第五章 角动量角动量守恒定理.
第五章 角动量 角动量守恒(2011)

.中国载人航天工程副总指挥——胡世祥 中国载人航天工程副总指挥——胡世祥 胡世祥,1940年生 黑龙江人,毕业于哈尔滨工业大学 年生, 胡世祥,1940年生,黑龙江人,毕业于哈尔滨工业大学 控制工程系。 控制工程系。 曾任中国酒泉卫星发射中心副总工程师, 曾任中国酒泉卫星发射中心副总工程师,西昌卫星发射 中心副主任、主任。 中心副主任、主任。 长期从事火箭卫星发射试验,主持发射过多种型号卫星, 长期从事火箭卫星发射试验,主持发射过多种型号卫星, 曾多次担任卫星发射现场的 总指挥。 总指挥。 现任总装备部副部长,中国载人航天工程副总指挥, 现任总装备部副部长,中国载人航天工程副总指挥,主 神舟”号飞船发射工作。 管“神舟”号飞船发射工作。
(2) 对 O 点的角动量 )
r r r r = r′ + R r r r r r r r r r r L = r × p =(R+r′)× p= R× p = R×m t g O r r L = Rm gt R ⊥g O
m r m v
确定质点有无角动量,要看位矢是否存在绕参考点的转动。 确定质点有无角动量,要看位矢是否存在绕参考点的转动。
老校长杨士勤曾说: 老校长杨士勤曾说: 神舟号”飞船研制过程中, 在“神舟号”飞船研制过程中,有5项关键技术 是由哈工大教师 是由哈工大教师 做出的成果解决的。 做出的成果解决的。 超大型空间环境模拟器; 超大型空间环境模拟器; 仿真试验OUT型闭式转台 型闭式转台; 仿真试验OUT型闭式转台; 飞船数据管理容错计算机; 飞船数据管理容错计算机; 返回舱焊接变形控制技术; 返回舱焊接变形控制技术; 飞船故障诊断专家系统。 飞船故障诊断专家系统。 国产舱外航天服 失重训练模拟水槽 出舱用反光镜体 舱外航天服试验舱
第5章-角动量角动量守恒定律

② 在点2处
2
力矩 M 2
力矩定义式 M r v
P
{ 方向:垂直图平面向里, 大小; M 2 Gm0m / R
R
m
900
m0
1
角动量 L2
同上理可得 m 的速度v2 Gm0 / R
{
方向:垂直图平面向外,
L2
大小; L2 m Gm0 R
例4、地球在远日点时,它离太阳的距离为r1 1.52 1011 m,
子从静止开始以速度 v 相对绳子向上爬,求重物上升
的速度。
(复习题一、三. 19)
解 设猴子、重物对地面的速度分别为 v1、v 2 。
由猴、重物组成的系统角动量守恒,得
v1 v2
R
∵ v1 v猴绳 v绳-地 v v绳-地
v1
v2
而 v绳地 v物地 v2 , 则 v1 v v2
物体运动仅受有心力作用时, 力对力心 O点的力矩始终为零。
m 有心
在有心力作用下,运动物体
r 力F
对力心 O 的角动量守恒。
力心o
L1 L2
r1
mv1
r2
mv2
行星绕太阳运动:
引力指向太阳,行星在引
力动的(,力有而矩心且为力零)r作,//F用M,下对r绕 力太F心阳O0运,
,且有
d
2 2
d12
d
2 3
,试求:(1)小球所受重
{ 力相对 A,
解 (1) MA
B力, 矩C 的M力矩r;
(2)小球相对 F
方向:垂直图平面向里,
大小;
第05章 角动量 角动量守恒定律(参考答案)

m 1v 1 m 2v 2
v1 v2
9
爬与不爬,两小孩同时到达滑轮! 5.19 由一根长为 l,质量为 M 的静止的细长棒,可绕其一 端在竖直面内转动。若以质量为 m,速率 v0 的子弹沿与棒 垂直的方向射向棒的另一端。 (1)若子弹穿棒而过,速度为 v,求棒的旋转角速度 (2)若子弹嵌入棒中,求棒的最大旋转角 答案: (1)以 m , M 为系统,以 O 为参考点。
O
M
l
v m
碰撞时刻,角动量守恒
1 mlv0 J mlv Ml 2 mlv 3
解得:
3m(v0 v) Ml
(2)碰撞时刻,角动量守恒
得:
1 mlv0 J ml 2 M m l 2 3 3mv0 M 3m l
1 2 1 2 1 J mv Mg l 1 cos mgl 1 cos 2 2 2
(3)设碰后角速度为 ω’
' L ' 2mv 1
a a ' a mv 2 3 2 6
2m 1 a a 2 a ' a m '( )2 ma 2 ' 3 3 2 6 3
1 2 L' L ma2 ma 2 ' 2 3 根据角动量守恒,有
解得
'
3 4
5.17 质量为 m 的小球, 以速度 v0 在水平冰面 上滑动,撞在与小球运动方向垂直的一根细木棍 的一端,并粘附在木棍上。设木棍的质量为 M , 长度为 l。试求: (1 )忽略冰的摩擦,定量地描述 小球附在木棍上后,系统的运动情况。 (2 )刚刚 发生碰撞之后,木棍上有一点 p 是瞬时静止的, 问该点在何处?
