课程设计练习题, 直接供设计者自由选取。命题结合生产需要, 具有真实感。设计中应严格要求, 力求做到图纸资料规范化。 电气设计包含原理设计与工艺设计两个方面, 不能忽视任何一面, 在高等工科应用型人才培养中特别要重视工艺设计。由于初次从事设计工作, 工艺要求不能过高, 不能面面俱到。设计工作量、说明书等要求与毕业设计应有较大的区别, 电气控制课程设计属于练习性质, 不强调设计结果直接用于生产, 个人的工艺设计, 只要求完成其中的一部份内容。 课程设计原则上应做到一人一题和自由选题。在几个人共选一个课题的情况下, 各人的设计要求及工艺设计内容, 绘图种类, 应有所区别。要强调独立完成, 以学生自身的独立工作为主, 教师指导帮助为辅。在设计工程中, 适当组织针对性参观, 并配以多种形式

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

工厂供电课程设计示例

工厂供电课程设计示例

工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示 2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,

日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例)

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MV A。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为 1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为25°C,当地主导风向为东北风,年雷暴日数为20 。

发电厂课程设计(DOC)

长沙理工大学城南学院 教师批阅发电厂电气主系统 课程设计(论文)任务书 城南学院(系)电气工程及其自动化专业1104 班 题目3×200MW大型火电厂电气主接线设计 任务起止日期;2014 年06月16 日~ 2013年06 月27 日 学生姓名学号 指导教师

教师批阅 一绪论 电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源 形式。提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨 进高科技时代又出现了太阳能发电,磁流体发电等。但对于大多数发展中国 家来说,火力发电仍是今后很长一段时期内的必行之路。 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的 环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不 可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力 的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电 技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国 家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年 审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8 月份,审批项目213个,装机容量168546MW,同比增长420%。如果这些火 电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长 145%。 2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。当 月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1 个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环 比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长 10.9%。2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长 15.8%,增速高于2005年同期3.3个百分点。 随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加 大力度调整火力发电行业的结构。

热力发电厂课程设计

学校机械工程系课程设计说明书热力发电厂课程设计 专业班级: 学生姓名: 指导教师: 完成日期:

学校机械工程系 课程设计评定意见 设计题目:国产660MW凝汽式机组全厂原则性热力系统计算 学生姓名:专业班级 评定意见: 评定成绩: 指导教师(签名): 2010年 12 月9日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

《热力发电厂》课程设计任务书 一、课程设计的目的(综合训练) 1、综合运用热能动力专业基础课及其它先修课程的理论和生产实际知识进行某660MW凝气式机组的全厂原则性热力系统的设计计算,使理论和生产实际知识密切的结合起来,从而使《热力发电厂》课堂上所学知识得到进一步巩固、加深和扩展。 2、学习和掌握热力系统各汽水流量、机组的全厂热经济指标的计算,以及汽轮机热力过程线的计算与绘制方法,培养学生工程设计能力和分析问题、解决问题的能力。 3、《热力发电厂》是热能动力设备及应用专业学生对专业基础课、专业课的综合学习与运用,亲自参与设计计算为学生今后进行毕业设计工作奠定基础,是热能动力设备及应用专业技术人员必要的专业训练。 二、课程设计的要求 1、明确学习目的,端正学习态度 2、在教师的指导下,由学生独立完成 3、正确理解全厂原则性热力系统图 4、正确运用物质平衡与能量守恒原理 5、合理准确的列表格,分析处理数据 三、课程设计内容 1. 设计题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算) 2. 设计任务 (1)根据给定的热力系统原始数据,计算汽轮机热力过程线上各计算点的参数,并在h-s图上绘出热力过程线; (2)计算额定功率下的汽轮机进汽量Do,热力系统各汽水流量Dj、Gj; (3)计算机组和全厂的热经济性指标; (4)绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。 3. 计算类型 定功率计算 4. 热力系统简介 某火力发电厂二期工程准备上两套660MW燃煤气轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为Geg公司的亚临界压力、一次中间再热660MW凝汽式汽轮机。 全厂的原则性热力系统如图1-1所示。该系统共有八级不调节抽汽。其中第一、第二、第三级抽汽分别供高压加热器,第五、六、七、八级抽汽分别供低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了留置式蒸汽冷却器,上端差分别为-1.7oC、0oC、-1.7oC。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5oC。

