锐角三角函数的真题汇编及答案

锐角三角函数的真题汇编及答案
锐角三角函数的真题汇编及答案

锐角三角函数的真题汇编及答案一、选择题

1.如图,在扇形OAB中,120

AOB

∠=?,点P是弧

AB上的一个动点(不与点A、B重

合),C、D分别是弦AP,BP的中点.若33

CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π

【答案】A

【解析】

【分析】

如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.

【详解】

解:如图作OH⊥AB于H.

∵C、D分别是弦AP、BP的中点.

∴CD是△APB的中位线,

∴AB=2CD=63

∵OH⊥AB,

∴BH=AH=33

∵OA=OB,∠AOB=120°,

∴∠AOH=∠BOH=60°,

在Rt△AOH中,sin∠AOH=

AH

AO

∴AO=

33

6

sin3

AH

AOH

==

∠,

∴扇形AOB的面积为:

2

1206

12

360

π

π

=

g g

故选:A.

【点睛】

本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

2.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()

A.(543+10) cm B.(542+10) cm C.64 cm D.54cm

【答案】C

【解析】

【分析】

过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.

【详解】

如图所示,

过A作AE⊥CP于E,过B作BF⊥DQ于F,则

Rt△ACE中,AE=1

2

AC=

1

2

×54=27(cm),

同理可得,BF=27cm,

又∵点A与B之间的距离为10cm,

∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.

【点睛】

本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.

3.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )

A 5

B .35

C .22

D .23

【答案】B

【解析】

【分析】

先根据翻折变换的性质得到DEF AEF ???,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.

【详解】

解:∵△DEF 是△AEF 翻折而成,

∴△DEF ≌△AEF ,∠A =∠EDF ,

∵△ABC 是等腰直角三角形,

∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,

∴∠BED =∠CDF ,

设CD =1,CF =x ,则CA =CB =2,

∴DF =FA =2﹣x ,

∴在Rt △CDF 中,由勾股定理得,

CF 2+CD 2=DF 2,

即x 2+1=(2﹣x )2, 解得:34

x =, 3sin sin 5CF BED CDF DF ∴∠=∠=

=. 故选:B .

【点睛】

本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.

4.如图,在矩形ABCD 中E 是CD 的中点,EA 平分,BED PE AE ∠⊥交BC 于点P ,

连接PA ,以下四个结论:①EB 平分AEC ∠;②PA BE ⊥;③32

AD AB =

;④2PB PC =.其中结论正确的个数是( )

A .4个

B .3个

C .2个

D .1个

【答案】A

【解析】

【分析】 根据矩形的性质结合全等三角形的判定与性质得出△ADE ≌△BCE (SAS ),进而求出△ABE 是等边三角形,再求出△AEP ≌△ABP (SSS ),进而得出∠EAP =∠PAB =30°,再分别得出AD 与AB ,PB 与PC 的数量关系即可.

【详解】

解:∵在矩形ABCD 中,点E 是CD 的中点,

∴DE =CE ,

又∵AD =BC ,∠D =∠C ,

∴△ADE ≌△BCE (SAS ),

∴AE =BE ,∠DEA =∠CEB ,

∵EA 平分∠BED ,

∴∠AED =∠AEB ,

∴∠AED =∠AEB =∠CEB =60°,故:①EB 平分∠AEC ,正确;

∴△ABE 是等边三角形,

∴∠DAE =∠EBC =30°,AE =AB ,

∵PE ⊥AE ,

∴∠DEA +∠CEP =90°,

则∠CEP =30°,

故∠PEB =∠EBP =30°,

则EP =BP ,

又∵AE =AB ,AP =AP ,

∴△AEP ≌△ABP (SSS ),

∴∠EAP =∠PAB =30°,

∴AP ⊥BE ,故②正确;

∵∠DAE =30°,

∴tan∠DAE=DE

AD

=tan30°=

3

3

∴AD=3DE,即

3

AD CD

=,

∵AB=CD,

∴③

3

AD AB

=正确;

∵∠CEP=30°,

∴CP=1

2 EP,

∵EP=BP,

∴CP=1

2 BP,

∴④PB=2PC正确.

综上所述:正确的共有4个.

故选:A.

【点睛】

此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE是等边三角形是解题关键.

5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

A.60海里B.45海里C.3D.3

【答案】D

【解析】

【分析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.

【详解】

解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,

故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:22303

AB AP

-=

故选:D.

【点睛】

此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.

6.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()

A.3B.23C.3

2

D.