第五章 角动量角动量守恒定理解读

第五章角动量角动量守恒定理本章结构框图学习指导本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。
许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。
建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。
本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。
还请注意动量守恒在天体问题、粒子问题中的应用。
基本要求1.理解质点、质点系、定轴刚体的角动量概念。
2.理解定轴刚体的转动惯量概念,会进行简单计算。
3.理解力矩的物理意义, 会进行简单计算。
4.掌握刚体定轴转动定律,熟练进行有关计算。
5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理,熟练进行有关计算。
6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
内容提要1.基本概念刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。
定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。
即:I的大小与刚体总质量、质量分布及转轴位置有关。
质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。
表5.1对质点、质点系、定轴刚体的角动量进行了比较。
表5.1质点、质点系和定轴刚体的角动量力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):即:大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。
对于力矩的概念应该注意明确以下问题:•区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。
例如:某力对x、y、z轴的力矩就是该力对原点的力矩在三个坐标轴上的投影:由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。
大物题库-第五章 角动量守恒定律-西南交大

r
dθ θ
解:取离轴线距离相等的点的集合 为积分元
R
d S = 2πrd l = 2πRsinθ ⋅ Rdθ
o
m
m σ= 4πR 2
1 d m = σ d S = m sin θ d θ 2 1 2 2 d J = r d m = ( R sin θ ) d m = mR 2 sin 3θ d θ 2
mgs 解得:a = ( m + 1 M )l 2
x
又: a = rβ s = x1 − x2
第四节 角动量守恒定律
例: 一半径为R、质量为 M 的转台,可绕通过其中心 的竖直轴转动, 质量为 m 的人站在转台边缘,最初人 和台都静止。若人沿转台边缘跑一周 (不计阻力),相 对于地面,人和台各转了多少角度? 思考: 1.台为什么转动?向什么方向 转动? 2.人相对转台跑一周,相对于 地面是否也跑了一周? 3.人和台相对于地面转过的角 度之间有什么关系?
A M r o x2 s
m
B
解:在地面参考系中,建立如图 x 坐标系,设绳两端坐标分别为x1, x2,滑轮半径为 r , 有:
l = A A′ + AB + B B ′ = x1 + x 2 + π r
B′
s = x1 − x 2
A′
x1 x
m AB
m m m A = m AA′ = ⋅ x1 = ⋅π r l l m m B = mBB′ = ⋅ x2 l
J=
∫
dJ =
∫
0
R
2 mr 4dr 2 2 = mR 3 R 5
例4. 一长为 L 的细杆,质量 m均匀分布,求该杆对垂直 于杆,分别过杆的中点、一端端点和距端点L/4处的轴的 转动惯量。 解:(1)轴过中点
角动量.pdf

i
r ∑ mi ri′
i
与 i 无关
M
r × vC
由
r ∑ mi ri M
r ∑ mi ri′ M
∑
i
r r r r ri ′ × m i v c = M rc′ × v c = 0
质心对自己的位矢
r r r r r r r L = rc × ∑ mi vi + ∑ ri′× mi vc + ∑ ri′× mi vi′
r p1
i i i
r r r ri = rc + ri′ Q r r r v i = v c + v i′
有':对质心 无':对参考点
