概率统计教材第四章参考答案
【侯亚君版本《概率论与数理统计》】第四章习题解答

第四章习题解答4-1. 解 设X 为取出的3只球中的最大编号。
则X 的所有可能取值为:3,4,5,其分布律为:X3 4 5 p1/103/106/10106510341013)(⨯+⨯+⨯=X E 5.4=.4-2. 解 设X 为赌博者所赢的钱数。
则X 的所有可能取值为:-10, 0, 2。
X 的分布律为:X-10 0 2 p1/6 1/3 1/2322123106110)(-=⨯+⨯+⨯-=X E .故此赌博对参加者是不利的。
4-3 解 设X 为射击的次数。
X 的所有可能取值为:0, 1, 2, …… 分布律为:1)1()(--==k p p k X P , ,2,1,0=k ∑∑∞=-∞=--=-=1101)1()1(k k k k p k p p kp EXp p p k k 1)1('1=⎥⎦⎤⎢⎣⎡--=∑∞=。
4-4. 解 设X 表示某人命中子弹的个数。
X 的所有可能取值为:4,3,2,1,0,则)6.0.4(~b X 其分布律为k k k C k X P -==444.06.0)(令Y 表示射击所得的分数,044413342224311440044.06.01004.06.0554.06.0304.06.0154.06.00C C C C C EY ⨯+⨯+⨯+⨯+⨯=649.44=4-5. 无穷级数∑∑∞=∞=+-=-1112)1(323)1(k k kk k k k , 因为无穷级数∑∞=12k k 发散,所以无穷∑∞=-12)1(k k 不绝对收敛,所以X 的数学期望不存在。
4-6. 令X 为途中遇到红灯的次数。
X 的所有可能取值为:3,2,1,0,则)4.0,3(~b X216.04.06.0)0(0303===C X P432.04.06.0)1(1213===C X P228.04.06.0)2(2123===C X P064.04.06.0)0(3033===C X P2.1064.03288.02432.01216.00=⨯+⨯+⨯+⨯=EX所以,途中遇到红灯的次数为1.2次。
概率论与数理统计第四章补充习题

第四章补充习题一、 填空题1、 设随机变量X 则Y X 和的相关系数XY ρ= ,=),(2222Y X Cov Y X 的协方差和 。
2、设随机变量Y X 和的数学期望分别为22和-,方差分别为41和,而相关系数为5.0-,则根据切比雪夫不等式{}≤≥+6Y X P 。
3、设随机变量Y X 与相互独立且均服从正态分布2(0,)N , 则)(Y X E -= ,=-)(Y X D 。
4、随机变量ξ服从指数分布,参数λ= 时,72)(2=ξE 。
5、设随机变量Y X ,,2)(-=X E ,4)(=Y E ,4)(=X D ,9)(=Y D ,5.0-=XY ρ, =-+-)323(22Y XY X E 。
6、设随机变量Y X 与的相关系数9.0=XY ρ,若4.0-=X Z ,则=YZ ρ 。
7、设Y X ,同分布,密度函数均为⎪⎩⎪⎨⎧<<=其它若0102)(2tx xtx f ,使t Y X C E 1))2((=+, 则=C 。
8、设随机变量X 的数学期望和方差均为0,则{}=≠0X P 。
9、将一枚均匀硬币连掷3次,用X 表示正面出现的总次数,Y 表示第一次掷得的正面数, 则=)(XY E ,=),(Y X Cov ,=XY ρ 。
二、选择题1、设随机变量Y X 和独立同分布,记 Y X V Y X U +=-=,,则随机变量V U 与必然( ) (A )不独立, (B) 独立, (C) 相关系数不为零, (D) 相关系数为零。
2、将一枚硬币掷n 次,以Y X 和分别表示正面朝上和反面朝上的次数,则Y X 和的相关系数等于( )。
(A )1- (B) 0 (C)21(D) 1。
3、设随机变量Y X 和相互独立且分别服从正态分布(0, 1)N 和(1, 1)N ,则( )。
(A) {}210=≤+Y X P , (B) {}211=≤+Y X P , (C) {}210=≤-Y X P , (D) {}211=≤-Y X P 。
概率论与数理统计第四章答案

证:
由于X1与X2分布相同,所以二者方差相等,所以上式为0.
