自动化专业英语全文翻译

自动化专业英语全文翻译
自动化专业英语全文翻译

《自动化专业英语教程》-王宏文主编-全文翻译

PART 1 Electrical and Electronic Engineering Basics

UNIT 1 A Electrical Networks ————————————3

B Three-phase Circuits

UNIT 2 A The Operational Amplifier ———————————5

B Transistors

UNIT 3 A Logical Variables and Flip-flop ——————————8

B Binary Number System

UNIT 4 A Power Semiconductor Devices ——————————11

B Power Electronic Converters

UNIT 5 A Types of DC Motors —————————————15

B Closed-loop Control of D

C Drivers

UNIT 6 A AC Machines ———————————————19

B Induction Motor Drive

UNIT 7 A Electric Power System ————————————22

B Power System Automation

PART 2 Control Theory

UNIT 1 A The World of Control ————————————27

B The Transfer Function and the Laplace Transformation —————29

UNIT 2 A Stability and the Time Response —————————30

B Steady State—————————————————31

UNIT 3 A The Root Locus —————————————32

B The Frequency Response Methods: Nyquist Diagrams —————33

UNIT 4 A The Frequency Response Methods: Bode Piots —————34

B Nonlinear Control System 37

UNIT 5 A Introduction to Modern Control Theory 38

B State Equations 40

UNIT 6 A Controllability, Observability, and Stability

B Optimum Control Systems

UNIT 7 A Conventional and Intelligent Control

B Artificial Neural Network

PART 3 Computer Control Technology

UNIT 1 A Computer Structure and Function 42

B Fundamentals of Computer and Networks 43

UNIT 2 A Interfaces to External Signals and Devices 44

B The Applications of Computers 46

UNIT 3 A PLC Overview

B PACs for Industrial Control, the Future of Control

UNIT 4 A Fundamentals of Single-chip Microcomputer 49

B Understanding DSP and Its Uses

UNIT 5 A A First Look at Embedded Systems

B Embedded Systems Design

PART 4 Process Control

UNIT 1 A A Process Control System 50

B Fundamentals of Process Control 52

UNIT 2 A Sensors and Transmitters 53

B Final Control Elements and Controllers

UNIT 3 A P Controllers and PI Controllers

B PID Controllers and Other Controllers

UNIT 4 A Indicating Instruments

B Control Panels

PART 5 Control Based on Network and Information

UNIT 1 A Automation Networking Application Areas

B Evolution of Control System Architecture

UNIT 2 A Fundamental Issues in Networked Control Systems

B Stability of NCSs with Network-induced Delay

UNIT 3 A Fundamentals of the Database System

B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing

B Enterprise Resources Planning and Beyond

PART 6 Synthetic Applications of Automatic Technology

UNIT 1 A Recent Advances and Future Trends in Electrical Machine Drivers

B System Evolution in Intelligent Buildings

UNIT 2 A Industrial Robot

B A General Introduction to Pattern Recognition

UNIT 3 A Renewable Energy

B Electric Vehicles

UNIT 1

A 电路

电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性.

就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R = 电阻,欧姆。

纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt = 电流变化率,安培/秒; L = 感应系数,享利。

电容两端建立的电压正比于电容两极板上积累的电荷q 。因为电荷的积累可表示为电荷增量dq的和或积分,因此得到的等式为 u= ,式中电容量C是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为i = dq/dt。因此电荷增量dq 等于电流乘以相应的时间增量,或dq = i dt,那么等式 (1-1A-3) 可写为式中 C = 电容量,法拉。

归纳式(1-1A-1)、(1-1A-2) 和 (1-1A-4)描述的三种无源电路元件如图1-1A-1所示。注意,图中电流的参考方向为惯用的参考方向,因此流过每一个元件的电流与电压降的方向一致。

有源电气元件涉及将其它能量转换为电能,例如,电池中的电能来自其储存的化学能,发电机的电能是旋转电枢机械能转换的结果。

有源电气元件存在两种基本形式:电压源和电流源。其理想状态为:电压源两端的电压恒定,与从电压源中流出的电流无关。因为负载变化时电压基本恒定,所以上述电池和发电机被认为是电压源。另一方面,电流源产生电流,电流的大小与电源连接的负载无关。虽然电流源在实际中不常见,但其概念的确在表示借助于等值电路的放大器件,比如晶体管中具有广泛应用。电压源和电流源的符号表示如图1-1A-2所示。

分析电网络的一般方法是网孔分析法或回路分析法。应用于此方法的基本定律是基尔霍夫第一定律,基尔霍夫第一定律指出:一个闭合回路中的电压代数和为0,换句话说,任一闭合回路中的电压升等于电压降。网孔分析指的是:假设有一个电流——即所谓的回路电流——流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。

考虑图1-1A-3a 所示的电路,其由串联到电压源上的电感和电阻组成,假设回路电流i ,那么回路总的电压降为因为在假定的电流方向上,输入电压代表电压升的方向,所以输电压在(1-1A-5)式中为负。因为电流方向是电压下降的方向,所以每一个无源元件的压降为正。利用电阻和电感压降公式,可得等式(1-1A-6)是电路电流的微分方程式。

或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。正如图1-1A-1指出的用积分代替式(1-1A-6)中的i,可得1-1A-7

B 三相电路

三相电路不过是三个单相电路的组合。因为这个事实,所以平衡三相电路的电流、电压和功率关系可通过在三相电路的组合元件中应用单相电路的规则来研究。这样看来,三相电路比单相电路的分析难不了多少。使用三相电路的原因在单相电路中,功率本身是脉动的。在功率因数为1时,单相电路的功率值每个周波有两次为零。当功率因数小于1时,功率在每个周波的部分时间里为负。虽然供给三相电路中每一相的功率是脉动的,但可证明供给平衡三相电路的总功率是恒定的。基于此,总的来说三相电气设备的特性优于类似的单相电气设备的特性。三相供电的机械和控制设备与相同额定容量的单相供电的设备相比:体积小,重量轻,效率高。除了三相系统提供的上述优点,三相电的传输需要的铜线仅仅是同样功率大小单相电传输所需铜线的3/4。三相电压的产生三相电路可由三个频率相同在时间相位上相差120°电角度的电动势供电。这样的三相正弦电动势如图 1-1B-1 所示。这些电动势由交流发电机的三套独立电枢线圈产生,这三套线圈安装在发电机电枢上,互相之间相差120°电角度。线圈的头尾可以从发电机中全部引出,组成三个独立的单相电路。然而一般线圈无论在内部或在外部均会相互连接,形成三线或四线三相系统。连接三相发电机线圈有两种方法,一般来说,把任何类型的装置连接到三相电路也存在两种方法。它们是星(Y)形联接和角(D)形联接。大多数发电机是星(Y)形联接,但负载可以是星(Y)形联接或角(D)形联接。星(Y)形联接发电机的电压关系图1-1B-2a 表示发电机的三个线圈或相绕组。这些绕组在电枢表面上是按它们产生的电动势在时间相位上相差120°分布的。每一个线圈的两端均标有字母S和F (起始和终结)。图1-1B-2a中,所有标有S的线圈端连接到

