四翼飞行器设计与实现

四翼飞行器设计与实现
四翼飞行器设计与实现

四旋翼飞行器设计与实现

一、四旋翼飞行器的结构设计

四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼 1 和旋翼 3 逆时针旋转,旋翼 2 和旋翼 4 顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图 1.1 所示。

二、工作原理

四旋翼飞行器是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力不稳定。所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机。因此,非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出。所以它又是一种欠驱动系统。

电机 1 和电机 3 逆时针旋转的同时,电机 2 和电机 4 顺时针旋转。因此当飞行

器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

四旋翼飞行器在空间共有 6 个自由度(分别沿 3 个坐标轴作平移和旋转动作),这

6 个自由度的控制都可以通过调节不同电机的转速来实现。基本运动状态分别是:(1)垂直运动;(2)俯仰运动;(3)滚转运动;(4)偏航运动;(5)前后运动;(6)侧向运动。

在图(a)中,电机 1 和电机 3 作逆时针旋转,电机 2 和电机 4 作顺时针旋转,规定沿 x 轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

(1)垂直运动:垂直运动相对来说比较容易。在图中, 因有两对电机转向相反,

可以平衡其对机身的反扭矩;当同时增加四个电机的输出功率,旋翼转速增加使

得总的拉力增大;当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平

衡落地,实现了沿 z 轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等

于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减

小是垂直运动的关键。

(2)俯仰运动:在图(b)中,电机 1 的转速上升,电机 3 的转速下降,电机 2、电

机 4 的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩

及总拉力改变,旋翼 1 与旋翼 3 转速改变量的大小应相等。由于旋翼 1 的升力

上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转(方向如图所示),同理,当电机 1 的转速下降,电机 3 的转速上升,机身便绕 y 轴向另一个方向

旋转,实现飞行器的俯仰运动。

(3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2 和电机 4 的转速,保持电机 1 和电机 3 的转速不,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。

(4)偏航运动:四旋翼飞行器偏航运动可以借助旋翼产生的反扭矩来实现。旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩。为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的来年各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图 d 中,当电机 1 和电机 3 的转速上升,电机 2 和电机 4 的转速下降时,旋翼 1 和旋翼 3 对机身的反扭矩大于旋翼 2 和旋翼 4 对机身的反扭矩,机身便在富余反扭矩的作用下绕 z 轴转动,实现飞行器的偏航运动,转向与电机 1、电机 3 的转向相反。

(5)前后运动:要想实现飞行器在水平面内前后、左右的运动,必须在水平面内

对飞行器施加一定的力。在图 e 中,增加电机 3 转速,使拉力增大,相应减小

电机 1 转速,使拉力减小;同时保持其它两个电机转速不变,反扭矩仍然要保

持平衡。按图 b 的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产

生水平分量。因此可以实现飞行器的前飞运动。向后飞行与向前飞行正好相反。当然在图 b 图 c 中,飞行器在产生俯仰、翻滚运动的同时也会产生沿 x、y 轴的

水平运动。

(6)侧向运动:在图 f 中,由于结构对称,所以侧向飞行的工作原理与前后运动

完全一样。

四翼的控制规律,如表1所示。

表1 四翼飞行器旋翼转速控制规律

三、四翼飞行器组成

图3 控制结构图

要实现四轴飞行器的稳定飞行以及各个姿态的控制,需要实现对其姿态的感知,位置和高度的测量以及旋翼动力装置的控制。要实现操控人员对飞行器的控制,还要实现无线遥控功能。在四轴飞行器设计中飞行控制器是最基本的组成部分,因此,设计飞行控制器实现对飞行器的控制是本项目的重点之一。