解:矩母函数:
验证
解:根据切比雪夫不等式
解:设一个学生成绩X,根据马尔科夫不等式
根据切比雪夫不等式
设有n人参加考试,其中Xi为第i个学生的成绩,它们相互独立,均值75,方差25。那么总成绩(注意:并不是nX)为 ,平均成绩
E[X22]=12×1/2+22×1/2=5/2
Var(X2)= E[X22]-( E[X2])2=1/4
E(X1X2)=0+0+1*1*1/16+1*2*1/16+2*1*3/16+2*2*1/8+3*1*1/8+3*2*1/4=47/16
Cov(X1,X2)= E(X1X2)- E[X1]E[X2]=1/8
解:
从而a=3/5, b=6/5.
解:(a)令Y=Xn,先求分布函数
FY(y)=P(Y<=y)=P(Xn<=y)
当y<=0, FY(y)=0.当y>=1, FY(y)=1.当0<y<1,
求导得到密度函数
求数学期望
(b)(本题改为利用命题4.5.1.)
解:(a)令
那么P(Xi=1)=17/40.这样
E[Xi]= 17/40, i=1,2, ..., 10
根据数学期望的性质
E[X]=E[X1]+E[X2]+...+E[X10]=17/4.
(b)将白球按1~17编号,取10个球,令
那么P(Yi=1)=10/40=1/4.这样
E[Yi]= 1/4, i=1,2, ..., 17
《大学数学概率论及试验统计》第四章_课后答案(余家林主编)

1 4Leabharlann 1 82、设 X~U(0,2π),试求: ( 1) EX, DX, ( 2) EX2 , DX2. ( 3) E(sinX),D(sinX).
(2)EX 2 =DX +( EX ) 2 = π 2 +π 2 = π 2 ,
4 1 16 2π EX 4 =∫0 x 4 .⋅ dx = π 4 3 2π 5 16 4 64 DX 2 = EX 4 −( EX 2 ) 2 = π 4 −( π 2 ) 2 = π 4 5 3 45
习题 4-1
1、 X 的分布律如下 ,试求( 1) EX,DX; ( 2) E( -2X+1) ,D( -2X+1) ; ( 3) EX2 , DX2 . X P -1 0 1 2
1 3 4 8 1 3 1 1 1 解:(1) EX=(-1)× +0 × +1× +2× = 4 8 4 8 4
2 2
(2)EY= ∫ ∫ yp( x, y ) dxdy=∫ dy ∫ ydx =
+∞ + ∞ −∞ −∞ 2 0 1− y 2
2 3
2
案 网
0
w.
P(Xi =j )= .. j =1,2,....n
6、袋中装有 n 个结构相同的小球,球面上分别标有数字 1, 2, … … ., n,从中任取 k 次, 每次取一个球,看过数字以后放回,若 k 个数字的和为 X,试求 X 的数学期望与方差。 解:设 Xi 表示第 i 次取出球的标数,i=1,2…..k
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编- 程述汉-舒兴明-第四章第四章习题解答11 •设随机变量X〜B (30,-),则E (X)=( D ).6A.-;D.5.1E (X) = np = 30 562 •已知随机变量X和Y相互独立,且它们分别在区间[-1 , 3]和[2, 4]上服从均匀分布,则E(XY)=( A ).A. 3;B. 6;C. 10;D. 12.E(X) =1 E(Y) =3因为随机变量X和Y相互独立所以E(XY) = E(X)E(Y) = 33.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,贝U X2的数学期望E(X 2) = 1&4 .X LI B(10,0.4) E(X) =4 D(X) =2.42 2E(X ) =(E(X)) D(X) =18.44.某射手有3发子弹,射一次命中的概率为-,如果命中了就停止射击,3否则一直射到子弹用尽.设表示X耗用的子弹数.求E (X).解:X123P2/32/91/92 2 1 13E(X)=—十—:2 +3 9 9 95 .设X的概率密度函数为x, 0ExE1f (x) - x, 1 :: x 乞2[0, 其它求 E(X) , E(X2).解: E(X) = J xf(x)dx = J x2dx + J x(2-x)dx =1,0 ' 11 32 27f (x)dx x dx 亠 i x (2「x)dx .- -bo -E(X 2)「;x 2求 E(X) , E(Y),E(XY).解:X-12P 0.650.35E(X)二「0.65 0.35 2 =0.05 .Y-112P0.40.250.35E(Y) = -0.4 0.25 1 0.35 2 =0.55E(XY)=(-1) (-1) 0.25 (-1) 1 0.1 (-1) 2 0.32 (-1) 0.15 2 1 0.15 2 2 0.05 =-0.257 •设二维随机向量(X, Y)的联合概率密度为求(1)E(X Y); (2) E(XY).E(XY) = _;.;(xy)f(x,y)dxdy=讥(广(xy)「dy)dx = 38.设随机变量X与Y相互独立,且D(X)=1, D(Y)=2 , J则D(X-Y)= 3 .D(X _Y) = D(X) D(Y) =39.设正方形的边长在区间]0, 2]服从均匀分布,则正方形面积A=X2的f(x,y)二e0,1°,0 :x y其它解: y) dxdy( x x y )e y d y dx 3方差为64/45 _________ .4 1E(X)=1, D(X) ,12 3X的密度函数f(x)= 102,0乞x乞26 •设随机向量(X, Y)的联合分布律为:E(X Y)=二y)求 D(X ),D(Y ),D(X-Y ).