一个公共点N,三个标有F的线圈端被引出到接线端A、B和C ,形成三相三线电源。这种联接形式被称为Y形联接。中性联接经常被引出接到接线板上,如图1-1B-2a 的虚线所示,形成三相四线系统。交流发电机每相产生的电压被称为相电压(符号为Ep)。如果中性联接从发电机中引出,那么从任一个接线端A、 B或 C到中性联接N间的电压为相电压。三个接线端A、 B或 C 中任意两个间的电压被称为线到线的电压,或简称线电压(符号为EL)。三相系统的三相电压依次出现的顺序被称为相序或电压的相位旋转。这由发电机的旋转方向决定,但可以通过交换发电机外的三条线路导线中的任意两条(不是一条线路导线和中性线)来改变相序。将三相绕组排列成如图1-1B-2b 所示的Y形有助于Y形联接电路图的绘制。注意,图1-1B-2b所示的电路与图1-1B-2a所示的电路完全一样,在每一种情况下,连接到中性点的每一个线圈的S端和F端都被引出到接线板。在画出所有的接线点都标注了字母的电路图后,绘制的相量图如图1-1B-2c所示。相量图可显示相隔120° 的三相电

压请注意在图1-1B-2中每一个相量用带有两个下标的字母表示。这两个下标字母表示电压的两个端点,字母顺序表示在正半周时电压的相对极性。例如,符号表示点A和N间的电压,在其正半周,A点相对于N点为正。在所示的相量图中,已假定在正半周时发电机接线端相对于中性线为正。因为电压每半周反一次相,所以我们也可规定在电压的正半周A点相对于N点为负,但对每一相的规定要一样。要注意到,如果是在电压的正半周定义A点相对于N的极性

( ) ,那么在用于同一相量图中时就应该画得

同相反,即相位差为180°Y形联接发电机的任意两个接线端间的电压等于这两个接线端相对于中性线间的电位差。例如,线电压等于A接线端相对于中性线间的电压( )减去B接线端相对于中性线间的电压( )。为

了从中减去,必需将反相,并把此相量加

到上。相量和幅值相等,相位相差60°,如图1-1B-2c 所示。由图形可以看出通过几何学可以证明等于1.73乘以()或()。图形结构如相量图所示。因此,在对称Y形联接中星(Y)形联接发电机的电流关系从发电机接线端A、 B和C (图 1-1B-2)流到线路导线的电流必定从中性点N中流出,并流过发电机线圈。因此流过每一条线路导线的电流( )必定等于与其相连接的相电流( )。在Y形联接中IL=IP

UNIT2

A 运算放大器

运算放大器像广义放大器这样的电子器件存在的一个问题就是它们的增益AU或AI 取决于双端口系统(m、b、RI、Ro等)的内部特性。器件之间参数的分散性和温度漂移给设计工作增加了难度。设计运算放大器或Op-Amp的目的就是使它尽可能的减少对其内部参数的依赖性、最大程度地简化设计工作。运算放大器是一个集成电路,在它内部有许多电阻、晶体管等元件。就此而言,我们不再描述这些元件的内部工作原理。

运算放大器的全面综合分析超越了某些教科书的范围。在这里我们将详细研究一个例子,然后给出两个运算放大器定律并说明在许多实用电路中怎样使用这两个定律来进行分析。这两个定律可允许一个人在没有详细了解运算放大器物理特性的情况下设计各种电路。因此,运算放大器对于在不同技术领域中需要使用简单放大器而不是在晶体管级做设计的研究人员来说是非常有用的。在电路和电子学教科书

中,也说明了如何用运算放大器建立简单的滤波电路。作为构建运算放大器集成电路的积木—晶体管,将在下篇课文中进行讨论。

理想运算放大器的符号如图1-2A-1所示。图中只给出三个管脚:正输入、负输入和输出。让运算放大器正常运行所必需的其它一些管脚,诸如电源管脚、接零管脚等并未画出。在实际电路中使用运算放大器时,后者是必要的,但在本文中讨论理想的运算放大器的应用时则不必考虑后者。两个输入电压和输出电压用符号U +、U -和Uo 表示。每一个电压均指的是相对于接零管脚的电位。运算放大器是差分装置。差分的意思是:相对于接零管脚的输出电压可由下式表示 (1-2A-1)式中 A 是运算放大器的增益,U + 和 U - 是输入电压。换句话说,输出电压是A乘以两输入间的电位差。

集成电路技术使得在非常小的一块半导体材料的复合“芯片”上可以安装许多放大器电路。运算放大器成功的一个关键就是许多晶体管放大器“串联”以产生非常大的整体增益。也就是说,等式(1-2A-1)中的数A约为100,000或更多 (例如,五个晶体管放大器串联,每一个的增益为10,那么将会得到此数值的A )。第二个重要因素是这些电路是按照流入每一个输入的电流都很小这样的原则来设计制作的。第三个重要的设计特点就是运算放大器的输出阻抗(Ro )非常小。也就是说运算放大器的输出是一个理想的电压源。

我们现在利用这些特性就可以分析图1-2A-2所示的特殊放大器电路了。首先,注意到在正极输入的电压U +等于电源电压,即U + =Us。各个电流定义如图1-2A-2中的b图所示。对图 1-2A-2b的外回路应用基尔霍夫定律,注意输出电压Uo 指的是它与接零管脚之间的电位,我们就可得到因为运算放大器是按照没有电流流入正输入端和负输入端的原则制作的,即I - =0。那么对负输入端利用基尔霍夫定律

可得 I1 = I2,利用等式(1-2A-2) ,并设 I1 =I2 =I ,U0 = (R1 +R2 ) I (1-2A-3)根据电流参考方向和接零管脚电位为零伏特的事实,利用欧姆定律,可得负极输入电压U - :因此 U - =IR1 ,并由式 (1-2A-3)可得:因为现在已有了U+ 和U-的表达式,所以式(1-2A-1)可用于计算输出电压,综合上述等式,可得:最后可得:这是电路的增益系数。如果A 是一个非常大的数,大到足够使AR1 >> (R1 +R2),那么分式的分母主要由AR1 项决定,存在于分子和分母的系数A 就可对消,增益可用下式表示这表明 (1-2A-5b),如果A 非常大,那么电路的增益与A 的精确值无关并能够通过R1和R2的选择来控制。这是运算放大器设计的重要特征之一——在信号作用下,电路的动作仅取决于能够容易被设计者改变的外部元件,而不取决于运算放大器本身的细节特性。注意,如果A=100,000,而(R1 +R2) /R1=10,那么为此优点而付出的代价是用一个具有100,000倍电压增益的器件产生一个具有10

倍增益的放大器。从某种意义上说,使用运算放大器是以“能量”为代价来换取“控制” 。

对各种运算放大器电路都可作类似的数学分析,但是这比较麻烦,并且存在一些非常有用的捷径,其涉及目前我们提出的运算放大器两个定律应用。

1) 第一个定律指出:在一般运算放大器电路中,可以假设输入端间的电压为零,也就是说,

2) 第二个定律指出:在一般运算放大器电路中,两个输入电流可被假定为零:I+=I-=0

第一个定律是因为内在增益A的值很大。例,如果运算放大器的输出是1V ,并且A=100,000, 那么这是一个非常小、可以忽略的数,因此可设U+=U-。第二个

定律来自于运算放大器的内部电路结构,此结构使得基本上没有电流流入任何一个输入端。

B 晶体管

简单地说,半导体是这样一种物质,它能够通过“掺杂”来产生多余的电子,又称自由电子(N型);或者产生“空穴”,又称正电荷(P型)。由N型掺杂和P型掺杂处理的锗或硅的单晶体可形成半导体二极管,它具有我们描述过的工作特性。晶体管以类似的方式形成,就象带有公共中间层、背靠背的两个二极管,公共中间层是以对等的方式向两个边缘层渗入而得,因此中间层比两个边缘层或边缘区要薄的多。PNP 或 NPN (图 1-2B-1)这两种结构显然是可行的。PNP或NPN被用于描述晶体管的两个基本类型。因为晶体管包含两个不同极性的区域(例如“P”区和“N”区),所以晶体管被叫作双向器件,或双向晶体管因此晶体管有三个区域,并从这三个区域引出三个管脚。要使工作电路运行,晶体管需与两个外部电压或极性连接。其中一个外部电压工作方式类似于二极管。事实上,保留这个外部电压并去掉上半部分,晶体管将会象二极管一样工作。例如在简易收音机中用晶体管代替二极管作为检波器。在这种情况下,其所起的作用和二极管所起的作用一模一样。可以给二极管电路加正向偏置电压或反向偏置电压。在加正向偏置电压的情况下,如图