发电厂课程设计

1原始材料的分析 1.1系统总体与负荷资料分析 变电站的作用可以简要的概括为一下五点变换电压等级、汇集电流、分配电能、控制电能的流向、调整电压。为保证电能的质量以及设备的安全,在变电站中还需进行电压调整、潮流,电力系统中各节点和支路中的电压、电流和功率的流向及分布,控制以及输配电线路和主要电工设备的保护。 (一)建设性质和规模 本所位于城市边缘,供给城,市和近郊工业、农业及生活用电,其性质为区域变电站。 电压等级:110/35/10KV 线路回数:110KV 近期2回,远景发展2回;35KV 近期4回,远景发展2回;10KV 近期9回,远景发展2回。 (二)电力系统接线图 S1=200MVA 2=0.6 图1.1 系统接线图 (三) 负荷资料 (负荷同时率取0.8,线损取5%,平均功率因数取0.8)

表1.1负荷资料 四、设计任务

1、总体分析与负荷分析; 2、主变台数、容量、型式选择; 3、各电压等级电气主接线方案设计(两个方案选其一);、 4、短路电流计算(110KV 、35KV 、10KV ); 5、电气设备选择(母线、断路器、隔离开关、互感器配置、各电压等级配电装置、避雷器)。 五、报告容 1、课程设计报告(格式及容按照要求); 2、电气主接线图(AutoCAD 绘制)。 2 主变台数、容量、型式选择 2.1 主变压器台数确定 由原始材料知主变压器有S1和S2两台 (1)绕组接线组别的确定 绕组连接方式的原则,主变压器接线组别一般都采用YN ,d11常规接线。 2.2主变的容量计算 max 1 1 (/cos /cos )(1%)m n t i i j j i j S k p p ??===++?∑∑ (2.1) 351212 12+S +++ =6.1 6.17.2*2 3.3 3.8933.79.kv S S S S S S MV A =+++++=煤煤备备乡乡 10112 ++++++ ++++ =9.62*2108.97.3109.62 6.887.5 5.13*289.7.kv S S S S S S S S S S S S MV A =++++++++=工业工业2工业3工业4工业5工业6工业7工业8郊区备用备用max 0.8*(89.733.79)*(15%)103.7.S MV A =++= ()max 1(0.6~0.7)N n S S -≥ (2.2) max (0.6~0.7)62.22~72.59.N S S MV A ≥≥

热力发电厂课程设计报告dc系统

东南大学 热力发电厂课程设计报告 题目:日立250MW机组原则性热力系统设计、计算和改进 能源与环境学院热能与动力工程专业 学号 姓名 指导教师 起讫日期 2015年3月2日~3月13日 设计地点中山院501 2015年3月2日

目录 1 本课程设计任务 (1) 2 ******原则性热力系统的拟定 (2) 3 原则性热力系统原始参数的整理 (2) 4 原则性热力系统的计算 (3) 5 局部热力系统的改进及其计算 (6) 6 小结 (8) 致谢 (9) 参考文献 (9) 附件:原则性热力系统图