rr r r1rc r 2
r cp2
r ri′ θ θ
rr p pii
∴
与i无关
r r r r L = ∑ (rc + ri′) × m i v i
i i i
*质点对某参考点的角动量反映质点绕该参考点旋 转运动的强弱。 转运动的强弱。 *必须指明参考点, 必须指明参考点,角动量才有实际意义。 角动量才有实际意义。
2. 质点系角动量
r r r r r r L = ∑ Li = ∑ ri × pi = ∑ ri × mi vi
系统内所有质点对同一参考点 系统内所有质点对同一参考点角动量的矢量和 同一参考点角动量的矢量和
J = ∫ r 2dm 积分元选取: 积分元选取:
λdl
J = ∫ r dm
2
线密度: 线密度: λ , 线元: 线元: d l
面密度: 面密度: σ , 面元: 面元: dS
体密度: 体密度: ρ , 体元: 体元: dV
角动量守恒定律
0 L v0 ; L v 2 2
得:
v0 v 9
注意:区分两类冲击摆 质点 质点 柔绳无切向力 (1) o • 水平方向: Fx =0 , px 守恒
v0
l
m (2)
Fy
M
L • 对 o 点:M 0 ,
m v 0l = ( m + M ) v l
m v 0= ( m + M ) v
守恒
Fx
质点
定轴刚体(不能简化为质点)
o
v0
m
l
轴作用力不能忽略,动量不守恒, 但对 o 轴合力矩为零,角动量守恒
M
mv 0 l ml 2 1 Ml 2 3
v l
回顾习题
P84 4 -10
F
O
m M
F轴 0 m M系统 p 不守恒; M轴 0 m M系统 对O点角动量守恒 m 2 gh R m M vR
角动量守恒定律: 当质点系所受外力对某参考点(或轴)的力矩的矢 量和为零时,质点系对该参考点(或轴)的角动量 守恒。
注意
1.与动量守恒定律对比
当 F外 0 时,
当 M外 0 时,
2.守恒条件 能否为
p 恒矢量 L 恒矢量
或
?
彼此独立
M外 0
M轴 0
M 外 dt 0
m 以速度v 0 撞击 m 2 ,发生完全非弹性碰撞
求:撞后m 2的速率 v ?
解1:m 和 m 2 系统动量守恒
m v 0 = (m + m 2 ) v
A
解2: m 和 (m1 + m 2 )系统动量守恒
5_5角动量 角动量守恒定律
第五章 刚体的转动 二 刚体定轴转动的角动量定理和角动量守恒定律 1 刚体定轴转动的角动量
5 – 5 角动量守恒
L=
∑ m i ri v i
i
= ( ∑ m i ri )ω
2 i
ω
v ri
mi
z
L = Jω
2 刚体定轴转动的角动量定理 d L d ( Jω ) M = = dt dt
O
v vi
∫t1
t2
M d t = Jω 2 − Jω1
非刚体定轴转动的角动量定理
∫
t2
t1
Mdt = J 2ω 2 − J1ω1
5 – 5 角动量守恒 刚体定轴转动的角动量定理
第五章 刚体的转动
∫
t2
t1
Mdt = Jω2 − Jω1
3 刚体定轴转动的角动量守恒定律 若 M = 0 ,则 L = Jω = 常量 讨论 不变, 不变; 不变. 若 J 不变, 不变;若 J 变, 也变,但 L = Jω 不变 ω ω 也变, 内力矩不改变系统的角动量. 内力矩不改变系统的角动量 在冲击等问题中 冲击等问题中 守 恒条件
5 – 5 角动量守恒
第五章 刚体的转动
冲量、动量、动量定理. 力的时间累积效应 冲量、动量、动量定理 冲量矩、角动量、 力矩的时间累积效应 冲量矩、角动量、 角动量定理. 角动量定理
v v 2 质点运动状态的描述 质点运动状态的描述 p = m v E k = m v 2 v v 刚体定轴转动运动状态的描述 刚体定轴转动运动状态的描述 L = Jω Ek = Jω 2 2 v v v v ω ≠ 0, p = 0 ω = 0, p = 0
vM = (2 gh)
l u= ω 2
第5章角动量角动量守恒定律
(2) 说明天体系统的旋转盘状结构.
v
r
O
B S
A r
[证明]
(1) 行星对太阳O的角动量的大小为 L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
用 s 表示 t 时间内行星所走过的弧长, 则有
dt
若 M外 0
则 dL 0 或 L 常矢量
dt
若对某一固定点,质点所受合外力矩为零, 则质点对
该固定点的角动量矢量保持不变。
例:质点做匀速直线运动中,对0点 角动量是否守恒?
Lo r mv
rmvsin
r mv
L
r
O r
A
p mv
6
例 试利用角动量守恒定律:
1) 证明关于行星运动的开普勒定律:
v1
r1
B S
A
O
r1
积, 如图中所示.