1-2B-2所示的PNP 晶体管,电流从底部的P极流到中间的N极。如果第二个电压被加到晶体管的顶部和底部两个极之间,并且底部电压极性相同,那么,流过中间层N区的电子将激发出从晶体管底部到顶部流过的电流。在生产晶体管的过程中,通过控制不同层的掺杂度,经过负载电阻流过第二个电路电流的导电能力非常显著。

实际上,当晶体管下半部为正向偏置时,底部的P区就像一个取之不竭的自由电子源(因为底部的P区发射电子,所以它被称为发射极)。这些电子被顶部P区接收,因此它被称为集电极,但是流过这个特定电路实际电流的大小由加到中间层的偏置电压控制,所以中间层被称为基极。因此,当晶体管外加电压接连正确(图1-2B-3)后工作时,实际上存在两个独立的“工作”电路。一个是由偏置电压源、发射极和基极形成的回路,它被称为基极电路或输入电路;第二个是由集电极电压源和晶体管的三个区共同形成的电路,它被称为集电极电路或输出电路。(注意:本定义仅适用于发射极是两个电路的公共端时——被称为共发射极连接。)这是晶体管最常见的连接方式,但是,当然也存在其它两种连接方法——共基极连接和共集电极连接。但是在每一种情况下晶体管的工作原理是相同的。本电路的特色是相对小的基极电流能控制和激发出一个比它大得多的集电极电流(或更恰当地说,一个小的输入功率能够产生一个比它大得多的输出功率)。换句话说,晶体管的作用相当于一个放大器。在这种工作方式中,基极-发射极电路是输入侧;通过基极的发射极和集电极电路是输出侧。虽然基极和发射极是公共路径,但这两个电路实际上是独立的,就基极电路的极性而言,基极和晶体管的集电极之间相当于一个反向偏置二极管,因此没有电流从基极电路流到集电极电路。要让电路正常工作,当然,加在基极电路和集电极电路的电压极性必须正确(基极电路加正向偏置电压,集电极电源的连接要保证公共端(发射极)的极性与两个电压源的极性相同)。这也就是说电压极性必须和晶体管的类型相匹配。在上述的PNP型晶体管中,发射极电压必须为正。因此,基极和集电极相对于发射极的极性为负。PNP 型晶体管的符号在发射极上有一个指示电流方向的箭头,总是指向基极。(在PNP型晶体管中,“P”代表正)。在NPN型晶体管中,工作原理完全相同,但是两个电源的极性正好相反(图1-2B-4)。

也就是说,发射极相对于基极和集电极来说极性总是负的(在NPN型晶体管中,“N”代表负)。这一点也可以从NPN型晶体管符号中发射极上相反方向的箭头看出来,即,电流从基极流出。虽然现在生产的晶体管有上千种不同的型号,但晶体管各种外壳形状的数量相对有限,并尽量用一种简单码——TO(晶体管外形)后跟一个数字为统一标准。TO1是一种最早的晶体管外壳——即一个在底部带有三个引脚的圆柱体“外罩”,这三个引脚在底部形成三角状。观看底部时,“三角形”上面的管脚是基极,其右面的管脚(由一个彩色点标出)为集电极,其左面的管脚为发射极。集电极引脚到基集引脚的间距也许比发射极到基集引脚的间距要大。在其它TO外壳中,三个引脚可能有类似的三角形形状(但是基极、集电极和发射极的位置不一定相同),或三个引脚排成一条直线。使人容易搞乱的问题是同一TO号码的子系列产品其管脚位置是不一样的。例如,TO92 的三个管脚排成一条直线,这条直线与半圆型“外罩”的切面平行,观看TO92的底部时,将切面冲右,从上往下读,管脚的排序为1,2,3。(注otherwise circular“can”中的otherwise译为不同的,特殊的。在这里“特殊的圆形外罩”指的应该是普通的圆柱体“外罩”在圆平面上画一条小于等于直径的弦,沿轴线方向切入后形成的半或大半圆柱体,切入后形成的剖面就是文中说的a flat side ,这也是现在很常见的一种晶体管外壳。)对TO92子系列 a (TO92a): 1=发射极2=集电极 3=基极对TO92子系列 b (TO92b): 1=发射极2=基3=集电极更容易使人搞乱的是一些晶体管只有两个管脚(第三个管脚已在里边和外壳连接);一些和晶体管的外形很像的外壳底部有三个以上的管脚。实际上,这些都是集成电路(ICs),用和晶体管相同的外壳包装的,只是看起来像晶体管。更复杂的集成电路(ICs)用不同形状的外壳包装,例如平面包装。根据外壳形状非常容易识别功率晶体管。它们是金属外壳,带有延长的底部平面,

底部平面上还有两个安装孔。功率晶体管只有两个管脚(发射极和基极),通常会标明。集电极在内部被连接到外壳上,因此,与集电极的连接要通过一个装配螺栓或外壳底面。

UNIT 3

A 逻辑变量与触发器

逻辑变量我们讨论的双值变量通常叫做逻辑变量,而象或和与这样的操作被称为逻辑操作。现在我们将简要地讨论一下这些术语之间的关联,并在此过程中,阐明用标示“真”和“假”来识别一个变量的可能值的特殊用途。

举例说明,假设你和两个飞行员在一架空中航行的飞机中,你在客舱中,而飞行员A和 B在驾驶员座舱中。在某一时刻,A来到了你所在的客舱中,你并不担心这种变化。然而,假设当你和A 在客舱时,你抬头发现B 也已经来到了你所在的客舱中。基于你的逻辑推理能力,你将会推断飞机无人驾驶;并且,大概你已听到了警报,以致使驾驶员之一将迅速对此紧急情况作出响应。

换句话说,假设每一位飞行员座位下面有一个电子装置,当座位上有人时,其输出电压为V1,当座位上无人时,其输出电压为V2。现在我们用“真”来代表电压V2,从而使电压V1表示“假”。让我们进一步制作一个带有两个输入端和一个输出端的电路,此电路的特性是:只要两个输入,即一个输入同时和另一个输入相与,结果为V2时,输出电压才是V2。否则,输出是V1。最后,让我们把输入和飞行员A 和B 座位下的装置联结起来,并安装一个与输出Z相连的警铃,当输出是V2

(“真”)时响应,否则不响应。这样,我们已创建了一个执行与操作的电路,这个电路能完成当两个驾驶员确实都离开驾驶舱时飞机是无人驾驶的逻辑推断。

概括一下,情形如下:符号A、B和Z 代表命题

A =飞行员A已离开座位为真(T)

B = 飞行员B已离开座位为真(T)

Z = 飞机无人驾驶,处于危险状况时为真(T)

