12个球称3次找坏球的数学解答(原作者-方)

12个球称3次找坏球的数学解答(原作者-方)
12个球称3次找坏球的数学解答(原作者-方)

序篇(4-4-4分组整体称法)

古老的智力题详述:

有12个球特征相同,其中只有一个重量异常,要求用一部没有砝码的天平称三次,将那个重量异常的球找出来。

以下会给4个解答,一个比一个牛,一个比一个震撼!

第一篇先给个被号称网上最牛的解答,一种新的完全的数学解法(线代+信息论),该文解法创于2005年,一次与友人聊天建议发表到QQ346546618的个人空间(2006年7月),后被网友转载到各大网站并被收入到百度文库。

第二篇会给个EXCEL进阶解法,网友们可以用此法加上分块矩阵的方法继续找出9球称4次找2异常球的具体解法或更复杂的称球问题。

第三篇会给出2个很漂亮完美的非常特别的解,其称量结果的三进制和异常球序号及和轻重状态具有简洁的一一对应关系。

先给个444分组的具体称量方案:

把12个球编成1,2......12号,则可设计下面的称法:

左盘*** 右盘

第一次1,5,6,12 *** 2,3,7,11

第二次2,4,6,10 *** 1,3,8,12

第三次3,4,5,11 *** 1,2,9,10

每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的。同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的。剩下的24种结果就可以判断出哪种情况是哪一个球了。例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同。可依据此原理判断出其它的各种情况分别是哪个球。

有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24

可能结果如下表:

************ ********** ************ **********

* 可能* -* 结果* * 可能*-* 结果*

************ ********** ************ **********

1号球,且重-左、右、右1号球,且轻-右、左、左

2号球,且重-右、左、右2号球,且轻-左、右、左

3号球,且重-右、右、左3号球,且轻-左、左、右

4号球,且重-平、左、左4号球,且轻-平、右、右

5号球,且重-左、平、左5号球,且轻-右、平、右

6号球,且重-左、左、平6号球,且轻-右、右、平

7号球,且重-右、平、平7号球,且轻-左、平、平

8号球,且重-平、右、平8号球,且轻-平、左、平

9号球,且重-平、平、右9号球,且轻-平、平、左

10号球,且重-平、左、右10号球,且轻-平、右、左

11号球,且重-右、平、左11号球,且轻-左、平、右

12号球,且重-左、右、平12号球,且轻-右、左、平

上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行。

第一篇(完美的数学建模)

原文:

网上的最多的方法是逻辑法,还有少数画成图的所谓策略树和基于此的程序算法.这里我提出一种新的完全的数学解法:

一·首先提出称量的数学模型:

把一次称量看成一个一次代数式,同样问题就可以描述成简单的矩阵方程求解问题.怎么把一次称量表示成一个代数式呢?

1),简化描述小球的重量(状态)----正常球重量设为0,设异常球比正常球重为1或轻为-1,异常球未知轻重时用x代表(只取1或-1).用列向量j表示所有球的重量状态.

2),简化描述称量的左右(放法)-----把某号球放左边设为1,右边设为-1,不放上去设为0.用行向量i表示某次称量所有球的左右状态.

3),描述称量结果:

由1),2)已经可以确定一个称量式

∑各球的重量*放法=天平称量结果.--------(1)式

如果我们用向量j,i分别表示球的重量状态和球的左右放法情况(j为行向量,i为列向量),对于(1)式,可以改写为

j*i=a(常数a为单次称量结果) -------------(2)式

例如有1-6号共6个小球,其中4号为较重球,拿3号5号放左边,1号4号放右边进行称量,

式子为:

(-1)*0+0*0+1*0+(-1)*1+1*0+0*0=-1,

从-1的意义可以知道它表示结果的左边较轻;

同样可以得到0表示平衡,1表示左边较重.

4),方程用来描述称量过程,还需附加一个重要的条件:代表放左边的1和右边的-1个数相等,也就是

∑各球的放法=0-------------------------(3)式

这样就解决了称量的数学表达问题.

对于12个小球的3次称量,分别用12维行向量j1,j2,j3表示,由j1j2j3便构成了3×12的称量矩阵J;对于某一可能情况i,对应的3次称量结果组成的3维列向量b,得

J*i=b

二·称球问题的数学建模

问题的等价:

设J为3×12的矩阵,满足每行各项之和为0。i为12维列向量,i的某一项为1或-1,其他项都是0,即i是12×24的分块矩阵M=(E,-E)的任一列。而3×27的矩阵C为由27个互不相同的3维列向量构成,它的元素只能是1,0,-1.

由问题的意义可知b=J*i必定是C的某一列向量。而对于任意的i,有由J*i=b确定的b互不相同.