其中 d /dt 称为掠面速度.
由于万有引力是有心力, 它对力心O的力矩总是等于零, 所以角动量守恒, L=常量, 行星作平面运动, 而且
d L 常量
dt 2m
这就证明了掠面速度不变, 也就是开普勒第二定律.
8
(2) 角动量守恒说明天体系统的旋转盘状结构
lim L r ms sin
t0 t
lim L
2m 2m d
t0 t
dt
若用 r 表示从O到速度矢量 v 的垂直距离, 则有
r sin s rs 2
7
lim L
2m 2m d
t0 t
dt
C D
其中 是 t时间内行星 v2
角动量、角动量守恒定律的分析
02
3
4. 求质量 m ,半径 R 的球体对直径的转动惯量
解:以距中心 r ,厚 dr 的球壳
R
dr
r
为积分元
o
dV 4r 2dr
m
m 4 R3
3
dJ
2 3
dm r 2
2mr 4dr R3
dm dV
J
R
dJ
0
2mr 4dr R3
2 5
mR2
注意: 对同轴的转动惯量才具有可加减性。
直于杆,分别过杆的中点和一端端点的轴的转动惯量。
解:(1) 轴过中点
dm
x
L2
ox
L 2
L
J
r 2dm
m L
1 3
L3 8
L
x2dm
x 2 2
L
L3 8
1 12
2
mL2
m dx L
m L
1 3
x3
2 L
2
(2) 轴过一端端点
dm
o
x
Lx
J r2dm x2dm L x2 mdx 0L m 1 x3 L 1 mL2 L3 0 3
o r m p
p
or
* 质点对某参考点的角动量反映质点绕该参考点旋
转运动的强弱。
*必须指明参考点,角动量才有实际意义。
2. 质点系角动量
L
系i统L内i vr所ii 有i vr质rcci 点 rvp对iii 同 无一有i':'参:r对i对考参质考点m心点i角vi 动o量r1pr的c1 矢crrp量2ir2i和
i
i
i
式中 J ri2mi
i
刚体对轴的转动惯量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章角动量角动量守恒定理本章结构框图学习指导本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。
许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。
建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。
本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。
还请注意动量守恒在天体问题、粒子问题中的应用。
基本要求1.理解质点、质点系、定轴刚体的角动量概念。
2.理解定轴刚体的转动惯量概念,会进行简单计算。
3.理解力矩的物理意义, 会进行简单计算。
4.掌握刚体定轴转动定律,熟练进行有关计算。
5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理,熟练进行有关计算。
6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
内容提要1.基本概念刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。
定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。
即:I的大小与刚体总质量、质量分布及转轴位置有关。
质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。
表5.1对质点、质点系、定轴刚体的角动量进行了比较。
表5.1质点、质点系和定轴刚体的角动量力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):即:大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。
对于力矩的概念应该注意明确以下问题:•区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。
例如:某力对x、y、z轴的力矩就是该力对原点的力矩在三个坐标轴上的投影:由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。