当然,、和分别代表相反的命题。例如,代表的命题是当飞行员离开驾驶舱等时为假(F),以此类推。命题间的关系可写为

Z=AB (1-3A-1)我们已经选择用电压来表示逻辑变量A、 B和Z 。但是必须注意,实际上式 (1-3A-1) 是命题间的关系,与我们选择的表示命题的确切方式无关,甚至可以说与我们具有的任何物理表示形式无关。式(1-3A-1) 指出,如果命题A 和B都为真,那么命题Z就为真,否则命题Z为假。

式(1-3A-1)是一个例子,这种命题代数被称为布尔代数。和其它处理有数字意义的变量一样,布尔代数处理的是命题,而且布尔代数对于分析仅有两个互反变量的命题之间的关系是一种有效的工具。

SR 触发器

图1-3A-1给出的一对交叉连接的或非门电路被称为触发器。其有一对输入端S 和R ,分别代表“置位”和“复位”。我们不仅用符号S 和R 标明端点,而且指定端点的逻辑电平。因此,通常S=1指的是对应于逻辑电平为1的电压出现在S 端。相似的,输出端和相应的输出逻辑电平为Q和。使用这样的符号时,我们已经明确了一个事实,即在我们下面将看到的符号操作中,输出的逻辑电平是互补的。

触发器基本的、最重要的特性是其具有“记忆”功能。也就是说,设置S 和R 目前的逻辑电平为0和0,根据输出的状态,即可确定S 和R在其获得当前电平之前的逻辑电平。

术语

为方便衔接下面的讨论内容,介绍一些常见的术语,这有助于了解逻辑系统设计师中惯用的观点。

在与非和或非门(以及与和或门)中,当用其来达到我们的设计意图时,我们能够任意选择一个输入端,并把其看成是使能-失效输入,因此可考虑或非或或门。如果被选的一个输入为逻辑1,那么门电路的输出与所有的其它输入无关。这个被选的输入可控制门电路,其它所有输入相对于这个门电路是失效的 (术语“抑制” 的同义词为“失效”)。相反,如果被选输入为逻辑0,那么它不能控制门电路,门电路能够响应其它输入。在与非或与门中,当被选输入为逻辑0时,此输入控制并截止门电路,因为一个输入为逻辑0,那么门电路的输出不能响应其它输入。注意一方面是或非门和或门间的区别,另一方面是与非门和与门间的区别。在第一种情况下,当控制输入转为逻辑1时,其可获得门电路的控制;在第二种情况下,当控制输入转为逻辑0时,其可获得门电路的控制。

在数字系统中,普遍的观点是把逻辑0看成一个基本的、无干扰的、稳定的、静止的状态,把逻辑1看成激励的、活跃的、有效的状态,就是说,这种状态是发生在某种操作动作之后。因此,当作用已产生时,其倾向将是定义最后的状态作为对某逻辑变量已转为1的响应。当“无操作发生”时,逻辑变量为逻辑0。类似地,如果作用将通过逻辑变量的变化产生,那么最好是以这样的方式定义有关的逻辑变

量,即当逻辑变量转为逻辑1时达到此效果。在我们对触发器的讨论中,将看到持有此种观点的例子

B 二进制数字系统

概述大约在1850年由乔治·布尔提出的代数学中,变量仅允许具有两个值,真或假,通常被写为1和0,对这些变量的代数运算是与、或和非。在1938年,香农认识到了此代数形式和电气开关系统功能间的相似之处,在这种开关中存在有通-断两种状态的器件。布尔代数的推理过程由充当逻辑电路的开关完成。已有大量集成电路可完成脉冲信号的逻辑操作,这些脉冲信号采用二进制数字系统,并利用电子器件的关断和导通作为二进制系统的两种状态。二进制数字系统和其它代码为了用晶体管直接计算十进制数,要求晶体管认识这10个状态 0、1、…、9,此操作要求的精度是电子器件并不具备的。将导通和关断作为工作状态,这样的装置可以在两态即二进制系统中运行,因此数字计算机中的内部操作一般采用二进制系统。在十进制系统中,基数或底数为10,小数点左边或右边的每一个位都表示其权重增加或减少10的一次幂。在二进制系统中,底数为2,二进制小数点左边或右边的位具有的权重以2的幂次增加或减少。数字可被编码为两个电平的脉冲串,通常标为1或0,如图1-3B-1所示。1-3B-1b 中的脉冲序列能够译为:二进制:1′25 + 0′24 + 1′23 + 0′22 + 1′2 1 + 1′20 = 101011十进制:

32 + 0 + 8 + 0 + 2 + 1 = 43 相反,在把十进制数43转换为二进制形式的过程中,可使其连续被2除。每一次除后所得余数0或1即是二进制数的位数。十进制数43的转化过程:等价于十进制数43的二进制数为

101011。虽然二进制数仅需两个信号电平,这种简化的获得是以附加的位数为代价的。在以r 为底数的数制中表示n 位十进制数,需要m 位。其中等式右边是一个整数,或选择下一个较大的整数。对于一个10位的十进制数,可得m=33.2 ,因此必须使用34位二进制数。二进制位叫作比特。写为0.1101的二进制小数意味着0.1101 = 1′2 -1 + 1′2 -2 + 0′2 -3 + 1′2 -4= 1/2 + 1/4 + 0 + 1/16二进制数0.1101表示为十进制数 = 0.500 + 0.250 + 0.062 = 0.812小于1的十进制数的转换可通过连续乘2获得。对于结果在小数点左边为1的每一步,记录二进制数1,然后继续计算所得十进制数的小数部分。对于结果在小数点左边为0的每一步,记录二进制位0,然后继续计算。把十进制数0.9375转化为二进制数,运算如下:等价于十进制数0.9375的二进制数可写为0.11110。最高位是第一个获得的二进制位,放置在二进制小数点的右边。十进制数0到15的二进制等值表为: 给出一串正脉冲和负脉冲,或正脉冲和零,或者零和负脉冲来表示二进制的1和0时,就会有许多这些脉冲可以传递的码。计算机输入最常见的码就是BCD码,每一个十进制数需要四个脉冲或二进制数。用此种代码,每一个十进制位转化为其二进制等值数如上表所示,也就是说,十进制数827用BCD码表示

为 1000 0010 0111计算机通过算术运算,能够容易地把此类输入转化为纯二进制形式。解码器也能够把BCD码转化为十进制形式。BCD码在传输中不需附加位的情况下,能够扩大到十进制数15,成为十六进制码,通常使用字母a、 b、 L、f 来表示10到15。在某些计算机操作中应用的另一种码是八进制或8为底数的数制。采用的符号为0、1、2L、7,十进制数24可被写为八进制数30(3′81 +0′80)。八进制数字的二进制译码仅需要BCD表中三个最小的有效位,八进制数30的二进制译码为011 000。因为十进制数24用纯二进制形式可写为11000 ,

用八进制译码形式可写为011 000,所以需要指出二进制数字转换为八进制数字的简易方法。以三个位为一组划分二进制数,每一组显示为一个等值的八进制译码数,例如,十进制数1206以二进制表示为10010110110,以三个位为一组,可得:二进制: 010 010 110 110八进制:2 2 6 6八进制数是2266。通过使用导电块上的电刷,光学读卡机或码盘,经常用格雷码将角位移或直线位移转换为二进制数。由于组合误差,不能同时变化两个数位以免产生不确定性。设计的格雷码就是为了解决此问题,其在二进制数的每一步变换中,仅需变化一个位。此码的一种形式是其它一些码被设计来降低传输误差,在这些码中将1变为0或将0变为1。通常,检测单一误差的代码可通过把检验位与原始码相加获得。合成码将有偶数个或奇数个1,这些码被称为偶数奇偶校验码或奇数奇偶校验码,例如0000 的奇数奇偶校验码将是10000;在任何位的误差将使结果具有偶数个1,接收装置将会进行校正。多重误差可通过更为复杂的代码形式探测