J*M=J*(E,-E)=(B,-B)=X -----(设X为3×24的矩阵)

因为X为24列共12对互偶的列向量,而C为27列,可知从C除去的3列为(0,0,0)和1对任意的互偶的列向量,这里取除(1,1,1)和(-1,-1,-1).

由上式得J*E=B推出J=B,X=(J,-J)。因此把从27个3维列向量中去除(0,0,0),(1,1,1),(-1,-1,-1)然后分为互偶的两组(对应取反)

[ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1];

[ 0, 1, 1, 1, 0, 0, 0, 1, 1,-1,-1,-1];

[ 1, 0, 1,-1, 0, 1,-1, 0,-1, 0, 1,-1].

[ 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1];

[ 0,-1,-1,-1, 0, 0, 0,-1,-1, 1, 1, 1];

[-1, 0,-1, 1, 0,-1, 1, 0, 1, 0,-1, 1].

现在通过上下对调2列令各行的各项和为0!!即可得到J.我的方法是从右到左间隔着进行上下对调,然后再把2排和3排进行上下对调,刚好所有行的和为0。得

称量矩阵J=

[0, 0, 0, 0, 1,-1, 1,-1, 1,-1, 1,-1];

[0, 1,-1,-1, 0, 0, 0,-1, 1, 1,-1, 1];

[1, 0,-1, 1, 0,-1,-1, 0,-1, 0, 1, 1].

相应三次称量两边的放法:

左边5,7,9,11 :右边6,8,10,12;

左边2,9,10,12:右边3,4,8,11;

左边1,4,11,12:右边3,6,7,9 。

*********** ********** ************ **********

1号球,且重-平、平、左 1号球,且轻-平、平、右

2号球,且重-平、左、平 2号球,且轻-平、右、平

3号球,且重-平、右、右 3号球,且轻-平、左、左

4号球,且重-平、右、左 4号球,且轻-平、左、右

5号球,且重-左、平、平 5号球,且轻-右、平、平

6号球,且重-右、平、右 6号球,且轻-左、平、左

7号球,且重-左、平、右 7号球,且轻-右、平、左

8号球,且重-右、右、平 8号球,且轻-左、左、平

9号球,且重-左、左、右 9号球,且轻-右、右、左

10号球,且重-右、左、平 10号球,且轻-左、右、平

11号球,且重-左、右、左 11号球,且轻-右、左、右

12号球,且重-右、左、左 12号球,且轻-左、右、右

三·问题延伸

1,13个球称3次的问题:

从上面的解答中被除去的3个向量为(0,0,0)(1,1,1)(-1,-1,-1).而要能判断第13个球,必须加入1对对偶向量,如果加入的是(1,1,1)(-1,-1,-1),则

[ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,1];

[ 0, 1, 1, 1, 0, 0, 0, 1, 1,-1,-1,-1,1];

[ 1, 0, 1,-1, 0, 1,-1, 0,-1, 0, 1,-1,1].

[ 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1];

[ 0,-1,-1,-1, 0, 0, 0,-1,-1, 1, 1, 1,-1];

[-1, 0,-1, 1, 0,-1, 1, 0, 1, 0,-1, 1,-1].

第一行的非0个数为奇数,不论怎么调也无法使行和为0。故加入的行只能为自对偶列向量(0,0,0),结果是异球可判断是否是第13球时却无法检查轻重。也可见,13球称3次的问题和12球称3次的问题只是稍有不同,就如12个球问题把球分3组4个称,而13个球问题把球分4组(4,4,4,1),第13个球单独1组。

2,(3^N-3)/2个球称N次找出异球且确定轻重的通解:

第一步,先给出3个球称2次的一个称量矩阵J2

[ 0, 1,-1];

[-1, 0, 1].

第二步,设Kn=(3^N-3)/2个球称N次的称量矩阵为N行×Kn列的矩阵Jn,把(3^N/3-3)/2个球称N-1次的称量矩阵J简写为J.再设N维列向量Xn,Yn,Zn分别为(0,1,1,...,1),(1,0,0,...,0),(1,-1,-1,...,-1).

第三步之1,在N-1行的矩阵J上面添加1行各项为0,成新的矩阵J'.

第三步之2,在N-1行的矩阵J上面,添加行向量t=(1,1,...,1,-1,-1,...,-1),成新的矩阵J".t的维(长)和J的列数一致,t的前面各项都是1,后面各项都是-1;t的长为偶数时,1个数和-1个数相等;t的长为奇数时,1个数比-1个数少1个;

第三步之3,在N-1行的矩阵-J上面,添加行向量t=(1,1,...,1,-1,-1,...,-1),成新的矩阵J"'.