一本课程设计任务 1.1 设计题目 日立250MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析。 1.2 计算任务 1、整理机组的参数和假设条件,并拟定出原则性热力系统图。 2、根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s 图上绘出蒸汽的气态膨胀线。 3、对原始热力系统计算其机组内效率,并校核。 4、确定原则性热力系统的改进方案,并对改进后的原则性热力系 统计算其机组内效率。 5、将改进后和改进前的系统进行对比分析,并作出结论。 1.3设计任务说明 对日立MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析,我的任务是先在有DC系统情况下通过对抽汽放热量,疏水放热量,给水吸热量等的计算,求出抽汽份额,从而用热量法计算出此情况下的汽机绝对内效率(分别从正平衡和反平衡计算对比,分析误差)。然后再在去除DC系统的情况下再通过以上参量计算出汽轮机绝对内效率(也是正平衡计算,反平衡校核对比)。最后就是对两种情况下的绝对内效率进行对比,看去除DC系统后对效率有无下降,下降多少。

低压配电系统的工厂供电课程设计知识分享

低压配电系统的工厂供电课程设计 姓 名 学 号 院、系、部 电气工程系 班 号 完成时间 2012年6月18日 ※※※※※※※※※ ※ ※ ※ ※ ※ ※ 2009级 工厂供电课程设计

设计任务书 一、设计内容: (1)由总降压变电所的配出电压和用电设备的电压要求,参考国际规定的标准电压等级确定车间变电所的电压级别。 (2)计算负荷采用需用的系数法,计算出单台设备支线、用电设备组干线和车间变电所低压母线和进线的计算负荷。 (3)由计算负荷结果,确定补偿方式,计算出补偿容量,选择电容器个数和电容柜个数。 (4)按对负荷可靠性要求,确定车间变电所电气主接线。 (5)按车间变电所低压母线的计算负荷,确定变电器的容量和台数。 (6)导线截面积的选择,支线和干线按发热条件选择,进线电缆按经济电缆密度选择,按允许发热,电压损耗进行校验。 (7)短路电流计算,绘制计算电路和等值电路图,确定短路点,计算出各短路点短路电流值及短路容量。 (8)车间变电所低压母线按发热条件选择,按短路的热合力校验。 (9)按国家规定的标准符号和图符,用CAD画出车间变电所的电气主接线图、车间配电系统和配电平面图。 二、设计条件: (1)机加车间符合全部为三级负荷,对供电可靠性要求不高。

(2)车间平面布置图如下图所示 (3)车间电气设备各细表如下表所示 设备代号设备名称台数单台容量(kW)效率功率因数启动倍数备注1~3 普通车床C630-1 3 7.6 0.88 0.81 6 4 内圆磨床M2120 1 7.2 5 0.88 0.83 6 5,16 砂轮机S3SL-300 2 1.5 0.92 0.82 6.5 6 平面磨床M7130 1 7.6 0.88 0.82 6 7~9 牛头刨床B6050 3 4 0.87 0.82 6 11,12 普通车床C6140 2 6.125 0.89 0.81 6 13~15 普通车床C616 3 4.6 0.90 0.81 6 17,18 单臂龙门刨床B1012 2 67.8 0.86 0.81 2.5 19 龙门刨床B2016 1 66.8 0.86 0.81 2.5 20,21 普通车床C630 2 10.125 0.88 0.81 6 22 立式钻床Z535 1 4.625 0.90 0.80 6 23 立式车床C534J1 1 80 0.86 0.80 3 24 摇臂钻床Z35 1 8.5 0.87 0.82 5.5

发电厂电气部分课程设计报告

《发电厂电气部分》课程设计报告凝气式火力发电厂一次部分设计 班级: 学号: 姓名:

1 引言 近年来,随着国家电网的迅速发展,国内外火电机组的容量也越来越多。人民用电量的日益增加促使发电量的不断增加。在世界的能源不断消耗,促进了新能源的发展,但是目前新能源还不能完全代替传统一次能源的发电,在我国火力发电任然占据主导地位。 火力发电厂简称火电厂,是利用煤炭、石油或天然气作为燃料生产电能的工厂,其能量的转换过程是由燃料的化学能到热能再到机械能最后转换为电能。本设计是凝气式火电厂一次部分的设计。通过对电气主接线的设计和短路电流的计算。更加经济可靠的选用相关的一次设备,做到更好利用一次能源,与故障时对电力系统的保护。