UNIT4

A 功率半导体器件

功率半导体器件构成了现代电力电子设备的核心。它们以通-断开关矩阵的方式被用于电力电子转换器中。开关式功率变换的效率更高。现今的功率半导体器件几乎都是用硅材料制造,可分类如下:二极管晶闸管或可控硅双向可控硅门极可关断晶闸管双极结型晶体管电力金属氧化物半导体场效应晶体管静电感应晶体管绝缘栅双极型晶体管金属氧化物半导体控制的晶闸管集成门极换向晶闸管二极管电力二极管提供不可控的整流电源,这些电源有很广的应用,如:电镀、电极氧化、电池充电、

焊接、交直流电源变频驱动。它们也被用于变换器和缓冲器的回馈和惯性滑行功能。典型的功率二极管具有P-I-N结构,即它几乎是纯半导体层(本征层),位于P-N 结的中部以阻断反向电压。图1-4A-1给出了二极管符号和它的伏安特性曲线。在正向偏置条件下,二极管可用一个结偏置压降和连续变化的电阻来表示,这样可画出一条斜率为正的伏安特性曲线。典型的正向导通压降为1.0伏。导通压降会引起导通损耗,必须用合适的吸热设备对二极管进行冷却来限制结温上升。在反向偏置条件下,由于少数载流子的存在,有很小的泄漏电流流过,泄漏电流随电压逐渐增加。如果反向电压超过了临界值,叫做击穿电压,二极管雪崩击穿,雪崩击穿指的是当反向电流变大时由于结功率损耗过大造成的热击穿。电力二极管分类如下:标准或慢速恢复二极管快速恢复二极管肖特基二极管晶闸管闸流管或可控硅一直是工业上用于大功率变换和控制的传统设备。50年代后期,这种装置的投入使用开辟了现代固态电力电子技术。术语“晶闸管”来自与其相应的充气管等效装置,闸流管。通常,晶闸管是个系列产品的总称,包括可控硅、双向可控硅、门极可关断晶闸管、金属氧化物半导体控制的晶闸管、集成门极换向晶闸管。晶闸管可分成标准或慢速相控型,快速开关型,电压回馈逆变器型。逆变器型现已淘汰。图1-4A-2给出了晶闸管符号和它的伏安特性曲线。基本上,晶闸管是一个三结P-N-P-N 器件,器件内P-N-P 和N-P-N 两个三极管按正反馈方式连接。晶闸管可阻断正向和反向电压(对称阻断)。当阳极为正时,晶闸管可由一个短暂的正门极电流脉冲触发导通;但晶闸管一旦导通,门极即失去控制晶闸管关断的能力。晶闸管也可由阳极过电压、阳极电压的上升率(dv/dt)、结温的上升、PN结上的光照等产生误导通。在门电流IG = 0时,如果将正向电压施加到晶闸管上,由于中间结的阻断会产生漏电流;如果电压超过临界极限(转折电压),晶闸管进入导通状态。随着门极控制电流IG 的

增加,正向转折电压随之减少,最后,当门极控制电流IG= IG3时,整个正向阻断区消失,晶闸管的工作状态就和二极管一样了。在晶闸管的门极出现一个最小电流,即阻塞电流,晶闸管将成功导通。在导通期间,如果门极电流是零并且阳极电流降到临界极限值以下,称作维持电流,晶闸管转换到正向阻断状态。相对反向电压而言,晶闸管末端的P-N 结处于反向偏置状态。现在的晶闸管具有大电压(数千伏)、大电流(数千安)额定值。双向可控硅双向可控硅有复杂的复结结构,但从功能上讲,它是在同一芯片上一对反并联的相控晶闸管。图1-4A-3给出了双向可控硅的符号。在电源的正半周和负半周双向可控硅通过施加门极触发脉冲触发导通。在Ⅰ+工作方式,T2端为正,双向可控硅由正门极电流脉冲触发导通。在Ⅲ-工作方式,T1端为正,双向可控硅由负门极电流脉冲触发导通双向可控硅比一对反并联的晶闸管便宜和易于控制,但它的集成结构有一些缺点。由于少数载流子效应,双向可控硅的门极电流敏感性较差,关断时间较长。由于同样的原因,重复施加的dv/dt 额定值较低,因此用于感性负载比较困难。双向可控硅电路必须有精心设计的RC 冲器。双向可控硅用于电灯的亮度调节、加热控制、联合型电机驱动、50/60赫兹电源频率的固态继电器。门极可关断晶闸管门极可关断晶闸管,顾名思义,是一种晶闸管类型的器件。同其他晶闸管一样,它可以由一个小的正门极电流脉冲触发,但除此之外,它还能被负门极电流脉冲关断。GTO 的关断能力来自由门极转移P-N-P 集电极的电流,因此消除P-N-P/N-P-N 的正反馈效应。GTO 有非对称和对称电压阻断两种类型,分别用于电压回馈和电流回馈变换器。 GTO 的阻断电流增益定义为阳极电流与阻断所需的负门极电流之比,典型值为4或5,非常低。这意味着6000安培的GTO 需要1,500安培的门极电流脉冲。但是,脉冲化的门极电流和与其相关的能量非常小,用低压电力MOS场效应晶体管提供非常容易。GTO被用于电机驱动、

静态无功补偿器和大容量AC/DC 电源。大容量GTO的出现取代了强迫换流、电压回馈的可控硅换流器。图1-4A-4给出了GTO的符号。电力MOS场效应晶体管与以前讨论的器件不同,电力MOS场效应晶体管是一种单极、多数载流子、“零结”、电压控制器件。图1-4A-5给出了N型MOS场效应晶体管的符号如果栅极电压为正并且超过它的门限值,N 型沟道将被感应,允许在漏极和源极之间流过由多数载流子(电子)组成的电流。虽然栅极阻抗在稳态非常高,有效的栅—源极电容在导通和关断时会产生一个脉冲电流。MOS场效应晶体管有不对称电压阻断能力,如图所示内部集成一个通过所有的反向电流的二极管。二极管具有慢速恢复特性,在高频应用场合下通常被一个外部连接的快速恢复二极管旁路。虽然对较高的电压器件来说,MOS场效应晶体管处于导通时损耗较大,但它的导通和关断时间非常小,因而开关损耗小。它确实没有与双极性器件相关的少数载流子存储延迟问题。虽然在静态MOS 场效应晶体管可由电压源来控制,通常的做法是在动态由电流源驱动而后跟随一个电压源来减少开关延迟。 MOS场效应晶体管在低压、小功率和高频(数十万赫兹)开关应用等领域得到极其广泛的应用。譬如开关式电源、无刷直流电机、步进电机驱动和固态直流继电器。绝缘栅双极型晶体管在20世纪80年代中期出现的绝缘栅双极型晶体管是功率半导体器件发展历史上的一个重要里程碑。它们在中等功率(数千瓦到数兆瓦)的电力电子设备上处处可见,被广泛用于直流/交流传动和电源系统。它们在数兆瓦功率级取代了双极结型晶体管,在数千瓦功率级正在取代门极可关断晶闸管。IGBT 基本上是混合的MOS 门控通断双极性晶体管,它综合了MOSFET 和BJT 的优点。它的结构基本上与MOSFET 的结构相似,只是在MOSFET 的N+漏极层上的集电极加了一个额外的P+层。 IGBT有MOSFET 的高输入阻抗和像BJT 的导通特性。如果门极电压相对于发射极为正,P 区的N 型沟道受到感应。这个P-N-P 晶