第四步,当J的列数即t的长为奇数时,用分块矩阵表示矩阵Jn=(J',J",J"',Xn,Yn,Zn);当J的列数即t的长为偶数时,用分块矩阵表示矩阵Jn=(J',J",J"',Xn,-Yn,Zn);

此法可以速求出一个J3为

[ 0, 0, 0, 1,-1,-1, 1,-1,-1, 0, 1, 1];

[ 0, 1,-1, 0, 1,-1, 0,-1, 1, 1, 0,-1];

[-1, 0, 1, -1, 0, 1, 1, 0,-1, 1, 0,-1].

同样可以继续代入求出J4,J5的称量矩阵。

3,2类主要的推广:

第1类,有(3^n-3)/2个球,其中有一个异球,用天平称n次,找出该球并确定是较轻还是较重。

第2类,有n个球,其中混入了m个另一种规格的球,但是不知道异球比标球重还是轻,称k次把他们分开并确定轻重?显然,上面的推广将球分为了两种,再推广为将球分为n 种时求称法。

对于第一类推广,上面已经给出了梯推的通解式。而对于第二类推广,仅对于m=2时的几个简单情况有了初步的了解,如5个球称3次找出2个相同的异球,9个球称4次找出2个相同的异球,已经获得了推理逻辑方法上的解决,但是在矩阵方法上仍未理出头绪,16个球称5次找出2个相同的异球问题上普通的逻辑方法变得非常烦琐以至未知是否有解,希望有高手能继续用矩阵方法找出答案,最好能获得m=2时的递推式。

上面的通解法得到的J4=

[ 0,0, 0, 0, 0, 0,0, 0, 0,0,0, 0, 1,1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1,1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1,0,-1, 1];

[ 0,0, 0, 1,-1,-1,1,-1,-1,0,1, 1, 0,0, 0, 1,-1,-1, 1,-1,-1, 0, 1, 1,0, 0, 0,-1, 1, 1,-1, 1, 1, 0,-1,-1,1, 0,-1];

[ 0,1,-1, 0, 1,-1,0,-1, 1,1,0,-1, 0,1,-1, 0, 1,-1, 0,-1, 1, 1, 0,-1,0,-1, 1, 0,-1, 1, 0, 1,-1,-1, 0, 1,1, 0,-1];

[-1,0, 1,-1, 0, 1,1, 0,-1,1,0,-1,-1,0, 1,-1, 0, 1, 1, 0,-1, 1, 0,-1,1, 0,-1, 1, 0,-1,-1, 0, 1,-1, 0, 1,1, 0,-1].

第二篇(EXCEL构造大法)

此法可以便捷直观地验证所构造的称量方法是否是正确的!解决了对答案进行正确性验证的难题。并且可以通过构造分块矩阵最终解决N球称M次找2异常球的更高级称球问题!贴不了EXCEL原档,只能先截个图了,此法要先温习前一篇的解法才风味更佳:

步骤详解:

第一步,做分块矩阵M=[-E12,E12]。

第二步,构造称量矩阵,每一列互不相同,为了满足完备性,可以调整各列。

第三步,两矩阵求积,函数MMULT(,)

第四步,对结果矩阵求各列的对应3进制并算出具体K值。

k值函数示例(-1)^B24*SIGN(B24)

第五步,做三位(-1,0,1)的3进制的全排列和对应序列码

第六步,对于各序列码M,做出在N中与之相等的元素个数T

t函数示例COUNTIF($B24:$Y24,B31)

第七步,求MAX(T),若为1,则保证了称量结果矩阵M的每列都是互不相同的(各列唯一性),既题得证,所构造的称量方案矩阵J是正确的

第三篇(简洁特解,有趣的就这么两个)

方案一(最漂亮的一个解的文字说明):

首先12个球编号1~6,8~13,跳过7

称量方案如下,可以三次称完再整体分析,具体如下:

对称量结果:右边较重记1,平衡记0,右边较轻记-1

第一次:左边6,8,10,12 右边5,9,11,13 称量结果a

第二次:左边2,4,5,12 右边3,6,11,13 称量结果b

第三次:左边4,5,10,11 右边1,2,8,13 称量结果c

细心的朋友是否发现这个称法和第二篇结尾的称量矩阵是完全一样的。

令n=9a+3b+c,

k=(-1)^n*n/|n|,这个公式等价于判断n是负奇数和正偶数还是正奇数或负偶数,

你要直接判断也可以

那么异常球的编号为|n|,

n是负奇数或正偶数即k=1时异常球为重球,n是正奇数或负偶数即k=-1时异常球为轻球

方案二:

首先12个球编号1~12

称量方案如下,可以三次称完再整体分析,具体如下:

对称量结果:右边较重记1,平衡记0,右边较轻记-1

第一次:左边6,7,9,11 右边5,8,10,12 称量结果a

第二次:左边2,4,5,11 右边3,6,7,12 称量结果b

第三次:左边4,5,7,8 右边1,2,10,11 称量结果c

令n=9a+3b+c,

k=(-1)^n*n/|n|*(6.4-|n|)/|6.4-|n||,这个公式等价于判断n是否6以下的负奇数和正偶数或7以上正奇数或负偶数,还是7以上的负奇数和正偶数或6以下的正奇数或负偶数

你要直接判断也可以

那么异常球的编号为|n|,

n是小于6.4的负奇数或正偶数,或大于6.4的正奇数或负偶数即k=1s时异常球为重球,n是小于6.4的正奇数或负偶数,或大于6.4的负奇数或正偶数即k=-1时异常球为轻球

欢迎验证!!!

这道题很经典,你可能会碰上以下情况,上信息论课时老师会出,上线代课到中间时老师可能会出,上图论课到树的老师会出,上算法课讲到数组的老师也可能会出,上电脑应用课学完EXCEL的老师也会出,出了校门,公司面试也可能会碰上,给出不一样的答案才能震撼所有人。

数学形态学的基本运算

第二章数学形态学的基本运算 2.1二值腐蚀和膨胀 二值图象是指那些灰度只取两个可能值的图象,这两个灰度值通常取为0和1。习惯上认为取值1的点对应于景物中的点,取值为0的点构成背景。这类图象的集合表示是直接的。考虑所有1值点的集合(即物体)X,则X与图象是一一对应的。我们感兴趣的也恰恰是X集合的性质。 如何对集合X进行分析呢?数学形态学认为,所谓分析,即是对集合进行变换以突出所需要的信息。其采用的是主观“探针”与客观物体相互作用的方法。“探针”也是一个集合,它由我们根据分析的目的来确定。术语上,这个“探针”称为结构元素。选取的结构元素大小及形状不同都会影响图象处理的结果。剩下的问题就是如何选取适当的结构元素以及如何利用结构元素对物体集合进行变换。为此,数学形态学定义了两个最基本的运算,称为腐蚀和膨胀即1。 2.1 .1二值腐蚀运算 腐蚀是表示用某种“探针”(即某种形状的基元或结构元素)对一个图象进行探测,以便找出图象内部可以放下该基元的区域。它是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。腐蚀的实现同样是基于填充结构元素的概念。利用结构元素填充的过程,取决于一个基本的欧氏空间概念—平移。我们用记号A二表示一个集合A沿矢量x平移了一段距离。即: 集合A被B腐蚀,表示为AΘB,其定义为: 其中A称为输入图象,B称为结构元素。AΘB由将B平移x仍包含在A内的所有点x组成。如果将B看作模板,那么,AΘB则由在将模板平移的过程中,所有可以填入A内部的模板的原点组成。根据原点与结构元素的位置关系,腐蚀后的图象大概可以分为两类: (1)如果原点在结构元素的内部,则腐蚀后的图象为输入图象的子集,如图2.1所示。 (2)如果原点在结构元素的外部,那么,腐蚀后的图象则可能不在输入图象的内部,如图2.2所示。 图2.1腐蚀类似于收缩

高中数学统计与概率知识点

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三.众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

基于数学形态学的图像噪声处理.

基于数学形态学的图像噪声处理 摘要 本文首先介绍了数学形态学的发展简史及其现状,紧接着详细的阐述了数学形态学在图像处理和分析中的理论基础。并从二值数学形态 学出发着重研究了数学形态学的膨胀、腐蚀、开运算、闭运算等各种 运算和性质,然后根据已有的运算,接着引入了形态滤波器设计、形态学图像处理的实用算法。由于在图像的获取中存在各种可能的噪声,比 如高斯噪声、瑞利噪声、伽马噪声、指数噪声、均匀噪声以及椒盐等 噪声,由于这些噪声的普遍存在,因此,利用数学形态学的腐蚀、膨胀、开启、闭合设计出了一种比较理想的(闭和开)形态学滤波器,并且用MATLAB语言编写程序,反复的使用这种开闭、闭开来处理图像中存在的噪声,其效果比较满意。 关键词:数学形态学图像处理腐蚀膨胀滤波Studies on Mathematical Morphology for Image Processing ABSTRACT In this paper ,we first introduced the brief history and development of mathematical morphology some general theory of mathematical morphology analysis and many experiment results are https://www.360docs.net/doc/b318918393.html,ter ,from the aspect of morphology of dual value, special emphasis on various operations and properties including dilation, erosion,open operation and close operation etc.In addition, morphology analysis method of the dual value image is also discussed and the practical and improved operations of the morphological image processing such as electric filter design, marginal pattern testing are introduced. As the image of the acquisition in the range of possible noise, such as Gaussian noise, Rayleigh noise, Gamma noise, Uniform noise Salt and Pepper noise and so on. As the prevalence of such noise, so using mathematical morphology of erosion,dilation, opening, closing designed a more ideal (open and closed morphological filter, And repeated to use opening and closing, closing and opening handle image processing in the noise. It is satisfied with its results.And the simulation results is more satisfactory after the use of MATLAB language programming. Keyword:mathematical morphology image processing erosion dilation