飞行控制器配备各种传感器,以实现对飞行器姿态、高度以及位置的测量;配

备微控制器经程序设计实现控制系统核心,对传感器测量数据进行融合计算,

根据姿态与位置,结合遥控量实现符合要求的控制输出;实现电机控制接口,

根据控制器运算输出对电机转速进行控制,实现合适的转速。通过测量、运算、输出完成整个闭环控制系统。

1、飞行控制器

微控制器实现对传感器的信号进行采样、处理、计算,得到飞行器的姿态、位

置等参数,结合遥控器或者地面控制站的控制信号进行控制算法运算,实现控

制量输出。微控制器应满足控制器运算的速度与存储容量的要求。

2、传感器

1)角度传感器(ADXL202)

主要是测量飞行器当前姿态,传感器的响应速度要求。

2)角速度陀螺仪传感器(日本murata公司ENC系列产品)

加入此传感器可以对飞行器动作产生阻尼,保持当前姿态,则可以在增稳系统

中加入角速度陀螺仪。日本村田公司生产的ENC-03M是应用科里奥利力原理而

制造的角速度传感器。在飞行控制器的电路设计中,使用了3片ENC-03M组成一

个3轴电子陀螺仪传感器模块,用于测量三个轴向的角度。在最终的电路板上,三片传感器呈两两垂直的角度,沿空间坐标系的三个轴向安装。

3)高度传感器

用于测量飞行器离地面的高度,可采用测量空气气压的方法间接测量海拔高度。

气压作为一个物理量,其大小具有很深刻的物理含义,与海拔高度之间存在着密切的关系。采用BOSCH公司的BMP085数字气压传感器作为测量海拔高度的传感器

3、无线遥控模块(可买现成的模块即可)

4、电源模块

采用大容量的锂电池供电。由于电机、电子调速器、传感器、控制器,无线接收模块需要不同的工作电压。需要电压转换和稳压、滤波设计。

5、电机与功率驱动模块

采用无刷电机,无刷直流机的转速控制是通过改变电机电枢电压接通时间和通电周期的比例值 (即占空比)来改变平均电压的大小实现的。每一只电机都需要单独的控制逻辑,对于微控制器来讲无疑质疑中较大的负担,因此在本项目中选用专用的无刷直流电机电子调速器对其转速进行调节,微控制器只需将控制信号给每个电机的电子调速器即可。

四、四翼飞行器的动力模型

1、飞行器姿态解算方程

图4 坐标系绕Z轴旋转(偏航角Ψ)

图5 坐标系绕Y轴旋转(俯仰角θ)

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

四翼飞行器设计最新版 (1)

四旋翼飞行器设计 飞行器设计小组 组员:李阳,张响,马具彪,袁学松 指导老师:李培

目录 一四旋翼飞行器的发展背景 (3) 二四旋翼飞行器结构 (4) 三工作原理 (6) 1 四旋翼飞行器工作原理概述 (6) 2四旋翼飞行器运动状态 (6) 四零件数据详情 (12) 五外观设计 (14) 六内部设计 ............................................................错误!未定义书签。七四翼飞行器组装基本步骤 . (19) 八特点及其应用 (23) 1.飞行器的功能特点 (23) 2.飞行器的运用 (23) 3.未来前景 (23) 九参考文献 (24)

一四旋翼飞行器的发展背景四旋翼飞行器属飞行器的一种,属于人工智能与自动化机器的一种。在当今社会中,因体积小,功能多,而广泛使用。但由于构造复杂不易操作等原因,四旋翼飞行器的发展一直比较缓慢。近年来,由于新型材料、飞控技术的发展,微型四旋翼飞行器的发展非常迅速。南京航空航天大学研究出飞行器理论和数学建模,模糊控制等技术,促进了我国飞行器的发展。北京航空航天大学自主掌握共轴双翼机的自主控制与研发工作。浙江大学,清华大学研究出,机载GPS和数学建模机器人视觉。在国家的指导与鼓励下,很多所高校,积极响应,促进了我国四旋翼飞行器的发展。 国外已经对四旋翼飞行器做了大量研究,起步比国内早很多。在导航,自主飞行技术等方面领先国内。国外已经把飞行器广泛运用在军事勘察,工业监测,农业预防等多方面。