汽车专业英语翻译综合

第一章汽车总论 1)Today’s average car contains more than 15,000 separate, individual parts that must work together. These parts can be grouped into four major categories: body, engine, chassis and electrical equipment 。P1 现在的车辆一般都由15000多个分散、独立且相互配合的零部件组成。这些零部件主要分为四类:车身、发动机、底盘和电气设备。 2)The engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine: gasoline (also called a spark-ignition engine) and diesel (also called a compression-ignition engine). Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the power train. P3 发动机作为动力设备,常见的类型是内燃机,其原理是通过发动机缸内的液体燃料燃烧而产生能量。发动机可分为两类:汽油机(点燃式)和柴油机(压燃式),都属于热力发动机。燃料燃烧产生热量使缸内气压上升,产生的能量驱动轴旋转,并传递给动力传动系。 第二章内燃机 1)Power train system: conveys the drive to the wheels 2)Steering system: controls the direction of movement 3)Suspension system: absorbs the road shocks 4)Braking system: slows down the vehicle P4 传动系把发动机输出的扭矩传递给驱动轮。传动系包括离合器(对应机械变速器)或液力变矩器(对应液力自动变速器)、变速器、驱动轴、主减速器、差速器和驱动桥。 5)Drum brakes have a drum attached to the wheel hub, and braking occurs by means of brake shoes expanding against the inside of the drum. With disc brakes, a disc attached to the wheel hub is clenched between two brake pads. P6 鼓式制动器的制动鼓和轮毂连接,制动蹄张开压紧制动鼓内侧从而产生制动。在盘式制动器上,连着轮毂的制动盘被紧紧夹在两个制动块之间。 1)Linking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn.The power stroke"uses up"the gas,so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture:this control of gas movement is the duty of the valves;An inlet valve allows the mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job . P10 活塞通过连杆和曲轴连接,使得气体带动曲轴旋转半圈。作功冲程耗尽了所有的气体,这样就必须采取相应的措施排出废气并且向气缸内充入新的可燃混合气:气体的运动由气门来控制。进气门使可燃混合气在恰当的时刻进入气缸,排气门使燃烧后的废气排出气缸。 2)The spark-ignition engine is an internal-combustion engine with externally supplied in ignition,which converts the energy cntained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft. P11 火花点火式发动机是由外部提供点火的内燃机,从而将含在燃料内的能量转化成动能。发动机的一个工作循环分布在活塞的四个行程中,一个完整的工作循环曲轴需要转动两圈。 3)The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus,there is constant circulation of oil between the pan and the working parts of the engine. P15

自动化专业英语考试翻译

PART 3 Computer Control Technology UNIT 1 A 计算机的结构与功能 这一节介绍计算机的内部体系结构,描述了指令如何存储和译码,并解释了指令执行周期怎样分解成不同的部分。 从最基本的水平来讲,计算机简单执行存储在存储器中的二进制编码指令。这些指令按照二进制编码数据来产生二进制编码结果。对于通用可编程计算机,四个必要部件是存储器、中央处理单元(CPU,或简称处理器),外部处理器总线,输入/输出系统,正如图 3-1A-1所示。 外部处理器总线 存储器CPU输入/输出 图 3-1A-1 计算机的基本元件 存储器储存指令和数据。 CPU读取和解释指令,读每条指令所需的数据,执行指令所需的操作,将结果存回存储器。CPU所需的操作之一是从外部设备读取或写入数据。这利用输入/输出系统来实现。 外部处理器总线是一套能在其他计算机部件之间传送数据、地址和控制信息的电导线。 存储器 计算机的存储器是由一套连续编号的单元所组成。每个存储单元是一个能存二进制信息的寄存器。单元的编号称为地址。初始地址为0。制造商定义处理器的一个字长为单元的整数长。在每个字中,各位表示数据或指令。对于英特尔8086/87和摩托罗拉MC68000微处理器来说,一个字是16位长,但每个存储单元仅为8位,因此两个8位单元来存取获得一个数据字长。

为了使用存储器中的内容,处理器必须取来右边的内容。为了完成这一次读取,处理器把所需单元的二进制编码地址放到外部处理器地址总线的地址线上,然后,存储器允许处理器读取所寻址的存储单元的内容。读取存储单元的内容的这一过程并不改变该单元的内容。 存储器中的指令存储器中的指令由CPU取来。除非发生程序转移,它们按在存储器中出现的顺序来执行。用二进制形式所写的指令叫做机器语言指令。一种得到(指令)有效形式的方法是将(这些)位分成段,如图3-1A-2所示。每一段都包含一个不同类型信息的代码。 在简单的计算机中,每条指令可分为四段,每段有四位。每条指令包括操作代码(或操作码,每条指令有唯一的操作码)、操作数地址、立即数、转换地址。 在一个实际的指令集中,有很多指令。也有大量的存储单元来存储指令和数据。为了增加存储单元的数目,如果我们使用同样的方法,地址段的指令一定长于16位。除了增加指令长度外,还有很多增加微处理器寻址范围的方法:可变指令段、多字指令、多寻址模式,可变指令长度。我们不将详细讨论它们。 存储数据数据是存储器中代表代码的信息。为了有效利用存储空间和处理时间,大多数计算机提供了不同长度和表示方法的处理数据能力。能被处理器识别的各种不同表示称作数据类型。常用的数据类型有:位、二进制码、十进制数字(4位字节,BCD)、字节(8位)、字(2个字节)、双字(4个字节)。 有一些处理器提供了可处理其他数据类型。例如单精度浮点数据类(32位)和双精度浮点数据(64位)等的指令。还有另一类的数据–––特征数据。通常也表示为8位。在标准键盘上,每个计算机终端键和键的组合(例如shift和control功能键)有定为美国信息交换标准码的7位码。 存储器类型在数字控制系统的应用中,我们也关注不同存储技术的特征。对主存储器来说,我们需用它临时存储信息,并逐次地从不同单元写入或获得信息。这种类型的存储器称作随机访问存储器(RAM)。在某些情况下,我们不想让存储器中的信息丢失。因此我们愿使用特殊技术写入存储器。如果写入只在物理改变连接时才能实现,那么这种存储器称为只读存储器(ROM)。如果相互连接的模式可由程序设定,那存储器叫做可编程只读存储器(PROM)。如果需要实现改写的情况,我们有可擦的可编程只读存储器(EPROM)。电可擦除的PROM缩写为EEPROM。