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习 一、单选题(共16题;共32分) 1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是() A. , B. , C. , D. , 2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=() A. 0.683 B. 0.853 C. 0.954 D. 0.977 3.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=() A. B. C. D. 4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=() A. 0.6826 B. 0.3413 C. 0.4603 D. 0.9207 5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是() A. B. C. D. 6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是() A. B. C. D. 7.下面说法中正确的是() A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值 B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平 C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平 D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值 8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为() A. B. C. D. 9.已知随机变量,则() A. B. C. D. 10.设随机变量的分布列为,,则等于() A. B. C. D. 11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

《数学期望与方差》习题解答

概率论《数学期望与方差》 习题参考解答 1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为 ξ 0 1 P 1/3 2/3 因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3 2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示: 而求出的周长ζ的分布律如下表所示: 长的分布计算. 解: 由长和宽的分布率可以算得 E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9 E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×(29.9+20)=99.8 而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质. 4. 连续型随机变量ξ的概率密度为 ?? ?><<=其它 )0,(10)(a k x kx x a ? 又知E ξ=0.75, 求k 和a 的值。 解: 由性质?+∞ ∞ -=1)(dx x ? 得11 1 )(| 10 1 1 =+= += =++∞ ∞ -??a k x a k dx kx dx x a a ?

即k =a +1 (1) 又知 75.02 2 )(| 10 2 1 1 =+= += = = +++∞ ∞ -?? a k x a k dx kx dx x x E a a ?ξ 得k =0.75a +1.5 (2) 由(1)与(2)解得 0.25a =0.5, 即a =2, k =3 6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较. 解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为 (10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17 7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值(计算时以组中值为代表). E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959 8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有 E ξi =10, D ξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此 ∑== 100 1 i i ξ ξ,则ξ的数学期望和标准差为

高考数学百大经典例题离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-== ξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- = ξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望 例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品

数学形态学去噪

目录 一绪论 (1) 1.1 数学形态学简介 (1) 1.2 数学形态学与数字图像处理 (1) 1.3 本次课程设计的目的与要求 (2) 二数学形态学的基本运算 (3) 2.1 基本概念 (3) 2.1.1结构元素 (3) 2.1.2膨胀与腐蚀 (3) 2.2 二值形态学图像处理 (4) 2.2.1 膨胀 (4) 2.2.2 腐蚀 (6) 2.2.3 开运算 (7) 2.2.4 闭运算 (8) 2.3 灰度形态学图像处理 (9) 2.3.1 膨胀 (9) 2.3.2 腐蚀 (10) 2.3.3 开运算与闭运算 (11) 2.4 综述 (13) 三数学形态学滤波器去噪 (15) 3.1 概述 (15)

3.2噪声模型 (16) 3.2.1 高斯噪声 (16) 3.2.2 椒盐噪声 (16) 3.3形态学滤波器 (17) 3.4形态学图像去噪原理 (20) 3.5形态学图像去噪的应用 (20) 小结与体会 (21) 参考文献 (22) 附录 (23) 一绪论 1.1数学形态学简介 数学形态学作为一门新兴的图像处理与分析学科,1964年由法国的G.Mathern和J.Serra在积分几何的基础上首次创立。70年代初,采用数学形态学的学者们开拓了图像分析的一个新的领域。经过十多年的理论与实践探索,G.Mathern和J.Serra等人在研究中认识到,对图像先作开运算接着再作闭运算,可以产生一种幂等运算;采用递增尺寸的交变开闭序列作用于图像,可有效地消除图像的噪声,1982年他们正式提出了形态学滤波器的概念。90年代数学形态学有两个显著的发展趋势,第一个是致力于运动分析,包括编码与运动景物描述;第二个是算法与硬件结构的协调发展,用于处理数值函数的形态学算子的开发与设计。