23

【答案】A

【解析】

连接OC,

∵OA=OC,∠A=30°,

∴∠OCA=∠A=30°,

∴∠COB=∠A+∠ACO=60°,

∵PC是⊙O切线,

∴∠PCO=90°,∠P=30°,

∵PC=3,

∴OC=PC?tan30°3

故选A

7.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为 45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为 60°,已知斜坡AB的坡角为30°,AB=AE=10 米.则标识牌CD的高度是( )米.

A .15-53

B .20-103

C .10-53

D .53-5

【答案】A

【解析】

【分析】 过点B 作BM ⊥EA 的延长线于点M ,过点B 作BN ⊥CE 于点N ,通过解直角三角形可求出BM ,AM ,CN ,DE 的长,再结合CD =CN +EN?DE 即可求出结论.

【详解】

解:过点B 作BM ⊥EA 的延长线于点M ,过点B 作BN ⊥CE 于点N ,如图所示.

在Rt △ABE 中,AB =10米,∠BAM =30°,

∴AM =A B?cos30°=3BM =AB?sin30°=5(米).

在Rt △ACD 中,AE =10(米),∠DAE =60°,

∴DE =AE?tan60°=3

在Rt △BCN 中,BN =AE +AM =10+3CBN =45°,

∴CN =BN?tan45°=10+3(米),

∴CD =CN +EN?D E =10+33=3

故选:A .

【点睛】

本题考查了解直角三角形?仰角俯角问题及解直角三角形?坡度坡脚问题,通过解直角三角形求出BM ,AM ,CN ,DE 的长是解题的关键.

8.如图,ABC ?是一张顶角是120?的三角形纸片,,6AB AC BC ==现将ABC ?折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )

A .1

B .2

C .2

D .3

【答案】A

【解析】

【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.

【详解】

解:作AH ⊥BC 于H ,

∵AB=AC ,AH ⊥BC ,

BH=12

BC=3, ∵∠BAC=120°,AB=AC ,

∴∠B=30°,

∴AB=30BH cos

=23, 由翻折变换的性质可知,DB=DA=3,

∴DE=BD ?tan30°=1,

故选:A .

【点睛】

此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

9.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )

A .833

B .433

C .8

D .83

【答案】A

【解析】

【分析】

根据折叠性质可得BE=12

AB ,A′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,可得∠EA ′B=30°,根据直角三角形两锐角互余可得∠EBA ′=60°,进而可得∠ABM=30°,在Rt △ABM 中,利用∠ABM 的余弦求出BM 的长即可.

【详解】

∵对折矩形纸片ABCD ,使AD 与BC 重合,AB=4,

∴BE=12

AB=2,∠BEF=90°, ∵把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A’处,并使折痕经过点B , ∴A ′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,

∴∠EA ′B=30°,

∴∠EBA ′=60°,

∴∠ABM=30°,

∴在Rt △ABM 中,AB=BM ?cos ∠ABM ,即4=BM ?cos30°,

解得:BM=

83, 故选A.

【点睛】

本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.

10.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B =

,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD

的值( )

A .35

B .34

C .45

D .67

【答案】D

【解析】

【分析】

根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37

AB ,再由点D 为AB 中点得AD =

12AB ,进而可求得AE AD

的值. 【详解】 解:∵CE 平分ACB ∠,

∴点E 到ACB ∠的两边距离相等,

设点E 到ACB ∠的两边距离位h ,

则S △ACE =12AC·h ,S △BCE =12

BC·h , ∴S △ACE :S △BCE =

12AC·h :12

BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE ,

∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B =

, ∴AC :BC =3:4,

∴AE :BE =3:4

∴AE =37

AB , ∵CD 为AB 边上的中线, ∴AD =

12AB , ∴36717

2

AB AE AD AB ==, 故选:D .

【点睛】

本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键.

11.把Rt ABC ?三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )

A .扩大为原来的3倍

B .缩小为原来的

13

C .扩大为原来的9倍

D .不变 【答案】D

【解析】

【分析】

根据相似三角形的性质解答.

【详解】

三边的长度都扩大为原来的3倍,

则所得的三角形与原三角形相似,

∴锐角A 的大小不变,

∴锐角A 的余弦值不变,

故选:D .

【点睛】

此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.

12.如图,ABC V 中,90ACB ∠=?,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).

A .1

B 2

C 21

D .222

【答案】D

【解析】

【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.