二四旋翼飞行器结构 四旋翼飞行器共有四个翼,均匀分布在前后左右,且四旋翼均在同平面内,左右上下完全对称。每个旋翼下都附有一个发动机,以提供动力。在飞行器的中心是一个飞行控制器,来控制飞行器的速度和方向。结构形式以及三视图如图1.1、图1.2所示。 图1.1四旋翼飞行器结构图

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器建模与仿真Matlab概要

四轴飞行器的建模与仿真 摘要 具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽 的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状 态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描 述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上 是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿 真模型,模型建立后在 Matlab/simuli nk 软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissanee mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilia n app licati ons. In the dissertati on, the detailed an alysis and research on the rack structure and dyn amic characteristics of the laboratory four-rotor aircraft is showed in the dissertatio n. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the camp aig n to make the research and an alysis. The four-rotor aircraft has many op erati ng status, such as climb ing, dow ning, hoveri ng and roll ing moveme nt, p itch ing moveme nt and yaw ing moveme nt. The dyn amic model is used to describe the four-rotor aircraft in flight in the dissertati on. On the basis of the above an alysis, modeli ng of the aircraft can be made. Dyn amics modeli ng is to build models un der the principles of flight of the aircraft and a variety of state of moti on, and Newt on - Euler model with reference to the four-rotor aircraft.The n the simulatio n is done in the software of Matlab/simuli nk. Keywords: Quad-rotor ,The dynamic mode, Matlab/simulink 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器 ,它非常适合近地侦察、监视的任务, ,进行飞行器的建模。动力学建模 -欧拉模型建立的仿

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

未来飞行器设计要点

目录一.世界经济的发展等因素,城市的特点 二.代步工具的发展历程,以及其类型和特点 三.代步工具历史产品介绍 四.设计灵感与产品设计 五.产品设计 六.细节演示 七.未来代步工具的材料及其工业设计 八.展板

人们随着时代的发展,使出行代步工具发展的很快。要想从一个城市,快速到达另一个城市,人们又想方设法的使“出行代步工具”得到了进一步的发展。不外乎至使地上跑的,水中游的,天上飞的代步工具,发展的尽乎完美的快捷和舒适。 本次设计基于世界城市发展的背景之下,通过分析和研究城市化进程、城市居民出行方式以及代步工具的发展历程,结合人性化设计、人机工程学和设计心理学等工业设计相关理论来深入分析城市居民代步工具设计中使用者的生理和心理需求,探讨其更符合城市居民人性化设计需求的可行性方案。 一.世界经济的发展等因素,城市的特点 我国现代城市交通的发展具有两大特征: 城市交通与城市对外交通的联系加强了,综合交通和综合交通规划的概念更为清晰。 随着城市交通机动化程度的明显提高,城市交通的机动化已经成为现代城市交通发展的必然趋势。 1.发展规律 现代城市交通重要表象是“机动化”,其实质是对“快速”和“高效率”的追求。 城市交通拥挤一定程度上是城市经济繁荣和人民生活水平提高的表现。随着城市交通机动化的迅速发展,城市机动交通比例不断提高,机动交通与非机动交通、行人步行交通的矛盾不断激化,机动交通与守法意识薄弱的矛盾日渐明显。

交通需求越来越大,而城市交通设施的建设就数量而言,永远赶不上城市交通的发展,这是客观的必然。 现代城市交通机动化的迅速发展也势必对人的行为规律和城市形态产生巨大影响,城市交通机动化的发展也会成为城市社会经济和城市发展的制约因素。现代城市交通的复杂性要求我们对城市交通要进行综合性的战略研究和综合性的规划,城市规划要为城市和城市交通的现代化发展做好准备。 2. 城市综合交通规划的内容 城市人群出行方式的发展,历史与现状,以及促使居民出行方式发生变化的关键因素。 刚建国时期——交通不便大城市电车、汽车比较多见,黄包车,自行车是比较普遍的代步工具。在一般的中小城市,有少量的自行车和人力车。农村,北方有马车、人力板车,南方有航船、牛车,步行是最普遍的出行方式 改革开放前——有所改善,以自行车为主“一五”计划期间兴建宝成铁路、鹰厦铁路;新藏、青藏、川藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流;1957年,武汉长江大桥建成,连接了长江南北的交通。 国家整体交通水平有所提高.改革开放前,城市的交通资源极为有限,人们出行除了用双脚行走之外,可以代步的交通工具也就是公交车和自行车了。但是公交线路少,车厢经常拥挤不堪。相比之下,最方便的交通工具当然是自行车,中国曾被称作“自行车王国”,可