高中数学统计

【课题】10.2 概率(二) 【教学目标】 知识目标: 理解古典概型的概念及互斥事件的古典概率. 能力目标: (1)会判定互斥事件及古典概型; (2)会解决简单的古典概型实际问题,会计算互斥事件的概率; (3)通过实际问题的解决,培养学生的数据处理技能和分析与解决问题的能力. 情感目标: (1)体验应用数学知识解决实际问题的过程,发展数学兴趣; (2)经历合作学习的过程,尝试探究与讨论,树立团队合作意识. 【教学重点】 运用公式()m P A n = 计算等可能事件的概率. 【教学难点】 概率的计算. 【教学设计】 由于本教材没有介绍排列与组合等内容,所以,等可能事件概率的计算不要搞得太复杂,重点放在理解算法原理上.等可能事件A 的概率计算公式为()m P A n = ,其中n 是基本事件总数、m 是事件A 包含的基本事件数.有些教材用这个公式来定义概率,叫做概率的古典定义. 教师在讲解例3、例4时,重点应剖析清楚等可能事件的概率计算公式()m P A n =中的基本事件总数n 、事件A 包含的基本事件数m 的确定方法. 为了计算一些复合事件的概率,教材介绍了互斥事件的概率加法公式,在讲此公式以前,首先用实例引入了互斥事件的概念,要向学生强调,互斥事件不能同时发生,同时发生的两个事件一定不是互斥事件.当互斥事件A ,B 中至少有一个发生(用A B 表示)时,我们 可以使用概率的加法公式()()()P A B P A P B =+来计算概率.需要指出的是,在A ,B 中 至少有一个发生实际上就是A 发生或者B 发生,而A ,B 不能同时发生.一定要强调概率公式()()()P A B P A P B =+只适用于互斥事件.

北师大版高数选修23第6讲:数学期望与方差及正态分布(1)

数学期望与方差及正态分布 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解离散型变量的数学期望与方差的概念. 2.熟练掌握离散型变量的数学期望与方差的公式. 3.熟练掌握离散型变量的数学期望与方差的性质. 4.能利用数学期望与方差解决简单的实际问题. 5.理解概率密度曲线和正态分布的概念. 1.离散型随机变量X 的数学期望 一般地,若离散型随机变量X 的概率分布如下表所示,则称______________________为离散型随机变量X 的数学期望,记为______,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=L 2.离散型随机变量X 的方差 则称____________________________________为离散型随机变量X 的方差,记为_________,即2 ; σi p ≥0,i =1,2,…,n ,121,n p p p +++=L ()E X μ= 3.离散型随机变量X 的标准差 随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=_____________ 4.必备公式 (1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=____________________________; V (X )=_____________________________________________;

基于数学形态学的图像分割方法研究

基于数学形态学的图像分割方法研究 专业:电子信息科学与技术 班级:2005级1班 姓名:杨晓琦

引言 3 1 图像分割基本理论7 1.1 图像分割的概念7 1.2 传统的图像分割方法9 1.3 特殊理论工具的图像分割方法 12 1.4 图像分割的评价 13 2 数学形态学基本理论16 2.1 形态学的概念 16 2.2 结构元素的选取 16 2.3 二值形态学理论 18 2.4 灰值形态学理论 20 2.5 形态学重建 21 2.6 形态学边缘检测 22 3 Matlab在图像分割处理中的应用 24 3.1 Matlab简介.24 3.2 Matlab在图像处理方面的应用.24 3.3 基于Matlab的图像分割.26 4 车牌图像分割的相关理论研究28 4.1 车牌定位算法简介 28 4.2 车牌的字符图像分割 37 5 基于数学形态学车牌图像分割42 5.1 形态学车牌定位 42 5.2 形态学字符图像分割 53 5.3 本章小结 61 结论62 致谢63 参考文献64附录1 源程序清单 68

本文运用形态学方法对车牌定位算法和车牌字符分割算法进行了系统的研究。这两种算法的研究为车牌识别做了先期准备,是智能交通中非常重要的组成部分。在车牌定位算法部分,提出了一种基于二值面积形态学的车牌定位算法。首先将车牌的灰度图像二值化,然后逐步缩小车牌候选区的面积,计算车牌图像中连通区域的面积,并根据车牌图像的实际情况确定面积阈值,并用形态学的方法对车牌图像进行处理运算,以实现车牌的精确定位。仿真实验结果表明此算法定位精度高,而且能适应复杂天气环境,能达到满意的定位效果。在字符分割算法部分,对投影分割算法进行了改进,将其与数学形态学分割算法进行了结合。首先将车牌图像二值化,然后用数学形态学分割方法结合水平与垂直投影分割方法,确定车牌字符宽和高并校正车牌实际位置,通过两次投影,校正车牌角度,去除车牌边框,确定车牌上下边界及中心点,最后分割提取车牌字符。实验结果表明该算法能有效的保持车牌字符边缘,获得较好的分割效果。 关键词: 图像分割;数学形态学;车牌定位;字符分割; Matlab