•明确质点系内力矩的矢量和恒为零:由于内力总是成对出现,作用力和反作用力等大、反向、在同一直线上,所以对任何参考点内力矩的矢量和恒为零。
当然,对任意轴,内力矩的代数和也恒为零。
•明确质点系的合外力矩不等于其外力矢量和的力矩:合外力矩为各外力对同一参考点的力矩的矢量和,即:。
由于一般情况下,各外力的作用点的位矢各不相同,所以不能先求合力,再求合力的力矩。
但是存在特例:在求重力矩时,可以把系内各质点所受重力平移到质心C,先求出其合力,再由得到重力的合力矩。
由此还可以得到:作用于系统的合外力为零时,合外力矩不一定为零(图5.2);系统的合外力矩为零时,其合外力也不一定为零(图5.3)。
•明确有心力对其力心的力矩恒为零:力的作用线始终通过某定点的力称为有心力。
该定点称为力心。
显然,有心力对其力心的力臂为零。
所以,有心力对其力心的力矩恒为零。
力矩的角冲量(冲量矩):见表5.2表5.2力矩的角冲量2.基本规律角动量定理:质点和质点系角动量定理的微分、积分形式如表5.3所示。
请注意刚体定轴转动定律不过是质点系角动量定理在定轴方向上的分量式而已。
表5.3质点和质点系的角动量定理角动量守恒定律:当质点系所受对某参考点(轴)的合外力矩为零时,质点系对该参考点(轴)的总角动量不随时间变化(表5.4)。
角动量守恒定律反映了空间的旋转对称性(见第7章),是自然界普遍适用的基本定律之一,在生活、技术及科学研究中有非常广泛的应用。
表5.4 角动量守恒定律重点与难点1.重点质点,质点系和定轴转动刚体的角动量定义。
刚体定轴转动定律及应用。
质点和质点系角动量定理及应用。
角动量守恒定律及应用2.难点①区别动量定理和角动量定理。
②区别动量守恒定律和角动量守恒定律的条件,并能综合运用。
③动量及动量定理、角动量及角动量定理是否与参考系的选择有关。
1.动量及动量定理,角动量与角动量定理是否与参考系选择有关?质点动量,角动量,由于 v 和 r 都是相对量,与参考系的选择有关,所以,动量和角动量应与参考系的选择有关。
动量定理和角动量定理只适用于惯性系,对于非惯性系,该两定理不成立。
2.区别动量定理与角动量定理动量定理表示质点或质点系的动量改变与质点或质点系所受的合力的时间累积-- 冲量相对应;角动量定理表示质点或质点系的角动量的改变与质点或质点系所受的外力矩的矢量和的时间累积 -- 角冲量相对应。
两者是不同的概念。
例如:有力作用下的质点系(太阳地球系统),地球在太阳引力作用下,动量不断发生变化,但角动量却始终不变,因引力通过力心(太阳),对力心的力矩始终为零。
3.动量和角动量守恒的条件质点或质点系所受合外力为零时,质点或质点系的动量将保持不变。
质点或质点系对某一参考点或参考轴的合外力矩为零时,质点或质点系对该参考点或参考轴的角动量保持不变。
在实际问题中要认真区别两个守恒定律成立的条件。
许多情况下,系统对某一参考点的力矩矢量和为零时,系统所受外力不一定为零。
即系统角动量守恒时,动量不一定守恒。
反之,系统所受合外力为零时,合外力矩不一定为零,即系统动量守恒时,角动量不一定是守恒。
(参看教材P.91【例2】)。
对质点系而言,内力总是成对出现,大小相等方向相反,作用在同一直线上,因此,内力的矢量和及内力对某一参考点或参考轴的力矩的矢量和始终为零,因此,内力不改变系统的总动量,内力矩不改变系统的角动量。
例1水分子的形状如图5-2所示。
从光谱分析得知水分子对 AA′轴的转动惯量是,对BB′轴的转动惯量是。
试由此数据和各原子的质量求出氢和氧原子间的距离 d 和夹角。
假设各原子都可当质点处理。
解:由图可得此二式相加,可得上二式相比,可得例2一质量m = 2200kg 的汽车以的速度沿一平直公路开行。
求汽车对公路一侧距公路d= 50m 的一点的角动量是多大?对公路上任一点的角动量又是多大?解:如图5-3所示,汽车对公路一侧距公路d= 50m的一点P1的角动量的大小为汽车对公路上任一点P2的角动量的大小为例3两个质量均为m 的质点,用一根长为2a、质量可忽略不计的轻杆相联,构成一个简单的质点组。
如图5-4所示,两质点绕固定轴OZ以匀角速度转动,轴线通过杆的中点O与杆的夹角为,求质点组对O点的角动量大小及方向。
解: 设两质点A、B在图示的位置,它们对O点的角动量的大小相等、方向相同(与OA和m v组成的平面垂直)。
角动量的大小为例4如图5-5所示,转轴平行的两飞轮Ⅰ和Ⅱ,半径分别为R1、R2。