解:由本章习题5知E(X)=1 , E(X 2)=7,于是有62 21D(X)二 E(X )-(E(X)).6221 4E (XTE (X)「D (X)n 〒.4"be 42E(X )= x f(x)dx = 01 4 16x dx =2 5D(X 2) =E(X 4)—[E(X 2)]210•设随机变量X 的分布律为X -1 0 1 2P1/5 1/2 1/5 1/10求 D(X).解:D(X) = E(X 2) -(E(X))2, E(X2 21 2 1 2E(X ) =(-1) -01- 2 551 19 224D(X)=E (X 2)-(E(X))2=5 25 2511•设随机变量X 的概率密度函数为f(x)亠1,求 D(X ).::1I解:E(X) xf (x) dxxe*dx=0, 2E(X 2)x 2f(x)dx=2 x 2e^dx = 2 ,0 212•设随机变量X , Y 相互独立,其概率密度函数分别为x,f x (x)二 2 -x,0 _x _1 1 :: x _ 2y_ 0其它16 564 45由Y LI E(1)知 E(X) =D(X) =1.由于随机变量X , Y 相互独立,所以D(X -Y)二 D(X) D(Y) =7.613•设 D(X)=1,D(Y)=4,相关系数 P XY =0.5,则 cov(X,Y)=_1 __________ covX,Y)= » D(X)D(Y) =114•设二维随机变量(X, Y )的联合密度函数为求 cov(X,Y ), ?XY •DJI nI 22。
(完整版)概率论第四章答案

习题4-11. 设随机变量X求()E X ;E (2-3 X );2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=; 8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E . 2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3Xx x E Z E ee e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..14. 某保险公司规定, 如果在一年内顾客的投保事件A 发生, 该公司就赔偿顾客a 元. 若一年内事件A 发生的概率为p , 为使该公司受益的期望值等于a 的10%, 该公司应该要求顾客交多少保险费?解 设保险公司要求顾客交保费c 元. 引入随机变量⎩⎨⎧=.A ,0,A 1不发生事件发生事件,X 则{1},{0}1P X p P X p ====-. 保险公司的受益值1,,0.c a X Y c X -=⎧=⎨=⎩, 于是 ()(){1}{0}E Y c a P X c P X ap c =-⨯=+⨯==-+. 据题意有10%ap c a -+=⨯, 因此应要求顾客角保费(0.1)c p a =+.习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X-=.(A) 9. (B) 6. (C) 30. (D) 36. 解22[3(2)]3(44)E X E X X -=-+23[()4()4]E X E X =-+23{()[()]4()4}D X E X E X =+-+ 3(3144)36=⨯+++=.可见,应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A)10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.解 因为~(,),B n p X 所以E (X )=n p,D (X )=np (1-p ), 得到np =6, np (1-p )=3.6 . 解之,n=15 , p =0.4 . 可见,应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C)()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.解 注意到0)()()(=-=-Y E X E Y XE .由于X 与Y 相互独立,所以22)()()(σ=+=-Y D X D Y X D . 选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =.(D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解)1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ).解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+})]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯=13)45(4)45(9=-⨯+-⨯=.3. 设随机变量X 1, X 2, X 3相互独立, 其中X 1服从区间[0, 6]上的均匀分布,22~0,2X N (), 3~3X P (), 记12323Y X X X =-+, 求E (Y )和D (Y ) .