基于数学形态学的图像边缘检测方法研究文献综述

文献综述 课题:基于数学形态学的图像边缘检测方法研究 边缘检测是图像分割的核心容,而图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置,对图象的特征测量有重要的影响。图像分割及基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。从而边缘检测在图像工程中占有重要的地位和作用。因此对边缘检测的研究一直是图像技术研究中热点,人们对其的关注和研究也是日益深入。 首先,边缘在边界检测、图像分割、模式识别、机器视觉等中有很重要的作用。边缘是边界检测的重要基础,也是外形检测的基础。同时,边缘也广泛存在于物体与背景之间、物体与物体之间,基元与基元之间,是图像分割所依赖的重要特征。其次,边缘检测对于物体的识别也是很重要的。第一,人眼通过追踪未知物体的轮廓而扫视一个未知的物体。第二,如果我们能成功地得到图像的边缘,那么图像分析就会大大简化,图像识别就会容易得多。第三,很多图像并没有具体的物体,对这些图像的理解取决于它们的纹理性质,而提取这些纹理性质与边缘检测有极其密切的关系。 理想的边缘检测是能够正确解决边缘的有无、真假、和定向定位。长期以来,人们一直关心这一问题的研究,除了常用的局

部算子及以后在此基础上发展起来的种种改进方法外,又提出了许多新的技术,其中,比较经典的边缘检测算子有 Roberts cross算子、Sobel算子、Laplacian算子、Canny算子等,近年来又有学者提出了广义模糊算子,形态学边缘算子等。这些边缘检测的方法各有其特点,但同时也都存在着各自的局限性和不足之处。 本次研究正是在已有的算法基础上初步进行改进特别是形 态学边缘算子,以期找到一个更加简单而又实用的算子,相信能对图像处理中的边缘检测方法研究以及应用有一定的参考价值。 一、课题背景和研究意义: 伴随着计算机技术的高速发展,数字图像处理成为了一门新兴学科,并且在生活中的各个领域得以广泛应用。图像边缘检测技术则是数字图像处理和计算机视觉等领域最重要的技术之一。在实际图像处理中,图像边缘作为图像的一种基本特征,经常被用到较高层次的图像处理中去。边缘检测技术是图像测量、图像分割、图像压缩以及模式识别等图像处理技术的基础,是数字图像处理重要的研究课题之一。 边缘检测是图像理解、分析和识别领域中的一个基础又重要的课题, 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地

高中数学统计、统计案例知识点总结和典例

统计 一.简单随机抽样:抽签法和随机数法 1.一般地,设一个总体含有N个个体(有限),从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等(n/N),就把这种抽样方法叫做简单随机抽样。 2.一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本,这种抽样方法叫做抽签法。 抽签法的一般步骤:a、将总体的个体编号。 b、连续抽签获取样本号码。 3. 利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。 随机数表法的步骤:a、将总体的个体编号。b、在随机数表中选择开始数字。c、读数获取样本号码。 4. 抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。 二.系统抽样: 1.一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。 系统抽样的一般步骤: (1)采用随机抽样的方法将总体中的N个个编号。 (2)将整体按编号进行分段,确定分段间隔k=N/n。(k∈N,L≤k). (3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。 (4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。 在确定分段间隔k时应注意:分段间隔k为整数,当N/n不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。 三.分层抽样: 1.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。 分层抽样的步骤: (1)分层:按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。 (3)各层分别按简单随机抽样的方法抽取。(4)综合每层抽样,组成样本。 2.分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点: (1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。 (2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。 (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。 四.用样本的频率分布估计总体分布: 1.频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。 其一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图 2.频率分布折线图、总体密度曲线 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲 二项分布及应用 随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2. 互斥事件概率的加法公式:如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). 3.对立事件的概率:若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 4.条件概率的加法公式:若B 、C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 5.独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=Ck n p k ·(1-p ) n -k (k =0,1,2,…, n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验.(2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X 的分布列为P (ξ=x i )=p i ,i =1,2,…,n . (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望. (2)方差:D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,其算术平方根D X 为随机变量X 的标 准差. (3)均值与方差的性质:(1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 8.两点分布与二项分布的均值、方差 变量X 服从两点分布: E (X )=p , D (X )=p (1-p ); X ~B (n ,p ): E (X )=np ,D (X )=np (1-p ) 典例精析 例1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.