2 主接线方案设计 2.1 原始资料分析 2.1.1 原始资料 发电机组4100?,85.0cos =?,U=10.5KV ,次暂态电抗为0.12,年利用率为5000小时以上,厂用电率6%,高压侧为220kv 、110KV ,其中110V 出线短有5回出线与系统相连接输送的功率为120MW ,220KV 的出线有5回与系统相连接输送的功率为200MW 。中压侧35KV,3回出线将功率送至5KM 内的用户综合负荷40MW ,。发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。系统容量取3500MVA 。 2.1.2资料分析 根据设计任务书所提供的资料可知,该火电厂为中型火电站,由于其年利用率在5000小时以上,所以该发电厂一般给I ,II 类负荷供电,必须采用供电较为可靠的接线形式。其地形条件限制不严格,但从节省用地考虑,尽可能使其布置紧凑,便于运行管理。发电厂的总容量与系统容量之比相对较小,所以对于35KV 及110KV 可以采取相对简单的接线方式。 2.2 电气主接线设计的依据 电气主接线设计是火电厂电气设计的主体。它与电力系统、枢纽条件、电站动能参数以及电站运行的可靠性、经济性等密切相关,并对电气布置、设备选择、继电保护和控制方式等都有较大的影响,必须紧密结合所在电力系统和电站的具体情况,全面地分析有关影响因素,正确处理它们之间的关系,通过技术经济比较,合理地选定接线方案。 电气主接线的主要要求为: 1、可靠性:衡量可靠性的指标,一般是根据主接线型式及主要设备操作的可能方式,按一定的规律计算出“不允许”事件的规律,停运的持续时间期望值等指标,对几种接线形式的择优。 2、灵活性:投切发电机、变压器、线路断路器的操作要可靠方便、调度灵活。 3、经济性:通过优化比选,工程设计应尽力做到投资省、占地面积小、电能损耗小。 2.3主接线的方案拟定 方案一:根据对原始资料的分析可知系统有4个电压等级分别是发电厂到母线的10KV 电压和经过升压给周边用户使用的35KV 的电压以及提供给系统的110KV 和

组合机床电气控制课程设计1

组合机床电气控制课程设计专业:机械设计制造及其自动化 班级: 学号: 姓名: 指导老师: 湖南工业大学 2011年6月11日

目录 1绪论 (3) 2设计方案 (4) 2.1 左、右两动力头进给电机 (4) 2.2电动机控制电路 (5) 2.3液压泵电动机 (5) 2.4液压动力滑台控制 (6) 2.5主电路及照明电路 (7) 2.6保护与调整环节 (8) 2.7继电器电气原理简图 (10) 4 I/O分配表 (12) 5组合机床电气控制电路图 (14) 6课程设计的具体内容 (15) 6.1单循环自动工作 (15) 6.1.1单循环自动工作循环图 (15) 6.1.3单循环自动工作梯形图 (16) 6.2左铣单循环工作 (18) 6.2.1左铣单循环功能表 (18) 6.2.2左铣单循环梯形图 (19) 6.3右铣单循环工作 (21) 6.3.1右铣单循环梯形图 (21) 6.4公用程序 (23) 6.5回原位程序 (23) 6.6手动程序 (24) 6.7 PLC梯形图总体结构图 (24) 6.8面板设计 (25) 7系统调试 (26) 8设计心得 (27) 9参考文献 (28)

1绪论 对于机械—电气结合控制的组合机床,电气控制系统起着重要的神经中枢作用。传统的组合机床采用的继电器—接触器控制系统,接线复杂、故障率高、调试和维护困难。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 组合机床结构示意图 组合机床工作循环图 组合机床采用两个动力头从两个侧面分别加工,左、右动力头的电动机均为2.2kw,