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四轴飞行器制作

用户名 UID Email 请登录后使用快捷导航 没有帐号?注册 窗体顶端 找回密码 密码注册 窗体底端 快捷导航 首页迟些门户开放时,指向门户首页 全部贴汇总 技术贴汇总所有技术性的帖子汇总,方便阅读 非技术汇总所有非技术性的帖子汇总,方便阅读 帮助Help 无图快速版 阿莫电子邮购本论坛由阿莫电子邮购独家赞助 窗体顶端 搜索热搜: 雕刻机阿莫淘金春风电源 窗体底端 本版 用户 amoBBS 阿莫电子论坛?论坛首页? 机械电子? 四轴飞行? 多旋翼直升机(四轴飞行器)之开源整合平台[电路模组原理... / 4 页下一页 返回列表 查看: 15733|回复: 126 多旋翼直升机(四轴飞行器)之开源整合平台[电路模组原理图] [复制链接] 电梯直达

1楼 发表于2011-1-20 12:12:02|只看该作者|倒序浏览 一、相关技术文件: 1. 程式控制基底ATmega 8 ATmega8 技术文件点击此处下载ourdev_611065Q176XE.PDF(文件大小:2.45M) (原文件名: ATmega8_cn.PDF) 2. 无线模组 CC2500 (2.4G Hz 无线IC) 技术文件点击此处下载ourdev_611064KBBYJG.pdf(文件大小:1.26M) (原文件名: cc2500_cn.pdf) RDA T212 (PA+LNA) 技术文件点击此处下载ourdev_611063XH619C.pdf(文件大小:229K) (原文件名: RDA_T212.pdf) RDA ES02 (SP2T Switch )技术文件点击此处下载ourdev_611062ACP4OA.pdf(文件大小:29K) (原文件名: RDA_ES02.pdf) 3. 无刷马达电子调速模组 FDS7764A (N-Channel) 技术文件点击此处下载ourdev_612408FW8MGC.pdf(文件大小:273K) (原文件名:FDS7764A.pdf) TPC810 (P-Channel) 技术文件点击此处下载ourdev_612409Y3Y2UA.pdf(文件大小:293K) (原文件名:TPC8103.pdf) 4. 液晶萤幕显示模组 16x02 (液晶萤幕) 技术文件点击此处下载ourdev_612410MVKKXZ.zip(文件大小:365K) (原文件名:LCD_1602.zip) 5. MAG 9 FOD 飞行姿态感测模组(3轴磁力计+3轴线性加速计+3轴陀螺仪) LSM303DLH (磁力计+线性加速计) 技术文件点击此处下载ourdev_612411H66HEH.zip(文件大小:2.02M) (原文件名:LSM303DLH.zip) IMU-3000 (陀螺仪) 技术文件点击此处下载ourdev_612412ORGL5T.zip(文件大小:1.93M) (原文件名:IMU_3000.zip) 6. GPS模组 U-BLOX NEO-5Q (GPS) 技术文件点击此处下载ourdev_612413K5MRZI.zip(文件大小:3.03M) (原文件名:NEO_5.zip) 7. 超音波测距模组 HIN-232 (RS-232 5V至10V升压IC) 技术文件点击此处下载ourdev_612414E8JL5V.pdf(文件大小:564K) (原文件名:HIN232.pdf) LM-324 (OP) 技术文件点击此处下载ourdev_612415WGYN7Y.pdf(文件大小:599K) (原文件名:LM324.pdf) 二、TWI(I2C) 通讯规划(用于各个电路模组通讯) M8 TWI(I2C) 规划(PDF档) 电路图档(Eagle档) 点击此处下载ourdev_611067JVY9ZR.zip(文