选修2-3期望方差练习题

1 ?某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 组 研发新产品 A ,乙组研发新产品 B,设甲、乙两组的研发相互独立. (1) 求至少有一种新产品研发成功的概率; (2) 若新产品A 研发成功,预计企业可获利润 120万元;若新产品 B 研发成功,预计企 业可获利润100万元,求该企业可获利润的分布列和数学期望.阿 解:记E = {甲组研发新产品成功}, F = {乙组研发新产品成功}. 2 — 1 3 — 2 由题设知 P (E ) = 5 ,P ( E ) = 5 , RF ) = 5 , R F ) = 5 . 且事件E 与F , E 与 匸,"E 与F , "E 与T 都相互独立. ⑴ 记H ^ {至少有一种新产品研发成功 },则"H = "E ~F ,于是 1 2 2 R H ) = R E )P ( F ) = 3x 5 =命 — 2 13 故所求的概率为 RH ) = 1-P ( H ) = 1-亦=15. (2)设企业可获利润为 X 万元),则X 的可能取值为0,100,120,220. 1 2 2 RX = 0) = P ( E F ) = x-^-, 3 5 15 13 3 RX = 100) = P ( EF ) = 3X 5 =亦, RX = 120) = P (E?) = |x 5 =盒 RX = 220) = P (EF = I x 5= 15. 故所求的X 分布列为 E (X ) = 300十 48°+ 1 320 15 15 15 15 15 140. 2?现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向 左、右两边落下?游戏规则为:若小球最终落入 A 槽,得10张奖票;若落入 B 槽,得5张 奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过 3次. (1)求投球一次,小球落入 B 槽的概率; 2 3 3和 5,现安排甲 2 100 15 数学期望为

最新高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文) 一、众数: 一组数据中出现次数最多的那个数据。 二、 众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 三、二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数) 四、 三 .众数、中位数及平均数的求法。 五、 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。 五.平均数、中位数与众数的异同: ⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响; ⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。 六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算? 思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数 据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是: 12|||||| n x x x x x x n 22 2 12()()()n x x x x x x s

数学形态学图像处理的基本运算实现及分析

数学形态学图像处理的基本运算实现及分析 一、基本原理 数学形态学是一种应用于图像处理和模式识别领域的新的方法。它的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像进行分析和识别的目的。数学形态学的数学基础和所用语言是集合论。数学形态学的应用可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构。另一方面,数学形态学的算法具有天然的并行实现的结构。 1、基本运算 数学形态学的基本运算有四个:膨胀、腐蚀、开启和关。 如用A 表示图像集合,B 表示结构元素,形态学运算就是用B 对A 进行操 作。 A 被 B 膨胀,记为A ⊕B ,⊕为膨胀算子,膨胀的定义为 A B ⊕?{|[()]}x x B A =≠? 该式表明的膨胀过程是B 首先做关于原点的映射,然后平移x 。A 被B 的膨胀是 B 被所有x 平移后与A 至少有一个非零公共元素。 A 被 B 腐蚀,记为A ⊙B ,⊙为腐蚀算子,腐蚀的定义为 A B Θ?{|[()]}x x B A =≠? 也就是说,A 被B 的腐蚀的结果为所有使B 被x 平移后包含于A 的点x 的集合。 换句话说,用B 来腐蚀A 得到的集合是B 完全包括在A 中时B 的原点位置的集合。 膨胀和腐蚀并不互为逆运算,所以它们可以级连结合使用。例如,利用同一个结构元素B ,先对图像腐蚀然后膨胀其结果,或先对图像膨胀然后瘸蚀其结果,前一种运算称为开运算,后一种运算称为关运算。它们也是数学形态学中的重要运算。 开启的运算符为o ,A 用B 来开启写作AoB ,其定义为: A o ()B A B B =Θ⊕ 关的运算符为·,A 用B 来关写作A ·B ,其定义为: A ·()B A B B =⊕Θ 开和关两种运算都可以去除比结构元素小的特定图像细节,同时保证不产生全局的几何失真。开运算可以把比结构元素小的椒盐噪声滤除,切断细长搭接而起到分离作用。关运算可使比结构元素小的缺口或孔填补上,搭接短的间断而起到连通作用。 2、实际应用 近年来,数学形态学在图像处理方面得到了日益广泛的应用。下面主要就数学形态学在边缘检测、骨架提取等方面的应用做简要介绍。

二项分布数学期望与方差专题复习word有详解重点中学用

第十讲二项分布及应用随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立. 2. 互斥事件概率的加法公式:如果事件A与事件B互斥,则P(A+B)=P(A)+P(B). 3.对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B). 4.条件概率的加法公式:若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) 5.独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k·(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n次独立重复试验.(2)随机变量是否为在这n次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X的分布列为P(ξ=x i)=p i,i=1,2,…,n. (1)均值:称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望. n (2)方差:D(X)=∑ (x i-E(X))2p i为随机变量X的方差,其算术平方根D X为随机变量X的标准差.i=1 (3)均值与方差的性质:(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X).(a,b为常数) 8.两点分布与二项分布的均值、方差 变量X服从两点分布:E(X)=p,D(X)=p(1-p);X~B(n,p): E(X)=np ,D(X)=np(1-p) 典例精析 例1.【2015高考四川,理17】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

相关文档
最新文档