【详解】

解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,

D ∴为ABC ?的内心,

OD ∴最小时,OD 为ABC ?的内切圆的半径,

,DO AB ∴⊥

过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F

,DE DF DO ∴==

∴ 四边形DFCE 为正方形,

O Q 为AB 的中点,4,AB =

2,AO BO ∴==

由切线长定理得:2,2,,AO AE BO BF CE CF r ======

sin 4522,AC BC AB ∴==??=

222,CE AC AE ∴=-=

Q 四边形DFCE 为正方形,

,CE DE ∴= 222,OD CE ∴==-

故选D .

【点睛】

本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.

13.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A 的正对记作sadA ,即sadA =底边:腰.如图,在ABC ?中,AB AC =,2A B ∠=∠.则sin B sadA ?=( )

A .12

B 2

C .1

D .2

【答案】C

【解析】

【分析】

证明△ABC 是等腰直角三角形即可解决问题.

【详解】

解:∵AB=AC ,

∴∠B=∠C ,

∵∠A=2∠B ,

∴∠B=∠C=45°,∠A=90°,

∴在Rt △ABC 中,BC=

sin AC B ∠2AC , ∴sin ∠B ?sadA=

1AC BC BC AC

=g , 故选:C .

【点睛】

本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

14.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()

A.﹣3B.﹣23C.﹣33D.﹣43

【答案】B

【解析】

【分析】

根据已知求出B(﹣

2

,

24

b b

a a

-

),由△AOB为等边三角形,得到

2

b

4a

=tan60°×(﹣

2

b

a

),

即可求解;

【详解】

解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,

B(﹣

2

,

24

b b

a a

-

),

∵△AOB为等边三角形,

2

b

4a

=tan60°×(﹣

2

b

a

),

∴b=﹣23;

故选B.

【点睛】

本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.

15.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()

A

.13 B

.13 C .23 D

.13

【答案】B

【解析】

【分析】

首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面

积等于△ABE 的面积与△ADE 的面积之和得到

12

?x?x+?x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.

【详解】

∵四边形ABCD 为正方形,

∴BA =AD ,∠BAD =90°,

∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,

∴∠AFB =90°,∠DEA =90°,

∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,

∴∠ABF =∠EAD ,

在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠??∠=??=?

∴△ABF ≌△DEA (AAS ),

∴BF =AE ;

设AE =x ,则BF =x ,DE =AF =1,

∵四边形ABED 的面积为6, ∴

111622

x x x ??+??=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF

中,BE

∴cos 13BF EBF BE ∠=

==. 故选B .

【点睛】

本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.

16.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )

A.AF=1

2 CF

B.∠DCF=∠DFC

C.图中与△AEF相似的三角形共有5个

D.tan∠CAD=

3 2

【答案】D 【解析】【分析】

由AE=1

2

AD=

1

2

BC,又AD∥BC,所以

1

2

AE AF

BC FC

==,故A正确,不符合题意;

过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=1

2

BC,得到

CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;

根据相似三角形的判定即可求解,故C正确,不符合题意;

由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.

【详解】

解:A、∵AD∥BC,

∴△AEF∽△CBF,

∴AE

BC

AF

FC

∵AE=1

2

AD=

1

2

BC,

∴AF

FC

1

2

,故A正确,不符合题意;

B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,

∴四边形BMDE是平行四边形,

∴BM=DE=1

2 BC,

∴BM=CM,

∴CN=NF,

∵BE⊥AC于点F,DM∥BE,

∴DN⊥CF,

∴DF=DC,

∴∠DCF=∠DFC,故B正确,不符合题意;

C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.

D、设AD=a,AB=b由△BAE∽△ADC,有b

a

2

a

∵tan∠CAD=CD

AD

b

a

2

2

,故D错误,符合题意.

故选:D.

【点睛】

本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.

17.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交

于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=4

3

,⑤S△DOC=S四

边形EOFB

中,正确的有()

A.1个B.2个C.3个D.4个

【答案】D

【解析】

分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.

详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.

∵AE=BF=1,∴BE=CF=4﹣1=3.

在△EBC和△FCD中,

BC CD

B DCF

BE CF

=

?

?

∠=∠

?

?=

?

∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,

∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;

连接DE,如图所示,若OC=OE.

∵DF⊥EC,∴CD=DE.

∵CD=AD<DE(矛盾),故②错误;

∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠

DFC=

DC

FC

=

4

3

,故④正确;

∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△

FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤

正确;

故正确的有:①③④⑤.

故选D.

点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.

18.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )

A.303n mile B.60 n mile C.120 n mile D.(303)

+n mile 【答案】D

【解析】

【分析】

过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.