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四轴飞行器制作应用实例大全

四轴飞行器制作应用实例大全 玩四轴这个东西,不是发明创造,人家懂只是知道得比你早一点,新手们入手四轴飞行器总是抱怨苦于无人可以指导,可是莫怪我等无言呀,往往一种问题有好几种原因,有时我是这么解决就好了,到你那边就不行了,所以玩四轴还是需要有扎实的基础,下面这些四轴设计实例是玩四轴总结出来的,有些是老前辈传授的,这些都是飞行模友的智慧。玩四轴不要怕当新鸟,老鸟也是新鸟飞出来的。 1. 微型四旋翼航拍器 本四旋翼航拍器采用OV7725C彩色摄像头,飞控板主控芯片为STM32,遥控器主控芯片为STM32,本系统在正常飞行过程中,通过按下遥控器,右键即可拍下此刻的照片,并实时存储到SD卡中,四轴和遥控器均已集成锂电池智能充电功能,通过USB数据线直接插入电脑即可充电。飞行器稳定,算法成熟,适合有一定基础的人开发。 2. mini小型四轴飞行器 网络上的小型四轴飞行器的PCB板都是要打烊的,打样的价格非常昂贵,我们学生党要怎么吧这么复杂的电路自己做出来呢,本人在集成飞小飞机上进行有效的更改,自己用普通做板的方式自己做出来了亲测成功哦。 3. STM32F103T8U6 +MPU6050微型四轴飞行器开源程序和PCB图有上位机 这个微型四轴飞行器使用的是STM32F103T8U6(STM 32F103T8U6数据手册)+MPU6050(MPU6050数据手册)等,开源程序和PCB图、有上位机,分享给大家学习。附件提供了飞行器原理图和PCB、飞行源码、测试程序、上位机软件、相关芯片资料。 4. 基于WiFi通信的四旋翼无人飞行控制器 目标是使用STM32开发板并配合由Altium Designer电路板设计软件绘制的扩展板设计实现一套四旋翼无人飞行器控制器系统,同时完成一套PC端和手机端APP地面站控制软件的编写,并加入GPS进行惯性导航,使飞行器能够在地面站或遥控器的控制下完成平稳高速飞行,并能够实现空中自稳。飞行器能够按地面站规划的路径实现自主巡航,并可携带摄像设备完成空中拍摄任务。四旋翼无人飞行控制器已经经过验证,可以飞起来了,放心使用。 5. STM32 WIFI 四轴飞行器全部资料 采用WIFI技术控制飞行器,简单又方便,只要你有安卓手机就可以了,有做好的安卓AP,直接安装即可,附件有1.有原理图,pcb文件99和AD都可以打开;2.源代码,有STM32源码,有测试程序和主程序,焊接好后方便大家测试用的。采用了RT_THREAD操作系统3.芯片资料;4.wifi开发手册和使用指南;5.有安卓上位机软件,有2.3版本和4.0版本。 6. 匿名迷你四轴飞行器,飞行器里的行家 资源包含主板PCB源码,遥控器源码, CPU: STM32F103CB(STM32F103CB数据手册) 2.4G: NRF24L01(NRF24L01数据手册) 电子罗盘:HMC5883(HMC5883数据手册) 陀螺仪+加速度计:MPU-6050 (MPU-6050数据手册) 电机:7*16