解 由题设知21122(60)()3,()3,()0,()4,12E X D X E X D X -=====3321111(),()39E X D X λλ====.由期望的性质可得123123()(23)()2()3()13203 4.3E Y E X X X E X E X E X =-+=-+=-⨯+⨯=又123,,X X X 相互独立, 所以123123()(23)()4()9()1344920.9D Y D X X X D X D X D X =-+=++=+⨯+⨯=4. 设两个随机变量X 和Y 相互独立, 且都服从均值为0, 方差为12的正态分布, 求||X Y -的的期望和方差.解 记UX Y =-. 由于11~(0,),~(0,)22X N Y N , 所以()()()0,E U E X E Y =-= ()()()1D U D X D Y =+=.由此~(0,1)U N . 进而2222220 (||)(||)||x x xE X Y E U x dx xe dx e+∞---+∞+∞-∞-====⎰2222(||)()()[()]101E U E U D U E U==+=+=.故而2222 (||)(||)(||)[(||)]11D X Y D UE U E Uπ-==-=-=-.5. 设随机变量]2,1[~-UX, 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1XXXY求期望()E Y和方差)(YD.解因为X的概率密度为1,12,()30,.Xxf x-=⎧⎪⎨⎪⎩≤≤其它于是Y的分布率为00--11{1}{0}31()d d3XP Y P X f x x x∞=-=<===⎰⎰,{0}{0}0P Y P X====,+2002{1}{0}31()d d3XP Y P X f x x x∞==>===⎰⎰.因此121()1001333E Y=-⨯+⨯+⨯=,222212()(1)001133E Y=-⨯+⨯+⨯=.故有2218()()[()]199D YE Y E Y=-=-=.6. 设随机变量U在区间[-2, 2]上服从均匀分布, 随机变量1,1,1, 1.UXU--=>-⎧⎨⎩若≤若1,1,1, 1.UYU-=>⎧⎨⎩若≤若求E(X+Y), D(X+Y).解(1) 随机变量(X, Y)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1).{1,1}{P X Y P U =-=-=≤1,U -≤-1-211}{1}41d 4P U x =-==⋅⎰≤, {1,1}{P X Y P U =-==≤1,U -1}0>=, {1,1}{1P X Y P U ==-=>-,U ≤1111}21d 4x -==⋅⎰, 211{1,1}{1,1}41d 4P X Y P U U x ===>->==⋅⎰.于是得X 和Y 的联合密度分布为(2) Y X +和)(Y X +的概率分布分别为由此可见22()044E X Y +=-+=;2()[()]2D X Y E X Y +=+=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.解 对于正态分布不相关和独立是等价的. 选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 解 仅仅由(X , Y )的边缘分布不能完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解(32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==,求2[()]E XY +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+ 得3.0=b . 进而1.0=a . 由此可得边缘分布律于是 , . 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.5. 已知随机变量(,)~(0.5,4;0.1,9;0)X Y N , Z =2X -Y , 试求方差D (Z ), 协方差Cov(,)X Z , 相关系数ρXZ .解 由于X ,Y 的相关系数为零, 所以X 和Y 相互独立(因X 和Y 服从正态分布). 因此25944)()(4)2()(=+⨯=+=-=Y D X D Y X D Z D ,Cov(,)Cov(,2)2Cov(,)Cov(,)2()08X Z X X Y X X X Y D X =-=-=-=.因此80.825XZ ρ===⨯. 6. 设随机变量(X , Y )服从二维正态分布: 2~(1,3)X N , 2~(0,4)Y N ; X 与Y 的相关系数1,232XYX YZ ρ=-=+. 求: (1) E (Z ), D (Z ); (2) X 与Z 的相关系数ρXZ ; (3)问X 与Z 是否相互独立?为什么?解 (1) 由于)3,1(~2N X , )4,0(~2N Y , 所以16)(,0)(,9)(,1)(====Y D Y E X D X E ,而1Cov(,)3462XY X Y ρ==-⨯⨯=-.因此 31021131)(21)(31)23()(=⨯+⨯=+=+=Y E X E Y X E Z E ,1111()()()()2Cov(,)329432X Y D Z D D X D Y X Y =+=++111916Cov(,)943X Y =⨯+⨯+3)6(3141=-⨯++=.