【详解】

过C作CD⊥AB于D点,

∴∠ACD=30°,∠BCD=45°,AC=60.

在Rt△ACD中,cos∠ACD=CD AC

∴CD=AC?cos∠ACD=60×3

303 .

在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=303,

∴AB=AD+BD=30+303.

答:此时轮船所在的B处与灯塔P的距离是(30+303)nmile.

故选D.

【点睛】

此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()

A.2 B.4 C.3D.3

【答案】C

【解析】

【分析】

点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】

解:设AB=a,∠C=30°,则AC=2a,BC=3a,

设P、Q同时到达的时间为T,

则点P的速度为3a

T

,点Q的速度为

3a

,故点P、Q的速度比为3:3,

故设点P、Q的速度分别为:3v、3v,

由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,

y=1

2

?AB×BQ=

1

2

?6v×23v=63,解得:v=1,

故点P、Q的速度分别为:3,3,AB=6v=6=a,

则AC=12,BC=63,

如图当点P在AC的中点时,PC=6,

此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,

PC=6,则PH=PC sin C=6×1

2

=3,同理CH=3,则HQ=CH﹣CQ=33

3,

PQ22

PH HQ

+39

+3,

故选:C.

【点睛】

本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.

20.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()

A.4 B.83C.6 D.43

【答案】B

【解析】

【分析】

设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.

【详解】

设三角板与圆的切点为C,连接OA、OB,

由切线长定理知,AB=AC=3,AO平分∠BAC,

∴∠OAB=60°,

在Rt△ABO中,OB=AB tan∠OAB3

∴光盘的直径为3

故选:B.

【点睛】

本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.

中考数学专题题库∶锐角三角函数的综合题及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

最新锐角三角函数练习题及答案

锐角三角函数 1.把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 2.如图1,已知P 是射线OB 上的任意一点,PM ⊥OA 于M ,且PM :OM=3:4,则cos α的值等于( ) A .34 B .43 C .45 D .35 图1 图2 图3 图4 图5 3.在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 4.在Rt △ABC 中,∠C=90°,cosA=23 ,则tanB 等于( ) A .35 B C .25 D 5.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,?tanA=_______. 6.如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______. 7.如图3,在Rt △ABC 中,∠C=90°,b=20,,则∠B 的度数为_______. 8.如图4,在△CDE 中,∠E=90°,DE=6,CD=10,求∠D 的三个三角函数值. 9.已知:α是锐角,tan α=724 ,则sin α=_____,cos α=_______. 10.在Rt △ABC 中,两边的长分别为3和4,求最小角的正弦值为 10.如图5,角α的顶点在直角坐标系的原点,一边在x 轴上,?另一边经过点P (2,,求角α的三个三角函数值. 12.如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,?BC=4,?求sin α,cos α, tan α的值.

人教版九年级数学下册锐角三角函数单元测试

锐角三角函数 单元测试 一、选择题(本题共8小题,每小题4分,共32分) 1. 60cos 的值等于( ) A . 2 1 B .22 C . 2 3 D .1 2.在Rt △ABC 中, ∠C=90?,AB=4,AC=1,则tanA 的值是( ) A .154 B .1 4 C .15 D .4 3.已知α为锐角,且2 3 )10sin(= ?-α,则α等于( ) A.?50 B.?60 C.?70 D.?80 4.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( ) A .sin 40m B .cos 40m C .tan 40m D . tan 40 m 5.在Rt ABC △中,90C ∠=,5BC =,15AC =,则A ∠=( ) A .90 B .60 C .45 D .30 6.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)位于她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ) A .250m. B . 250.3 m. C .500.33 m. D .3250 m. 7.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A . 24 7 B . 73 C . 724 D . 13 8.因为1 s i n 302= ,1sin 2102 =-,所以s i n 210s i n (18030)s i n =+=-; 因为2s i n 452 = ,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240= ( ) 6 8 C E A B D (第7题) 第6题

第28章_锐角三角函数全章教案

课题锐角三角函数——正弦 一、教学目标 1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2、能根据正弦概念正确进行计算 3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。 二、教学重点、难点 重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。 三、教学过程 (一)复习引入 操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片) 小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。 你想知道小明怎样算出的吗? 师:通过前面的学习我们知道,利用相似三角形的方法可以测 算出旗杆的大致高度; 实际上我们还可以象小明那样通过测量一些角的度数和一些线 段的长度,来测算出旗杆的高度。 这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。 下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m,那么需要准备多长的水管? 分析: 问题转化为,在Rt△ABC中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即 34 1米 10米 ?