对各自转轴的转动惯量分别为J1、J2。
Ⅰ轮转动的角速度为,Ⅱ轮不转动。
移动Ⅱ轮使两轮缘互相接触。
两轴仍保持平行,由于摩擦,两轮的转速会变化。
问转动稳定后,两轮的角速度各为多少?辨析:首先分析系统所受的外力,再看这些外力对定轴的合外力矩是否为零,如果为零应用角动量守恒定律,否则应用角动量定理。
解:轮Ⅰ、轮Ⅱ接触时,轮Ⅰ受到重力m1g,轴给轮的力T1,以及摩擦力f 1,轮Ⅱ施加的正压力N1;轴Ⅱ受到重力m2g,轴给轮的力T2,以及摩擦力f2、轮Ⅰ施加的正压力N2,以及外加力F。
f1和f2大小相等、方向相反,对轮Ⅰ和轮Ⅱ组成的系统来说,f1和f2是一对内力,它们的力矩和不会改变系统的总角动量。
轮Ⅰ、轮Ⅱ系统受到的外力T1、T2、m1g和m2g,它们对O1轴或者O2轴的合外力矩皆不为零,这个系统对O1或者O2的角动量都不守恒。
所以应对轮Ⅰ、轮Ⅱ分别运用角动量定理。
对Ⅰ轮,设顺时针转动为正向(1)对Ⅱ轮,设逆时针转动为正负(2)联立(1)、(2)两式可得(3)转动稳定时,两轮缘的线速度相等,即(4)联立(3)、(4)解得例5唱机的转盘绕过盘心的固定竖直轴转动,唱片放上后将受转盘的摩擦力作用随转盘移动。
设唱片可以看成是半径为R的圆盘,唱片质量为m,唱片与转盘之间摩擦系数为μ,求唱片刚放上去时受到的摩擦力矩M f和唱片由放上去到具。
有角速度所需的时间t1解:唱片之所以转动是因受到转盘施加的力矩的作用,也就是摩擦力矩,它是唱片的动力矩。
在唱片上选为半径为r,宽度为d r的圆环,如图5-6所示。
它受的动力矩为上式中,是唱片的密度。
整块唱片受的摩擦力矩为视唱片为刚体,据转动定律分离变量有积分上式例6如图5-7所示,两物体质量分别为m1和m2,定滑轮的质量为m,半径为r,可视作均匀圆盘。
已知m2与桌面间的滑动摩擦系数为,求m1下落的加速度和两段绳子中的张力各是多少?设绳子和滑轮间无相对滑动,滑动轴受的摩擦力忽略不计。
解:对m1,由牛顿第二定律对m2,由牛顿第二定律对滑轮,用转动定律又由运动学关系,设绳在滑轮上不打滑联立解以上诸方程,可得例7如图5-8所示。
两个圆轮的半径分别为R1和R2,质量分别为M1和M2。
二者都可视为均匀圆柱体而且同轴固结在一起,可以绕一水平固定轴自由转动。
今在两轮上各绕以细绳,绳端分别挂上质量是m1和m2的两个物体。
求在重力作用下,m2下落时轮的角加速度。
解:如图示,由牛顿第二定律对m1:对m2:对整个轮,由转动定律又由运动学关系联立解以上诸式,即可得例8 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O′转动,设大小圆柱体的半径分别为R和r,质量分别为 M和m,绕在两柱体上的细绳分别与物体m1和物体m2相连,m1和m2 分别挂在圆柱体的两侧,如图5-9(a)所示。
设R = 0.20m,r = 0.10m,m = 4kg,M = 10kg,m1= m2= 2kg,且开始时m1、m2离地均为h = 2m,求:(1)柱体转动时的角加速度;(2)两侧细绳的张力;(3)m1经多长时间着地?(4)设m1与地面作完全非弹性碰撞,m1着地后柱体的转速如何变化?图5-9(a)解:设a1、a2分别为m1、m2的加速度,为柱体角加速度,方向如图5-9(b)所示。
(1)m1、m2的平动方程和柱体的转动方程如下:式中:; ;;;联立(1)、(2)、(3)式,解得角加速度为代入数据后得(2)由(1)式得由(2)式得(3)设m1着地时间为t,则(4)m1着地后静止,这一侧绳子松开。
柱体继续转动,因只受另一侧绳子拉力的阻力矩,柱体转速将减小,m2减速上升。
讨论:如果只求柱体转动的角加速度,可将柱体、m1、m2选做一个系统,系统受的合外力矩,则加速度本题第二问还要求两侧细绳的张力,故采用本解法是必要的,即分别讨论柱体的转动、m1和m2的平动。
例9一轻绳绕过一质量可以不计且轴光滑的滑轮,质量皆为m 的甲、乙二人分别抓住绳的两端从同一高度静止开始加速上爬,如图5-10所示。
(1)二人是否同时达到顶点?以甲、乙二人为系统,在运动中系统的动量是否守恒?机械能是否守恒?系统对滑轮轴的角动量是否守恒?(2)当甲相对绳的运动速度u是乙相对绳的速度2倍时,甲、乙二人的速度各是多少?解:(1)甲、乙二人受力情况相同,皆受绳的张力T,重力mg,二人的运动相同,因为所以二人的加速度相同,二人的速度为因初速度v0 = 0,二人在任一时刻的速度相同,上升的高度相同,所以同时到达顶点。