(2) 由于1111Cov(,)Cov(,)()Cov(,)9(6)0,323232XY X Z X D X X Y =+=+=⨯+⨯-= 所以0XZ ρ==.(3) 由0=XZ ρ知X 与Z 不相关, 又X 与Z 均服从正态分布, 故知X 与Z 相互独立.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的.事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±.因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XYρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XYρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.总习题四1. 设X 和Y 是相互独立且服从同一分布的两个随机变量, 已知X 的分布律为1{},1,2,33P X i i ===. 又设max{,},min{,}U X Y V X Y ==.(1) 写出二维随机变量(U , V )的分布律; (2) 求()E U .解 (1) 下面实际计算一下{1,3}P UV ==.注意到max{,},min{,}U X Y V X Y ==, 因此{1,3}{1,3}{3,1}P U V P X Y P X Y =====+=={1}{3}{3}{1}P X P Y P X P Y ===+==9231313131=⨯+⨯=.(2) 由(,)U V 的分布律可得关于U 的边缘分布律所以13522()1239999E U =⨯+⨯+⨯=. 2. 从学校乘汽车到火车站的途中有3个交通岗. 假设在各个交通岗遇到红灯的事件是相互独立的, 并且概率是25. 设X 为途中遇到红灯的次数, 求随机变量X 的分布律、分布函数和数学期望.解 令X 表示途中遇到红灯的次数, 由题设知2~(3,)XB . 即X 的分布律为从而3127543686(){}01231251251251255k E X kP X k ====⨯+⨯+⨯+⨯=∑. 3. 设随机变量),(Y X 的概率密度为212,01,(,)0,.y y x f x y ⎧⎪=⎨⎪⎩≤≤≤其它求22(),(),(),()E X E Y E XY E X Y +.解 112404()(,)1245xE X xf x y dxdy dx x y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰. 11240003()(,)1235xE X yf x y dxdy dx y y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰.112500031()(,)12362x E XY xyf x y dxdy dx xy y dy x dx ∞∞-∞-∞==⋅===⎰⎰⎰⎰⎰.122222220()()(,)()12xE X Y x y f x y dxdy dx x y y dy ∞∞-∞-∞+=+=+⋅⎰⎰⎰⎰155012423216(4)5653015x x dx =+=+==⎰. 4. 设随机变量(X ,Y )的概率密度为1sin(),0,0,222(,)0,.≤≤≤≤其它ππx y x y f x y ⎧+⎪=⎨⎪⎩求E (X ),D (X ),E (Y ),D (Y ),E (XY )和 Cov(X ,Y ).解22001()(,)sin()24E X xf x y dxdy x x y dxdy πππ+∞+∞-∞-∞==+=⎰⎰⎰⎰.22222200()(,)1sin() 2.282E X x f x y dxdyx x y dxdy ππππ+∞+∞-∞-∞==+=+-⎰⎰⎰⎰于是有2216)]([)()(222-+=-=ππX E X E X D . 利用对称性,有2216)(,4)(2-+==πππY D Y E .又()(,)E XY xyf x y dxdy +∞+∞-∞-∞=⎰⎰22001sin()2xy x y dxdy ππ=+⎰⎰220022001sin()21[sin cos cos sin ]2xdx y x y dyxdx y x y x y dyππππ=+=+⎰⎰⎰⎰12-=π.所以协方差2Cov(,)()()()1216X Y E XY E X E Y ππ=-=--.5. 设随机变量X 与Y 独立, 同服从正态分布1(0,)2N , 求(1)();()E X Y D X Y --;(2) (max{,});(min{,})E X Y E X Y .解 (1) 记Y X -=ξ.由于)21,0(~),21,0(~N Y N X ,所以,0)()()(=-=Y E X E E ξ 1)()()(=+=Y D X D D ξ.由此)1,0(~N ξ. 所以2222(||)(||)||x x E X Y E x dx xedx ξ+∞+∞---∞-==⎰22x e+∞-==101)]([)()()|(|2222=+=+==ξξξξE D E E .故而ππξξξ2121|)](|[)|(||)(||)(|222-=⎪⎪⎭⎫ ⎝⎛-=-==-E E D Y X D .(2) 注意到2||)(),max(Y X Y X Y X -++=, 2||),min(Y X Y X Y X --+=.