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中数学锐角三角函数的真题汇编含答案

初中数学锐角三角函数的真题汇编含答案 一、选择题 1.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为() A.43B.12﹣43C.12﹣63D.63 【答案】B 【解析】 【分析】 过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案. 【详解】 解:过点B作BM⊥FD于点M, 在△ACB中,∠ACB=90°,∠A=45°,AC=122, ∴BC=AC=122. ∵AB∥CF, ∴BM=BC×sin45°= 2 12212 ?= CM=BM=12, 在△EFD中,∠F=90°,∠E=30°, ∴∠EDF=60°, ∴MD=BM÷tan60°=43, ∴CD=CM﹣MD=12﹣43. 故选B. 【点睛】 本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答. 2.在课外实践中,小明为了测量江中信号塔A离河边的距离AB,采取了如下措施:如

图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米, CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈) A .78.6米 B .78.7米 C .78.8米 D .78.9米 【答案】C 【解析】 【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度 【详解】 如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G ∵BC 的坡度为1:0.75 ∴设CF 为xm ,则BF 为0.75xm ∵BC=140m ∴在Rt △BCF 中,()2 220.75140x x +=,解得:x=112 ∴CF=112m ,BF=84m ∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形 ∵DE=55m ,CE=FG=36m ∴DG=167m ,BG=120m 设AB=ym ∵∠DAB=40° ∴tan40°= 167 0.84120 DG AG y ==+ 解得:y=78.8 故选:C 【点睛】 本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

初中数学锐角三角函数的基础测试题附答案

初中数学锐角三角函数的基础测试题附答案 一、选择题 1.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27?(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45?≈,cos270.89?≈,tan 270.51?≈) A .65.8米 B .71.8米 C .73.8米 D .119.8米 【答案】B 【解析】 【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论. 【详解】 解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G , ∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米, ∴设DG x =,则 2.4 CG x =. 在Rt CDG ?中, ∵222DG CG DC +=,即222 (2.4)52x x +=,解得20x =, ∴20DG =米,48CG =米, ∴200.820.8EG =+=米,5248100BG =+=米. ∵EM AB ⊥,AB BG ⊥,EG BG ⊥, ∴四边形EGBM 是矩形, ∴100EM BG ==米,20.8BM EG ==米. 在Rt AEM ?中, ∵27AEM ?∠=, ∴?tan 271000.5151AM EM ?=≈?=米, ∴5120.871.8AB AM BM =+=+=米. 故选B .

锐角三角函数全章教案

锐角三角函数全章教案 单元要点分析 内容简介 本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用. 相似三角形和勾股定理等是学习本章的直接基础. 本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础.教学目标 1.知识与技能 (1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值. (2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角. (3)运用三角函数解决与直角三角形有关的简单的实际问题. (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.过程与方法 贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中. 3.情感、态度与价值观 通过解直角三角形培养学生数形结合的思想. 重点与难点 1.重点 (1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,?应该牢牢记住. (2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题. 2.难点 (1)锐角三角函数的概念.

(2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,?解决问题的能力. 教学方法 在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.?讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点: 1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题. 2.在呈现方式上,突出实践性与研究性,三角函数的意义要通过问题经出,?再加以探索认识. 3.对实际问题,注意联系生活实际. 4.适度增加训练学生逻辑思维的习题,减少机械操作性习题,?增加探索性问题的比重.课时安排 本章共分9课时. 28.1 锐角三角函数4课时 28.2 解直角三角形4课时 小结1课时 28.1 锐角三角函数 内容简介 本节先研究正弦函数,在此基础上给出余弦函数和正切函数的概念.通过两个特殊的直角三角形,让学生感受到不管直角三角形大小,只要角度不变,那么它们所对的边与斜边的比分别都是常数,这为引出正弦函数的概念作好铺垫.这样引出正弦函数的概念,能够使学生充分感受到函数的思想,由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完