汽车专业英语翻译

Unit1 发动机是汽车的心脏。汽车引擎的目的是将燃料转化为能量使汽车移动。最简单的方法是在发动机内部燃烧燃料。,因此,汽车发动机是一种内燃机,缸内燃烧燃料和燃烧的扩张力量转换成旋转力用来驱动汽车。 这里有多种类型的内燃机分为往复式和旋转式引擎;火花式点火或压缩式点火发动机;代用燃料发动机。 往复式发动机 最熟悉的组合是往复式,火花点火,四冲程汽油发动机,如图1-1a所示。现代汽车通常是由水冷活塞式内燃机,安装在汽车的前面,它的力量可以被传送到前轮,传到后轮,或所有车轮轮。一些汽车使用风冷式发动机,但这些通常效率不及液冷式。往复式发动机的另一个主要类型是柴油发动机(如图果1-1b所示),这是使用重型车辆,如卡车,公共汽车和少数家庭轿车。柴油和汽油发动机一般采用四冲程循环。 转子式发动机 转子式内发动机,也叫汪克尔发动机,由德国的Felix~Wankel在1954年开发的,可以提供一种低废气排放和大规模生产的可行性的发动机来替代往复式发动机机。在这种发动机中,三面转子在燃烧室的自由空间内旋转使其随着转子转动压缩和膨胀,见图1 - 2。燃料被吸入、压缩和被点火系统的点燃。膨胀的气体带动转子然后废气排出,如图1 - 3所示。旋转式引擎没有气门,活塞,连杆,往复部件,或曲轴。它提高了马力,基本上不会有震动,但它的油耗是高于传统活塞式发动机。 代用燃料汽车 内燃机消耗大量的石油,并造成严重的空气污染,因此,其他类型的燃料和非常规引擎被研究和发展。 可替代燃料汽车(AFV)是一种用常见的油箱的柔性燃料车辆,设计一种在不同混合的无铅汽油与乙醇或双燃料汽车运行,一种可使用替代燃料和传统燃料。一种高科技车辆(A TV)结合了新引擎,动力传动机构,传动系系统显著提高燃油经济性。最理想的替代燃料发动机燃烧燃料比传统汽油内燃机更为简洁,但仍然能够使用现有的加油站。 混合动力电动车 混合动力汽车或者混合电动汽车(HEV)(如图1 - 4所示),是由两个或两个以上的能源,其中之一是电力可以高英里每加仑,低排放。有两种类型的混合动力汽车,串联和并联式。在串联式电动汽车中,车辆动力所有动力来自同一个源头。例如,一个电动马达驱动的汽车电池和内燃机驱动发电机给电池充电。在并联混合动力,电力是通过这两个路径,电动机和内燃机驱动车辆。这一点,可能有助于电力汽车的电动发动机空转和加速度。内燃机巡航时,驱动传动系和给电池充电。 在当前生产混合动力车发动机和电动马达连接,同样的传播协助下电动引擎可以更小。

自动化专业英语_考试版的文章翻译

UNIT 1 A 电路 电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如 电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性. 就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R = 电阻,欧姆。 纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的 变化率。因此可得到:U=Ldi/dt 式中 di/dt = 电流变化率,安培/秒; L = 感应系数,享利。 电容两端建立的电压正比于电容两极板上积累的电荷q 。因为电荷的积累可表示为电荷增量dq的和或积分,因此得到的等式为 u= ,式中电容量C是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为i = dq/dt。因此电荷增量dq 等于电流乘以相应的时间增量,或dq = i dt,那么等式 (1-1A-3) 可写为式中 C = 电容量,法拉。 归纳式(1-1A-1)、(1-1A-2) 和 (1-1A-4)描述的三种无源电路元件如图1-1A-1所示。注意,图中电流的参考方向为惯用的参考方向,因此流过每一个元件的电流与电压降的方向一致。 有源电气元件涉及将其它能量转换为电能,例如,电池中的电能来自其储存的化学能,发电机的电能是旋转电枢机械能转换的结果。 有源电气元件存在两种基本形式:电压源和电流源。其理想状态为:电压源两端的电压恒定,与从 电压源中流出的电流无关。因为负载变化时电压基本恒定,所以上述电池和发电机被认为是电压源。另一方面,电流源产生电流,电流的大小与电源连接的负载无关。虽然电流源在实际中不常见,但其概念的确在表示借助于等值电路的放大器件,比如晶体管中具有广泛应用。电压源和电流源的符号表示如图1-1A-2所示。 分析电网络的一般方法是网孔分析法或回路分析法。应用于此方法的基本定律是基尔霍夫第一定律,基尔霍夫第一定律指出:一个闭合回路中的电压代数和为0,换句话说,任一闭合回路中的电压升等于电压降。网孔分析指的是:假设有一个电流——即所谓的回路电流——流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。 考虑图1-1A-3a 所示的电路,其由串联到电压源上的电感和电阻组成,假设回路电流i ,那么回路总的电压降为因为在假定的电流方向上,输入电压代表电压升的方向,所以输电压在(1-1A-5)式中为负。因为电流方向是电压下降的方向,所以每一个无源元件的压降为正。利用电阻和电感压降公式,可得等式(1-1A-6)是电路电流的微分方程式。 或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。正如图1-1A-1指出的用积分代替式(1-1A-6)中的i,可得1-1A-7 UNIT 3 A 逻辑变量与触发器

《机械工程专业英语教程》课文翻译

Lesson 1 力学的基本概念 1、词汇: statics [st?tiks] 静力学;dynamics动力学;constraint约束;magnetic [m?ɡ'netik]有磁性的;external [eks't?:nl] 外面的, 外部的;meshing啮合;follower从动件;magnitude ['m?ɡnitju:d] 大小;intensity强度,应力;non-coincident [k?u'insid?nt]不重合;parallel ['p?r?lel]平行;intuitive 直观的;substance物质;proportional [pr?'p?:??n?l]比例的;resist抵抗,对抗;celestial [si'lestj?l]天空的;product乘积;particle质点;elastic [i'l?stik]弹性;deformed变形的;strain拉力;uniform全都相同的;velocity[vi'l?siti]速度;scalar['skeil?]标量;vector['vekt?]矢量;displacement代替;momentum [m?u'ment?m]动量; 2、词组 make up of由……组成;if not要不,不然;even through即使,纵然; Lesson 2 力和力的作用效果 1、词汇: machine 机器;mechanism机构;movable活动的;given 规定的,给定的,已知的;perform执行;application 施用;produce引起,导致;stress压力;applied施加的;individual单独的;muscular ['m?skjul?]]力臂;gravity[ɡr?vti]重力;stretch伸展,拉紧,延伸;tensile[tensail]拉力;tension张力,拉力;squeeze挤;compressive 有压力的,压缩的;torsional扭转的;torque转矩;twist扭,转动;molecule [m likju:l]分子的;slide滑动; 滑行;slip滑,溜;one another 互相;shear剪切;independently独立地,自立地;beam梁;compress压;revolve (使)旋转;exert [iɡ'z?:t]用力,尽力,运用,发挥,施加;principle原则, 原理,准则,规范;spin使…旋转;screw螺丝钉;thread螺纹; 2、词组 a number of 许多;deal with 涉及,处理;result from由什么引起;prevent from阻止,防止;tends to 朝某个方向;in combination结合;fly apart飞散; 3、译文: 任何机器或机构的研究表明每一种机构都是由许多可动的零件组成。这些零件从规定的运动转变到期望的运动。另一方面,这些机器完成工作。当由施力引起的运动时,机器就开始工作了。所以,力和机器的研究涉及在一个物体上的力和力的作用效果。 力是推力或者拉力。力的作用效果要么是改变物体的形状或者运动,要么阻止其他的力发生改变。每一种