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

工厂供电课程设计

本科课程设计题目: 院(系)信息科学与工程学院 专业电气工程及其自动化 届别 学号 姓名 指导老师 华侨大学教务处印制 2013年4月21号

目录 第1章概述....................................................................................................错误!未定义书签。第2章负荷计算与负荷等级确定...........................................................................错误!未定义书签。第3章变压器选择及主接线设计...........................................................................错误!未定义书签。第4章短路电流计算 . (10) 第5章电气设备选择 (17) 第6章课设体会及总结 (20) 参考文献 (21) 附录 (22)

第1章概述 通过这个供配电系统的设计,能对工厂供电的知识有一个系统的认识和更深入的了解,对书中的很多理论知识能更深入了解,能将书中的知识都系统化。本次课程设计是对南阳防爆厂降压变电所的电气设计,设计的主要内容包括: (1)负荷计算与负荷等级确定; (2)变压器选择与主接线设计; (3)短路电流计算; (4)电气设备选择; 后有此次课程设计的体会及总结和参考文献. 由于设计者知识掌握的深度和广度有限,很多知识都只能参考网上知识,所以本设计尚有不完善的地方,敬请老师批评指正! 设计任务如下: (一)设计题目 南阳防爆厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定一次回路方案,最后定出设计说明书。 (三)设计依据 1.工厂总平面图,如图(1)所示。 2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为4000h,日最大负荷持续时间为10h。该厂除铸造车间、锻压车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表(1)所示。 3.供电电源情况:按照工厂与当地供电部门签订的供用协议规定,本厂可由附近一条35kV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ—120导线为等边三角形排列,线距为1m;干线首端(即电力系统的馈电变电电站)距离本厂约20km,该干线首端所装高压断路器300MV A,此断路器配备有定时限过电流保护和电流速断保护,其定时限过电流保护整定的动作时间为1.5s。为满足工厂二级负荷的要求,可采用联络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度达100km,电缆线路总长度达80km。 4.气象资料本厂所在地区的年最高气温为37 ℃,年平均气温为24℃,年最低气温为-8℃,年最热月平均最高气温为33℃,年最热月平均气温为26℃,年最热月地下0.8处平均温度为25℃。当地主导风向为东北风,年雷暴是数为20。 5.工厂最大负荷时的功率因数不得低于0.92。 主要参考资料 1 刘介才主编供配电技术北京:机械工业出版社 2 张华主编电类专业毕业设计指导北京:机械工业出版社 3 王荣藩编著工厂供电设计与指导天津:天津大学出版社

电气控制课程设计PLC课程设计

电气控制课程设计PLC课程设计

电气控制课程设 计 说明书 学院机械工程学院 年级08级专业机械工程及自动化(机电工程)

目录 第一篇PLC模拟-----------------------------------------------------------------------------------------1任务一:PLC控制自动门仿真实验-----------------------------------------------------------------------------1 1.任务说明-------------------------------------------------------------------------------------------------------------------1 2.主电路图-------------------------------------------------------------------------------------------------------------------4 3.PLC接线图----------------------------------------------------------------------------------------------------------------4 4.输入输出列表----------------------------------------------------------------------------------------------------------5 5.流程图-----------------------------------------------------------------------------------------------------------------------5 6.梯形图