锐角三角函数专题

如有帮助欢迎下载支持 锐角三角函数专题 共100分 命题人:王震宇 张洪林 一、选择题(30分) 1、如果∠A 是锐角,且A cos A sin =,那么∠A=_______。 A. 30° B. 45° C. 60° D. 90° 2. CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=________。 A. 5 3 B. 4 3 C. 3 4 D. 5 4 3、如果130sin sin 22=?+α,那么锐角α的度数是________。 A. 15° B. 30° C. 45° D. 60° 4、已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是________。 A. 32B sin = B. 32B cos = C. 3 2 B tan = 5、在Rt △AB C 中,如果各边长度都扩大2倍,那么锐角A 的正切值( ) A. 没有变化 B. 扩大2倍 C.缩小2倍 D. 不能确定 6、 在△ABC 中,∠C =90°,AC =BC ,则sin A 的值等于( ) A. 2 1 B. 22 C. 2 3 D. 1 7、已知α为锐角,下列结论 ①1cos sin =+αα ②如果?>45α,那么ααcos sin > ③如果2 1 cos > α,那么?<60α ④ααsin 1)1(sin 2-=- 正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 △ABC 中,∠C =90°,53 sin = A ,则BC ∶AC 等于( ) A. 3∶4 B. 4∶3 C. 3∶5 D. 4∶5: 9、 如果α是锐角,且5 4 sin = α,那么)90cos(α-?=( ) A. 54 B. 43 C. 53 D. 5 1. 10、如右图,CD 是平面镜,光线从A 点出发经过CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为( )

锐角三角函数练习及其答案

解直角三角形 学习目标、重点、难点 【学习目标】 1.理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 2.会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. 【重点难点】 1.直角三角形的解法. 2.三角函数在解直角三角形中的灵活运用. 3.实际问题转化成数学模型. 知识概览图 解直角三角形的定义:在直角三角形中,由已知元素求未知元 素的过程 三边关系:a 2+b 2=c 2(勾股定理) 两锐角关系:两锐角互余 边角关系:三角函数 30°角所对的直角边等于斜边的一 半 两边一角:由勾 股定理求另一边,再求角 一边一角:由三 角函数求另两边,再求角 新课导引 【生活链接】如右图所示,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一个长6 m 的梯子. (1)使用这个梯子最高可以安全攀上多高的墙?(结果保留小数点后一位) (2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角a 等于多少?这时人 解直角三角形 直角三角形的有关性质 解直角三角形的基本类型及方法

是否能够安全使用这个梯子?(结果保留整数) 【问题探究】对于问题(1),当梯子与地面所成的角α为75°时,梯子顶端与地面的距离是使用这个梯子所能安全攀到的最大高度,即在Rt△ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.由sin A=BC AB ,得BC=AB2sin A=6sin75°.由计算器求得sin 75°≈0.97,∴BC≈630.97≈5.8(m).那么对于问题(2),该如何求解呢? 教材精华 知识点1 解直角三角形的概念 如图28-30所示,在Rt△ABC中,∠C=90°,∠A=50°,c =5,如何求∠B,a,b呢? 由∠A+∠B=90°,∠A=50°,得∠B=90°-∠A=40°. 由sin A=a c ,得a=c2sin A=52sin 50°≈530.7660=3.83. 由cos A=b c ,得b=c2cos A=52cos 50°≈530.6428=3.214.上述问题中,除直角外,已知一条边和一个锐角,求另外两条边和一个锐角,于是有: 一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形. 拓展直角三角形中一共有六个元素,即三条边和三个角,除直角外,另外的五个元素中,只要已知一条边和一个角或两条边,就可以求出其余的所有未知元素. 知识点2 解直角三角形的理论依据 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边. (1)三边之间的关系:a2+b2=c2(勾股定理). (2)两锐角之间的关系:∠A+∠B=90°. (3)边角之间的关系:sin A=a c ,cos A=b c ,tan A=a b ,sin B=b c ,cos B=a c ,tan B=b a . (4)直角三角形中的有关定理.

第七章《锐角三角函数》单元测试

第七章《锐角三角函数》单元测试 班级:____姓名:____学号:___得分:___ 一、选择题:(3分×10) 1.在Rt △ABC 中,如果各边长度都扩大3倍,那么锐角A 的各个三角函数值 ( ) A .都缩小 3 1 B .都不变 C .都扩大3倍 D .无法确定 2.已知Rt △ABC 中,∠C=90°,tanA=4 3 ,BC=8,则AC 等于 ( ) A .6 B .32 3 C .10 D .12 3.如图,在正方形网格中,直线AB .CD 相交所成的锐角为α,则sinα的值是( ) A. 34 B. 43 C. 35 D. 45 & 4.如图,已知⊙O 的半径为与⊙O 相切于点A,OB 与⊙O 交于点C,CD ⊥OA,垂足为D, 则cos ∠AOB 的值等于 ( ) 5.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB ’的长为( ) A .4 B .33 C .332 D .3 34 : 第3题图 第4题图 第5题图 第6题图 6.如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为 ,则它们重叠部分(图中阴影部分)的面积是 O D C A B C 。 D