所以ππ21221|]}[|)()({21)],[max(==-++=Y X E Y E X E Y X E ,ππ21221|]}[|)()({21)],[min(-=-=--+=Y X E Y E X E Y X E .6. 设随机变量),(Y X 的联合概率密度为,02,02,8(,)0,.x yx y f x y +⎧⎪=⎨⎪⎩≤≤≤≤其它求: E (X ), E (Y ), Cov(X ,Y ), ρXY , D (X+Y ).解 注意到),(y x f 只在区域2≤≤0,2≤≤0:y x G 上不为零, 所以()(,)8Gx yE X xf x y dxdy x x y ∞∞-∞-∞+==⎰⎰⎰⎰d d222000117()(1)846dx x x y dy x x dx =+=+=⎰⎰⎰,22()(,)E Xx f x y dxdy ∞∞-∞-∞=⎰⎰222232000115()()843dx x x y dy x x dx =+=+=⎰⎰⎰, 因而 36116735)]([)()(2222=-=-=X E X E X D .又()(,)E XY xyf x y dxdy ∞∞-∞-∞=⎰⎰22220001144()()8433dx xy x y dy x x dx =+=+=⎰⎰⎰. 由对称性知2275()(),()()63E Y E X E Y E X ====, 3611)()(==X D Y D . 这样,4491Cov(,)()()()33636X Y E XY E X E Y =-=-=-, 111XY ρ==-,5()()()2Cov(,)9D X Y D X D Y X Y +=++=.7. 设A , B 为随机事件, 且111(),(|),(|)432P A P B A P A B ===, 令 10A X A =⎧⎨⎩,发生,,不发生, 10B Y B =⎧⎨⎩,发生,,不发生.求: (1) 二维随机变量(X , Y )的概率分布; (2) X 与Y 的相关系数XY ρ.解 由1()(|)3()P AB P B A P A ==得1111()()33412P AB P A ==⨯=, 进而由1(|)2P A B = ()()P AB P B =得1()2()6P B P AB ==. 在此基础上可以求得(1)1{1,1}()12P X Y P AB ====,111{0,1}()()()61212P X Y P AB P B P AB ====-=-=,111{1,0}()()()4126P X Y P AB P A P AB ====-=-=,{0,0}()1()1[()()()]P X Y P AB P A B P A P B P AB ====-=-+-U 11121[]46123=-+-=.故(X , Y )的概率分布为(2) 由(1)因此211(),(),44E X E X ==22113()()[()]41616D XE X E X =-=-=, 22211115(),(),()()[()]6663636E Y E Y D Y E Y E Y ===-=-=. 又由(X , Y )的分布律可得21111()00011011312121212E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 故11115XYρ-⨯===.。
最新天津理工大学概率论与数理统计第四章习题答案详解
第4章 随机变量的数字特征一、填空题1、设X 为北方人的身高,Y 为南方人的身高,则“北方人比南方人高”相当于)()(Y E X E >2、设X 为今年任一时刻天津的气温,Y 为今年任一时刻北京的气温,则今年天津的气温变化比北京的大,相当于)()(Y D X D > .3、已知随机变量X 服从二项分布,且44.1)(,4.2)(==X D X E ,则二项分布的参数n = 6 , p = 0.4 .4、已知X 服从1x 2x 2e1)x (-+-π=ϕ,则. )(X E = 1 ,)(X D = 1/2 .5、设X 的分布律为则=+)12(X E 9/4 .6、设Y X ,相互独立,则协方差=),cov(Y X 0 .这时,Y X ,之间的相关系数=XY ρ 0 .7、若XY ρ是随机变量),(Y X 的相关系数,则1||=XY ρ的充要条件是{}1=+=b aX Y P .8、XY ρ是随机变量),(Y X 的相关系数,当0=XY ρ时,X 与Y 不相关 ,当1||=XY ρ时, X 与Y 几乎线性相关 .9、若4)(,8)(==Y D X D ,且Y X ,相互独立,则=-)2(Y X D 36 . 10、若b a ,为常数,则=+)(b aX D )(2X D a .11、若Y X ,相互独立,2)(,0)(==Y E X E ,则=)(XY E 0 . 12、若随机变量X 服从]2,0[π上的均匀分布,则=)(X E π .13、若4.0,36)(,25)(===XY Y D X D ρ,则=),cov(Y X 12 ,=+)(Y X D 85 ,=-)(Y X D 37 .14、已知3)(=X E ,5)(=X D ,则=+2)2(X E 30 .15、若随机变量X 的概率密度为⎩⎨⎧<≥=-000)(x x e x x ϕ,则=)2(X E 2 ,=-)(2X e E 1/3 .二、计算题1、五个零件中有1个次品,进行不放回地检查,每次取1个,直到查到次品为止。
概率统计第四章答案