热力发电厂课程设计

1000 MW凝汽式发电机组全厂原则性热力系统的设计 学院:交通学院 专业:热能与动力工程 姓名:高广胜 学号: 1214010004 指导教师:李生山 2015年 12月

1000MW 热力发电厂课程设计任务书 1.2设计原始资料 1.2.1汽轮机形式及参数 机组型式:N1000-26.25/600/600(TC4F ) 超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压 额定功率:P e =1000MW 主蒸汽参数:P 0=26.25MPa ,t 0=600℃ 高压缸排气:P rh 。i =6.393MPa ,t rh 。I =377.8℃ 再热器及管道阻力损失为高压缸排气压力的8%左右。 MPa 5114.0MPa 393.608.0p rh =?=? 中压缸进气参数:p rh =5.746MPa ,t rh =600℃ 汽轮机排气压力:P c =0.0049MPa 给水温度:t fw =252℃ 给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。 1.2.2锅炉型式及参数 锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉 过热蒸汽参数:p b =27.56MPa ,t b =605℃ 汽包压力:P drum =15.69MPa 额定蒸发量:D b =2909.03t/h 再热蒸汽出口温度:603t 0 .rh b =℃ 锅炉效率:%8.93b =η 1.2.3回热系统 本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。 汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。 1.2.4其它小汽水流量参数 高压轴封漏气量:0.01D 0,送到除氧器; 中压轴封漏气量:0.003D 0,送到第七级加热器; 低压轴封漏气量:0.0014D 0,送到轴封加热器; 锅炉连续排污量:0.005D b 。 其它数据参考教材或其它同等级汽轮机参数选取。 1.3设计说明书中所包括的内容 1.原则性热力系统的拟定及热力计算; 2.全面性热力系统设计过程中局部热力系统的设计图及其说明; 3.全面性热力系统过程中管道的压力、工质的压力、温度、管道的大小、壁厚的计算; 4.全面性热力系统的总体说明。

工厂供电课程设计示例(完整资料).doc

【最新整理,下载后即可编辑】 工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 厂 房编号厂房 名称 负 荷 类 别 设备 容量 (KW) 需要 系数 Kd 功率 因数 cosφ P30 (KW) Q30 (Kvar) S30 (KVA) I30 (A) 1 铸造 车间 动 力 300 0.3 0.7 照 6 0.8 1.0

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为

发电厂课程设计

燕山大学 课程设计说明书 题目枢纽变电站电气主接线 学院(系):电气工程学院 年级专业: 10级电力2班 学号: 100103030083 学生姓名:刘巨华 指导教师:吴杰钟嘉庆 教师职称:教授副教授 燕山大学课程设计(论文)任务书

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日 <<发电厂电气主系统>>课程设计原始资料题目:枢纽变电站电气主接线

(1) 类型:枢纽变电所 (2) 距接网地点 300KM (3) 利用小时数:6500小时/年 2. 接入系统及电力负荷情况 (1) 500KV 电源进线 4回, 与其它变电所的联络线2回,当取基准容量为100MVA 时,系统归算到500kv 母线上 011.0*=s x . 系统装机容量6000MW (2) 220KV 电压等级: 出线 8回,220KV 最大负荷400MW ,最小负荷300MW,85.0=?COS ,a h T MAX /4500=. (3) 35KV 电压等级: 出线 6回,35KV 最大负荷200MW ,最小负荷150MW, 85.0=?COS ,a h T MAX /4500=. 每回额定容量40MW (4) 主保护动作时间s t pr 1.01 =,后备保护时间s t pr 4.22= (5)站用变按KVA 5002?考虑. 3.环境因素:海拔小于1000米,环境温度025c ,母线运行温度0 80c 4.无功功率补偿目标9 5.0=?COS 目录 1. 设计任务及要求……………………………………………………………………………2 2. 设计原始资料……………………………………………………………………………….3 3. 主变压器的选择 (5)

电气控制与plc课程设计 自动洗车机控制设计

电气控制与PLC 课程设计 题目: 自动洗车机控制设计 院系名称:电气工程学院 专业班级:自动F0805 学生姓名:周起伟 学号: 200848280525 指导教师:王艳芳 设计地点:中2-211 设计时间: 2011.07.04~2011.07.10 成绩: 指导老师签名: 日期:

目录 1系统描述及其要求 (1) 1.1系统描述 (1) 1.2系统要求 (2) 2硬件设计 (2) 2.1硬件选择 (2) 3 软件设计 (5) 3.1系统的整体程序流程图 (5) 3.2梯形图 (6) 4 系统调试分析 (12) 4.1 硬件调试 (12) 4.2 软件调试 (13) 4.3 整机调试 (13) 设计心得 (14) 参考文献 (15)

1系统描述及其要求 1.1系统描述 此文的主要思路是是基于PLC技术的自助洗车机设计。其中把PLC作为主要控制器,将各种继电器采集的信息经过一定的控制算法后,通过PLC的I/O口来控制继电器的闭合达到自动控制的目的。洗车机的主运动是左右循环运动由左右行程开关控制,同时不同循环次序伴随不同的其它动作,如喷水、刷洗、喷洒清洁剂及风扇吹干动作等。因每次动作的开始都是碰到左行程开关才实现,所以运用计数器记录左极限信号脉冲的次数从而控制上述辅助运动按要求依次动作。系统还采用了复位设计,如在洗车过程中由其它原因使洗车停止在非原点的其它位置,则需要手动对其进行复位,到位时复位灯亮,此时才可以启动,否则启动无效,洗车机经启动后可自动完成洗车动作后自行停止,也可在需要时手动停止。 此设计系统由三菱公司生产的FX2N系列的PLC、人机交互和串口通信、数码管、指示灯和电源部分组成。系统的总设计原理图如图1.1所示。 图1.1 系统总设计原理图 PLC :该部分的功能不仅包括对各种开关信息的采集、处理,还包括对执行单元的控制。PLC是整个系统的核心及数据处理核心。 人机交互和串口通信:人机交互的目的是为了提高系统的可用性和实用性。主要是按键输入。 输出显示:通过按键输入进入相应进程,而输出显示则是显示金额。串口通信的主要功能是完成PLC与上位机(比如电脑)的通信,便于进行系统的维修、改进和升级,为将来系统功能的扩展做好基础工作。 电源部分:本部分的主要功能是为PLC提供适当的工作电压,同时也为其他模块提供电源。如显示屏、按键等。

热力发电厂课程设计计算书

热 力 发 电 厂 课 程 设 计 指导老师:连佳 姓名:陈阔 班级:12-1

600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差 产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l=0.015D b(锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5)

3.计算汽轮机各级回热抽汽量 假设加热器的效率η=1 (1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051() 10791.1203(111fw 1=--?== ητααq 09067 .06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -2 12fw 22 1 =--?--?= -= q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02 .7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -3 32s23fw 3=--?--= -= q d d w w )(αηταα200382.0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’; 176 404.0587.4 3187.6) 587.4782.2(200382.0/1)587.4741.3(h h -4 53s34fw 4=--?--= -= q w w d )(’αηταα 进小汽机的份额为 αt 根据水泵的能量平衡计算小汽机的用汽份额αt 1 .31)(4t =-pu mx t h h ηηα 即 056938 .09 .099.0)8.25716.3187(1 .31=??-=t α 0.1011140.0569380.044173t 44=+=+=ααα’ 根据除氧器的物质平衡,求αc4 αc4+α’4+αs3=αfw 则αc4=1-α’4-αs3=0.755442 表6 小汽机参数表

工厂供电课程设计作业

一、工厂供电的意义和要求 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 二、工厂供电设计的一般原则 按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94 《10kv及以下设计规范》、GB50054-95 《低压配电设计规范》等的规定,进行工厂供电设计必须遵循以下原则:(1)遵守规程、执行政策; 必须遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。 (2)安全可靠、先进合理; 应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进的电气产品。 (3)近期为主、考虑发展; 应根据工作特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性。 (4)全局出发、统筹兼顾。 按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成部分。工厂供电设计的质量直接影响到工厂的生产及发展。作为从事工厂供电工作的人员,有必要了解和掌握工厂供电设计的有关知识,以便适应设计工作的需要。 三、设计内容及步骤

相关文档
最新文档