F E D C B A ( ) A. αsin 1 B.α cos 1 C.αsin 7.如图,AC 是电杆AB 的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC 的长为 ( ) A. ?526sin 米 B. ?526tan 米 C. 6·cos52°米 D. ? 526 cos 米 [ 8.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点 B 重合,折痕为DE ,则tan CBE ∠的值是 ( ) A .247 B 7 C . 724 D .13 第7题图 第8题图 - 二、填空题:(3分×8) 9. 在Rt △ABC 中,∠ACB=900,sinB=2 7 则cosB= . 10.若321θ=,则θ= , 11.在△ABC 中,若23 |tan 1|( cos )0A B -+=,则∠C 的度数为 . 12.如图,△ABC 中,AB=AC=5,BC =8,则tanB= . 13.用不等号“>”或“<”连接:sin50°________cos50°。 14.在坡度为1:2的斜坡上,某人前进了100米,则他所在的位置比原来升高了 米. 15.如图,王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地_________. — 16.如图,菱形ABCD 中,点E 、F 在对角线BD 上,BE=DF=1 4BD ,若四边形AECF 为正方形,则tan ∠ABE=_________. A B C ┐ A C 6 | C E A B D

第二十八章 锐角三角函数全章测试(一)

第二十八章 锐角三角函数全章测试 一、选择题 1.Rt △ABC 中,∠C =90°,若BC =4,,3 2sin =A 则AC 的长为( ) A .6 B .52 C .53 D .132 2.⊙O 的半径为R ,若∠AOB =α ,则弦AB 的长为( ) A .2 sin 2α R B .2R sin α C .2 cos 2α R D .R sin α 3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312 B .12 C .324 D .348 4.若某人沿倾斜角为α 的斜坡前进100m ,则他上升的最大高度是( ) A . m sin 100 α B .100sin α m C . m cos 100 β D .100cos β m 5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15m B .12m C .9m D .7m 6.P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 点,若∠APB =2α ,⊙O 的半径为R ,则AB 的长为( ) A . α α tan sin R B . α α sin tan R C . α α tan sin 2R D . α α sin tan 2R 7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =β ,则AD 等于( ) A .a sin 2β B .a cos 2β C .a sin β cos β D .a sin β tan β 8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么 AB DC 的值为( ) A .sin ∠APC B .cos ∠APC C .tan ∠APC D . APC ∠tan 1 9.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )

锐角三角函数专题训练

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边的邻边斜边的对边A A A A ∠=?∠=cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

)90sin(cos ),90cos(sin A A A A -?=-?=. 七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。 即 ()A A -=ο90cot tan , ()A A -=ο90tan cot . 八、同角三角函数之间的关系: ⑴、平方关系:1cos sin 22=+A A ⑵商的关系A A A cos sin tan = A A A sin cos cot = ⑶倒数关系tana ·cota=1 【典型例题】 【1】 已知a 为锐角①若sina=3/5,求cosa 、tana 的值。②若tana=3/4,求 sina 、cosa 的值。③若tana=2,求(3sina+cosa )/(4cosa-5sina ) 【2】 在△ABC 中,角A, 角B,角C 的对边分别为a 、b 、c ,且a :b :c=9:40:41, 求tanA,1/tanA 的值. 【3】 求下列各式的锐角。 ①2sina=1,②,2tana ·cosa=根号3,③ tan 2 a+(1+根号3)tana+根号3=0 【4】 在△ABC 中AB=15,BC=14,S △ABC=84.求tanc ,sina 的值。 【5】 等腰三角形的面积为2,腰长为根号5,底角为a ,求tana 。 【6】 锐角a 满足cosa=3/4,则∠a 较确切的取值范围() A.0°<a <45° B. 45°<a <90° C. 45°<a <60° D. C. 30°<a <45° 【7】计算:020*********sin 88sin 3sin 2sin 1sin +++++Λ 【基础练习】 一、填空题:

锐角三角函数知识点及试题(含答案).