固定翼设计涉及的几个方面技术

1、微型无人机平台 (1)设计要求 基于小型无人机的摄影测量遥感平台还处于起步阶段,还没有一套完整的作业规范。现行的航测规范主要是参照大多数测绘单位现有的技术条件和仪器设备制定的, 而小型无人机作为一种新型的低空对地观测平台,主要在1000m以下的高度进行航拍,且其采用的是高分辨率的数码相机作为成像设备,与传统的航空摄影测量有较大的不同。因此,已有的摄影测量规范在这种新型摄影平台上并不一定能适用。按照传统的 航测作业准则,有以下几点参考指标: 1)飞行速度宜在5O~100km/h之内; 2) 发动机宜在飞机前进方向的后部(以避免湍流的影响); 3) 在发动机出故障时,飞机应可以安全滑翔降落; 4) 相对地面的飞行高度的变化应小于5%; 5) 相邻摄站飞行高度的变化应小于5%; 6) 航摄平台在作业时其水平误差不得大于3。; 7) 测量飞行速度的误差不大于5%; 8) 偏离航线的绝对误差不得大于相片旁向覆盖域的5%; (2)微型无人机遥感设备集成与接口 微型无人机平台可采用的候选遥感设备包括4种高空间分辨率(<1 m×1 m)轻型(<6O kg)机载合成孔径雷达(SAR)和两种轻型光学成像设备。选择适合于具体应用和无人机特点的遥感设备,建立标准设备接口,缩短安装调试周期是集成应用型无人机航 空遥感系统的关键。具体内容包括: 1)针对不同应用要求,通过性能价格比较,选择遥感设备; 2)完成遥感数据获取设备与无人机平台之间的统一接口设计,以便实现不同型号SAR、红外摄像仪和可见光CCD等设备的快速更换; 3) 无人机遥感设备的安装调试。 2、微型无人机飞行控制系统

NCG-1型无人机飞控系统是我公司技术人员自主研发的一套微型无人机控制系统。该系统包含:机载飞控、地面站、通讯设备。可以控制各种布局的无人驾驶飞机,使 用简单方便,控制精度高,GPS导航自动飞行功能强,并且有各种任务接口,方便用 户使用各种任务设备。起飞后即可立即关闭遥控器进入自动导航方式,在地面站上可 以随意设置飞行路线和航点,支持飞行中实时修改飞行航点和更改飞行目标点。单一 地面站控制多架飞机的能力和自动起降的功能也正在开发中。 作为无人机的飞行控制核心设备,系统的主要任务是利用GPS等导航定位信号, 并采集加速度计、陀螺等飞行器平台的动态信息,通过INS/GPS组合导航算法解算无 人机在飞行中的俯仰、横滚、偏航、位置、速度、高度、空速等信息,以及接收处理 地面发射的测控信息,用体积小巧的嵌入式中央处理器形成以机载控制计算机为核心 的电子导航设备,对无人机进行数字化控制,根据所选轨道来设计舵面偏转规律,控 制无人机按照预定的航迹飞行,使其具有自主智能超视距飞行的能力。 (1)自稳能力: 在各种气象条件及外界不可预测影响下,智能测算无人机的各项指标参数,自动 控制无人机的飞行姿态的稳定,确保无人机正常飞行; (2)自航能力: 在保持无人机飞行稳定的前提下,采用各种导航手段,控制无人机按照预先设定 的航迹飞行,执行相应航线任务; (3)状态监控与测控接口: 作为整个无人机系统的控制核心,飞行控制计算机系统实时监控无人机各模块状态,并通过高速接口与地面站实时进行指令和数据的交换。 NCG-1型无人机飞控系统采用了最先进的FutabaPCM1024系列遥控,操作比一般的无人机控制系统更加灵活灵活,飞行姿态控制更加方便。控制系统的舵机是我公司 自主研发的,达到了50Hz更新率,13 位舵机分辨率,使我们的微型无人机能够获取 更高精度的数据。主要特性如下: 集成4Hz更新率GPS,可扩展北斗、GLONASS组合导航; 集成数字式空速、气压传感器,0.1mba高精度,高度测量可扩展无线电高度计; 集成低成本低重量IMU,通过带GPS修正的Kalman滤波计算最贴近真实情况的 飞机姿态,动态精度±2o,消除瞬时加速度、陀螺漂移对姿态计算的影响;

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

相关文档
最新文档