概率论与数理统计作业班级 姓名 学号 任课教师第四章 随机变量的数字特征教学要求:一、理解随机变量数学期望和方差的概念,掌握数学期望和方差的性质与计算方法; 二、了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望及方差;三、了解矩、协方差、相关系数的概念及性质,并会计算.重点:数学期望与方差的概念和性质. 难点:相关系数.练习一 一维随机变量的数字特征1. 填空题(1)将三个球随机地放到5个盒子中去,则有球的盒子数的数学期望为 61/25 . (2)若随机变量X 的分布律{})2,1,0(!===k k BAk X P k且a X E =)(,则aeA -=,a B =.(3)设随机变量),(~p n B X ,且45.0)(,5.0)(==X D X E ,则5=n ,1.0=p .(4)已知连续型随机变量X 的概率密度为)(,1)(122+∞<<-∞=-+-x ex f x x π,则=)(X E 1 ,=)(X D 1/ 2 .(5)设随机变量X 表示10次重复独立射击命中目标的次数,且每次射击命中目标的概率为0.4,则=)(2X E ()()[]4.182=+XE X D .(6)设随机变量X 服从参数为λ)0(>λ的泊松分布,且已知1)]2)(1[(=--X X E ,则=λ 1 .2.在射击比赛中,每人射击4次,每次一发子弹,规定4弹全都不中得0分,只中一弹得15分,中2弹得30分,中3弹得55分,中4弹得100分.某人每次射击的命中率为0.6.求他期望得多少分?解:设X 表示射击4次得的分数,则X 的所有可能取值为.1005530150;;;;且 ()()()0256.06.016.0044=-==C X P , ()()()1536.06.016.0153114=-==C X P ,()()()3456.06.016.0302224=-==C X P , ()()()3456.06.016.0551334=-==C X P ,()()()1296.06.016.01000444=-==C X P ,所以()64.441296.01003456.0553456.0301536.0150256.00=⨯+⨯+⨯+⨯+⨯=X E3.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≥<-=.1,0,1,112x x x x f π求)(),(X D X E .解: ()()0111112112=⎥⎥⎦⎤⎢⎢⎣⎡--=-==--∞+∞-⎰⎰ππx dx x xdx x xf X E 由于()()[]dx x xx dx xxdx x f x XE ⎰⎰⎰-+--=-==-+∞∞-1210211222212121πππ21420=⨯+=ππ则()()()[]2122=-=X E XE X D4.已知随机变量X 的概率分布律为:()53)(),(),(22+XE X D X E X E 及求.解: ()()2.03.023.004.021-=⨯+⨯+⨯-==∑+∞=i i ip xX E ;()()8.23.023.004.02222122=⨯+⨯+⨯-==∑+∞=i i ip xXE ;()()()[]76.222=-=X E XE X D ;()()4.1358.23535322=+⨯=+=+XE XE .5.设随机变量X 的概率密度为()⎩⎨⎧≤>=-;0,0,0,x x e x f x 求(1)2Y X =的期望;(2)xeY 2-=的期望.解:(1) ()()()()[]212200=+-===∞++∞-+∞∞-⎰⎰x edx xedx x f x g Y E xx(2) ()()()31310302=⎥⎦⎤⎢⎣⎡-===+∞-+∞--+∞∞-⎰⎰x xxe dx eedx x f x g Y E6.对球的直径做近似测量,设其值均匀分布在区间),(b a 内,求球的体积的均值. 解:设球的直径为X ,球的体积为V ,则361X V π=,且()⎪⎩⎪⎨⎧<<-=其它;,0,1b x a ab x f于是()()()22324161ba b a dx ab x V E ba++=-⋅=⎰ππ.练习二 二维随机变量的数字特征1.填空题(1)设随机变量Y X ,相互独立,方差分别为6和3,则=-)2(Y X D 27 .(2)设随机变量Y X ,相互独立,0)()(==Y E X E ,1)()(==Y D X D ,则=+])[(2Y X E 2 .(3)设随机变量Y X ,相互独立,且)1,0(~),2,1(~N Y N X , 则随机变量32+-=Y X Z 的概率密度)(z f Z =()22325321⨯--⋅x e π.(4)设随机变量X 与Y 相互独立,且]2,0[~U X ,Y 服从参数为3的指数分布,则=)(XY E 31.(5)设二维随机变量Y X ,的相关系数为5.0=XY ρ,X 与Y 的方差分别为4)(=X D ,9)(=Y D ,则=-)32(Y X D 61 .2.设随机变量),(Y X 的概率密度为()⎩⎨⎧≤≤≤=其它;,0,10,12,2x y y y x f 求),(),(Y E X E)(),(),(XY E Y D X D 和)(22Y XE +.解: ()⎰⎰⎰==⋅=104100254412dx x dy y x dx X E x;()⎰⎰⎰==⋅=114253312xdx x dy y y dx Y E ()()()[]7522516454121521002222=-=⎪⎭⎫ ⎝⎛-⋅=-=⎰⎰⎰dx x dy y x dx X E XE X D x()()()[]251259512531251212222=-=⎪⎭⎫ ⎝⎛-⋅=-=⎰⎰⎰dx x dy y y dx Y E YE Y D x;()⎰⎰⎰==⋅=1521021312dx x dy y xy dx XY E x;()()()151652322222=+=+=+Y E X E YXE .3.