锐角三角函数 一.知识框架 二.知识概念 1.Rt △ABC 中 (1∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边 斜边 (2∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边 (3∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边

∠A 的邻边 (4∠A 的邻边与对边的比值是∠A 的余切,记作cota = ∠A 的邻边∠A 的对边 2.特殊值的三角函数: 锐角三角函数(1 基础扫描 1. 求出下图中sinD ,sinE 的值. 2.把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′ C ′,那么锐角A 、A ′的正弦值的关系为( . A . sinA =sinA ′ B . sinA =2sinA ′ C . 2sinA =sinA ′ D . 不能确定 3.在Rt △ABC 中,∠C=90°,若AB =5,AC =4,则sinB 的值是( A . 35

B . 45 C . 34 D . 4 3 4. 如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值. 25 24 7C B A 5. 计算:sin30°·sin 60°+sin45°. 能力拓展 6. 如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线上取一点P ,连接AP 、PB ,使sin ∠APB=1 2,则满足条件的点P 的个数是( A 1个 B 2个 C 3个

D 不存在 7. 如图,△ABC 中,∠A 是锐角,求证:1 sin 2 ABC S AB AC A ?= ?? 8.等腰△ABC 中,AB=AC=5,BC=6,求sinA 、sinB . l C B A (第7题图 85 F E D 创新学习 9. 如图,△ABC的顶点都是正方形网格中的格点,则sin∠BAC等于( A. B C.

锐角三角函数单元测试(含答案)

初四数学假期作业锐角三角函数 命题人 班级 姓名 家长签名 2014.9.29 一、填空题: 1、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。 2、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。 3、已知tan α=12 5,α是锐角,则sin α= 。 4、cos 2(50°+α)+co s 2(40°-α)-tan(30°-α)tan(60°+α)= ; 5、如图1,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号). (1) (2) (3) 6、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 7、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。 8、如图2,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6 米,斜坡上相邻两树间的坡面距离是 米。 9、在△ABC 中,∠ACB =90°,cosA=3 3,AB =8cm ,则△ABC 的面积为______ 。 10、如图3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯 子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。 二、选择题: 11、sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( ) A.0 B.1 C.2 D.2sin 2θ 12、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值 ( ) A.也扩大3倍 B.缩小为原来的3 1 C. 都不变 D.有的扩大,有的缩小 13、以直角坐标系的原点O 为圆心,以1为半径作圆。若点P 是该圆上第一象限内的一x O A y B

省优秀课一等奖:锐角三角函数全章教案

【锐角三角函数全章教案】 锐角三角函数(第一课时) 教学三维目标: 一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。 二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。 三.情感目标:提高学生对几何图形美的认识。 教材分析: 1.教学重点: 正弦,余弦,正切概念 2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动 1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。 2.归纳三角函数定义。 siaA= 斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边 的对边 A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。 4.学生练习P21练习1,2,3 二.探究活动二 1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)0 4530cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=2 3 ,AC=23,求AB 四.小结 五.作业课本p85-86 2,3,6,7,8,10

解直角三角形应用(一) 一.教学三维目标 (一)知识目标 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=b a (2)三边之间关系 a 2 + b 2 = c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动 1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析

锐角三角函数应用题专题

1、(09年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 2、(09年湖南怀化)如图,小明从 A 地沿北偏东 30方向走1003m 到 B 地,再从B 地向正南方向走 200m 到C 地,此时小明离A 地 m . 3、(09年山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 B .253 C .10033 D .25253+ 4、(09年山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点 A 处安置测倾器,测得风筝C 的仰角60CBD =?∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 5、(09年广东深圳、山东东营)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度. 6、(09年广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里.求: (1)军舰N 在雷达站P 的什么方向?(2)两军舰M N 、的距离.(结果保留根号) 第6题图 N M P 北 A B C D 6米 52° 35° (第1题图) A D B E C 60° (第4题图) 第2题图 B C A D l 第3题图 A B C D 第5题图

《锐角三角函数》习题(含答案)正确无误版

《锐角三角函数》 一、选择题 1. 4 sin tan 5 ααα= 若为锐角,且,则为 ( ) 933425543 A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( ) A .sinA = sin B B .cosA=sinB C .sinA=cosB D .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( ) A .10 B .22 C .10或27 D .无法确定 4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c = sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A | 5、 45cos 45sin +的值等于( ) A. 2 B. 2 1 3+ C. 3 D. 1 6.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C. 50 3 D. 150 7.当锐角α>30°时,则cos α的值是( ) A .大于 12 B .小于12 C .大于3 D .小于3 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D . 23 3 9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( ) (A )4 (B )5 (C )23 (D )83 3 \ 10.已知Rt △ABC 中,∠C=90°,tanA=4 3 ,BC=8,则AC 等于( ) A .6 B .32 3 C .10 D .12 二、填空题 11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________. 13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.

相关文档
最新文档