汽车专业英语翻译

About car engine Of all automobile components,an automobile engie is the most complicated assembly with dominant effects on the function of an autombile.So, the engine is generally called the"heat"of an automobile. 在汽车的所有部件中,汽车发动机是最复杂的组件,其对整车性能有着决定性的作用。因而发动机往往被称作发动机的“心脏”。 There are actually various types of engines such as electric motors,stream engines,andinternal combustion engines.The internal combustion engines seem to have almost complete dominance of the automotive field.The internal combustion engine,as its name indicates,burns fuel within the cylinders and converts the expanding force of the combustion into rotary force used to propel the vehicle. 事实上,按动力来源分发动机有很多种,如电动机、蒸汽机、外燃机等。然而内燃机似乎在发动机领域有着绝对的统治地位。就像其字面意思一样,内燃机的染料在气缸内燃烧,通过将燃烧产生气体的膨胀力转换成转动力来驱动发动机前进。 Engine is the power source of the automobile.Power is produced by the linear motion of a piston in a cylinder.However,this linear motion must be changed into rotary motion to turn the wheels of cars or trucks.The puston attached to the top of a connecting rod by a pin,called a piston pin or wrist pin.The bottom of the connecting rod is attached to the crankshaft.The connecting rod transmits the up-and-down motion of the piston to the crankshaft,which changes it into rotary motion.The connecting rod is mounted on the crankshaft with large bearings called rod bearing.Similar bearings, called main bearings,are used to mount the crankshaft in the block. 发动机是整部车的动力来源。能量来自于活塞在气缸内的(往复)直线运动。然而这种(往复)直线运动必须要转换成旋转运动才能驱动车轮。活塞与连杆通过一个销来连接,这个销称为活塞销。连杆的下部连接于曲拐。连杆把活塞的上下往复运动传递给曲拐,从而将往复直线运动转变成旋转运动。连杆和曲拐的连接使用大的轴承,称之为连杆轴承,类似的轴承也用于将曲轴连接到机体,称之为主轴承。 They are generally two different types of cooling system:water-cooling system and air-cooling system.Water-cooling system is more common.The cooling medium, or coolant, in them is either water or some low-freezing liquid, called antifreeze.A water-cooling system consists of the engine water jacket, thermostat, water pump, radiator, radiator cap, fan, fan drive belt and neccessary hoses. 主要有两种类型的冷却系统:水冷和风冷。水冷系统更为普遍。系统所用冷却介质或是冷却液常委水或其他低凝固点液体,称为抗凝剂。一个完整的水冷系统包括机体水套,节温器,水泵,散热器,散热器罩,风扇,风扇驱动皮带和必需的水管。 A water-cooling system means that water is used as a cooling agent to circulate through the engine to absorb the heat and carry it to the radiator for disposal.The ebgine is cooled mainly through heat transfer and heat dissipation.The heat generated by the mixture burned in the engine must be transferred from the iron or aluminum cylinder to the waterin the water jacket.The outside of the water jacket dissipates some of the heat to the air surrounding it, but most of the heat is carried by the cooling water to the radiator for dissipation.When the coolant temperature in the system reaches 90°,the termostat valve open fully, its slanted edge shutting off

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

汽车专业英语翻译

INTERNAL COMBUSTION ENGINE 引擎燃烧室 1. principle of operation 原理 Engine and power : Engine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine. Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power. 译: 引擎和能量: 引擎为汽车提供能量,燃料的化学能通过燃烧,转化为热能,这个过程叫燃烧。假如燃烧在燃烧室,这样的发动机叫内燃机。假如燃烧在气缸外,这样的发动机叫外燃机。 用在汽车上的一般是内燃机,热能在燃烧室释放,燃烧室气体温度升高。气体温度的升高使气体的压力曾加,燃烧室内的高压气体作用在活塞头部产生可以利用的化学能,化学能转化为机械能。 Engine T erms : Linking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are : TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft. BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft. Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft. Bore : the internal diameter of the cylinder. Swept volume : the volume between TDC and BDC Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm. Clearance volume: the volume of the space above the piston when it is at TDC. Compression ratio = (swept vol + clearance vol)\(clearance vol) Two-stroke : a power stroke every revolution of the crank.

电气自动化专业英语翻译

电气自动化专业英语(翻译1-3) 第一部分:电子技术 第一章电子测量仪表 电子技术人员使用许多不同类型的测量仪器。一些工作需要精确测量面另一些工作只需粗略估计。有些仪器被使用仅仅是确定线路是否完整。最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。 所有测量电值的表基本上都是电流表。他们测量或是比较通过他们的电流值。这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。 1.1安全预防 仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。注意:每种仪表只能用来测量符合设计要求的电流类型。如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。 许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。 警告:仪表不允许超过它的额定最大值。不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。许多仪表装备了过载保护。然而,通常情况下电流大于仪表设计的限定仍然是危险的。 1.3测量仪器的使用 电压表是设计来测量电路的电压或者通过元器件的压降。电压表必须与被测量的电路或元器件并联。 1.3.1压力检验计 交-直流电压检验计是一种相当粗糙但对电工来说很有用的仪器。这种仪器指示电压的近似值。更常见类型指示的电压值如下:AC,110,220,440,550V,DC,125,250,600V。许多这种仪器也指示直流电的极性。那就是说(i.e=that is)电路中的导体是阳性(正)的还是阴性(负)。 电压检验计通常用来检验公共电压,识别接地导体,检查被炸毁的保险丝,区分AC和DC。电压检验计很小很坚固,比一般的电压表容易携带和保存。图1。31。4描述了用电压检验计检查保险丝的用法。 为了确定电路或系统中的导体接地,把测试仪连接在导体和已建立的地之间。如果测试仪指示了一个

汽车专业英语课文翻译4

Fuel Supply System of Gasoline Engine(UNIT SEVEN) All the gasoline engines have substantially identical fuel systems and run on a mixture consisting of fuel vapor and air. The fuel system comprises the units designed to store, clear and deliver fuel, the units intended to clean air and a unit for preparing a mixture from fuel vapor and air. In a fuel system different components are used to supply fuel from the fuel tank into the engine cylinder. Some of the important components are fuel tank, fuel pump, fuel filter, carburetor, intake manifold and fuellines or tubes connecting the tank, pump and the carburetor. The fuel tank is a fuel container used for storing fuel. It is made of sheet metal. It is attached to the vehicle frame with metal traps and is located at the rear of the vehicle. They are mounted in a boot or boot-floor pan in case of front-engined cars and small commercial vehicles. In order to strengthen the tank as well as to prevent surging of fuel when the vehicle rounds a curve of suddenly stops, baffle plates are attached to the inside of the tank. A cap is used to close the filler opening of the tank. The fuel line is attached at or near the bottom of the tank with a filtering element placed at the connection. The other components of the fuel tank are the fuel gauge sending unit, a vent pipe, receiving unit. To prevent the dirt and water from entering the luggage compartment, a sealing strip is fitted between the fuel tank and boot floor pan. Moreover to limit the transmission of frame distortion to the tank giving rise to squeaking as the metal parts get rubbed together, rubber or felt pads are often fitted between the mountings and the tank. Provision is also made against drumming of the tank by these mountings. The tank may be placed at the side of the chassis frame for convenience in case of large commercial vehicles. The length of the connecting lines or tubes from the tank to the carburetor is also restricted by this at the same time. A porous filter is attached to the outlet lines. By drawing fuel from the tank through the filter, any water in the bottom of the tank as well as any dirt into the fuel gathers on the surface of the filter. To keep the fuel always under atmospheric pressure, the filter pipe or tank is vented. In order to prevent dirt in the fuel from entering the fuel pump or carburetor, fuel filters and screens are used in the fuel system. If the dirt is not removed from the fuel, the normal operation of these units will be prevented. The engine performance will also be reduced.

相关文档
最新文档