设随机变量Y X ,相互独立,概率密度分别为()⎩⎨⎧≤≤=其它;,0,10,2x x x f X ⎩⎨⎧≤>=-;5,0,5,)(5y y e y f y Y求)(XY E .解:由于随机变量Y X ,相互独立, 则()()()()()dy yedx x dyy yf dx x xfY E X E XY E yY X⎰⎰⎰⎰+∞-+∞∞-+∞∞-⋅=⋅==15522()[]463213255=⨯=+-=+∞-ye y .4. 随机变量n X X X ,,,21 相互独立,并服从同一分布,数学期望为μ,方差为2σ, 求这些随机变量的算术平均值∑==ni i X nX 11的数学期望及方差.解:由于随机变量n X X X ,,,21 相互独立,且()μ=i X E , ()2σ=X D ,,3,2,1=i …,于是由性质得()()μμ=⨯==⎪⎭⎫⎝⎛=∑∑==n n X E nX nE X E ni ini i 11111,()()nn nX D nX nD X D ni ini i 222121111σσ=⨯==⎪⎭⎫⎝⎛=∑∑==.5.设连续型随机变量Y X ,相互独立,且均服从),21,0(N 求)(Y X E -.解:设Y X Z -=,由于Y X ,相互独立,且均服从),21,0(N 则Z 也服从正态分布,且()()()(),0=-=-=Y E X E Y X E Z E ()()(),12121=+=+=Y D X D Z D即Z ~()1,0N ,于是()()ππππ22222210222222=⎥⎥⎦⎤⎢⎢⎣⎡-====-+∞-∞+--∞+∞-⎰⎰z zze dz zedz ezZ E YX E .综合练习题1.甲乙两台机床生产同一种零件,在一天生产中的次品数分别记为Y X ,,已知Y X ,的概率分布分别下表所示.如果两台机床的产量相同,问哪台机床较好?解:由于()11.032.023.014.00=⨯+⨯+⨯+⨯=X E , ()9.0032.025.013.00=⨯+⨯+⨯+⨯=Y E则甲机床生产中的次品数的均值大于乙机床生产中的次品数,所以乙机床较好。
概率论与数理统计(I)第四章答案
第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。
并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。
全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。
三个定理。
“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。
§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。
§2节的学习,不妨先从复习入手。
第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。
定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。
推导本身是一件很愉快的事。
§2节的三个定理可在比对中学习。
定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。
定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。
定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。
“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。
这个结论很精致,十分简单了。
翻开§4节,一堆一堆的符号映入眼中,让人头大。
其实,若标准化方法娴熟,这一节并不难。
《大学数学概率论及试验统计》第四章_课后答案(余家林主编)
i
1 n
i=1,2…..k ;X=
∑X
i =1
i
EXi =
1+2+.....n n+1 = n 2
ww
EX= ∑ EX i =
i =1
k
n +1 12 +2 2 +......n 2 (n +1)( 2n+1) k , 又因为 EXi 2 = = n 6 2
k (2 n+1)( n +1) n+1 2 n 2 −1 n 2 −1 −( ) = ,DX= ∑ DX i = k i =1 6 2 12 12
− c ( k − x ), s <
da
解: EX=EY= ∫ z .2 zθ dz =
2
课
后 答
1 θ
2 2 4 2 ∴E ( X +2Y ) = + = 3θ 3θ 3θ θ
w.
1 0,其他
1 时,max DX =5 2
x < k
案 网
co m
69
k s2 k s2 s2 1 k 1 1 EM= ∫ 1 Mdx = ∫ ( ∫ (b+c) xdx− ∫ ckdx+ ∫bkdx) bx−c(k − x)dx+ ∫ bk dx = k k s 2− s1 s2−s1 s1 s 1 s 2 −s 1 s1 s2 −s1 s1
4、设( X, Y)服从区域 A 上的均匀分布,且由 x 轴,y 轴及直线 x+ ( 1) EX, DX, ( 2) EY, DY, ( 3) E(XY),D(XY)。 y
67
4 3
kh
2π
课