最新高考-2018届高考数学一轮复习三角专题 精品
2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3-5-1 精品

4
[1 2sin2( )] 4
2sin2( ) 1 7 .
4
9
命题方向2:三角恒等变换的变“形”问题
【典例3】(2015·滨州模拟)在△ABC中,C=120°,
tanA+tanB= 2 3 ,则tanAtanB的值为 ( )
3
A. 1
B. 1
C. 1
D. 5
4
3
2
3
【解题导引】根据A+B=180°-C=60°,先求出tan(A+B)
7
,所以上式=
1 2
7
1 1 2
3.
7
答案:3
【加固训练】
(2016·枣庄模拟)设α为锐角, cos( ) 4 ,则sin(2 )
65
12
的值为
.
【解析】设α+ =β,因为α为锐角, cos( ) 4 ,
6
65
所以 cos 4 ,sin 3,cos 2 7 ,sin 2 24,
4
(1)求a,θ的值.
(2)若 f( ) 2, ( ,),求sin( ) 的值.
45
2
3
【解析】(1)因为y=(a+2cos2x)是偶函数,所以g(x)
=cos(2x+θ)为奇函数,而θ∈(0,π),故θ= ,
2
所以f(x)=-(a+2cos2x)sin2x,代入( ,0)得a=-1.所
3.(2016·芜湖模拟)已知 cos( ) sin 4 3,
6
5
则 sin( 7 ) 的值是 ( )
6
A. 2 3
B. 2 3
C. 4
D. 4
5
5
【高考数学】2018最新高三数学课标一轮复习课件:高考解答题专讲2 三角综合(专题拔高配套PPT课件)

三角综合
考情分析 典例剖析
-3-
题型一
题型二
题型三
三角函数与三角恒等变换综合 三角函数和三角恒等变换综合问题主要考查利用三角恒等变换 公式变成为y=Asin(ωx+φ)之后求对应性质.
高考解答题专讲
三角综合
考情分析 典例剖析
-4-
题型一
题型二
题型三
【例 1】 (2017 浙江名校联考)已知 0≤φ<π,函数 f(x)= 2 cos(2x+φ)+sin2x. (1)若 φ=6 ,求 f(x)的单调递增区间; (2)若 f(x)的最大值是 ,求 φ 的值.
高考解答题专讲
三角综合
考情分析 典例剖析
-7-
题型一
题型二
题型三
解:(1)过P作x轴的垂线PM,过Q作y轴的垂线QM,
则由已知得|PM|=2, |PQ|= 13, 2π π 由勾股定理得|QM|=3, ∴T=6, 又 T= , ∴ω= ,
∴函数 y=f (x)的解析式为 f (x)=sin
������ π ������ 3
(2)函数 f (x)=
高考解答题专讲
三角综合
考情分析 典例剖析
-12-
题型一
题型二
题型三
策略技巧1.与三角函数相结合考查向量的数量积的坐标运算及 其应用是高考的热点题型.解答此类问题,除了要熟练掌握向量数 量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握 三角恒等变换的相关知识. 2.向量是一种解决问题的工具,是一个载体,通常是用向量的平行、 垂直、向量的数量积运算或性质转化成三角函数问题.
1 2
,
3 2
,将向量������������绕原点 O 按逆时针方向旋转 x 弧度得到向量
2018届高考数学一轮复习精品题集分类汇编之解三角形(6页)

解三角形必修5 第1章解三角形§1.1正弦定理、余弦定理重难点:理解正、余弦定理的证明,并能解决一些简单的三角形度量问题.考纲要求:①掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.经典例题:半径为R的圆外接于△ABC,且2R(sin2A-sin2C>=(a-b>sinB.(1>求角C;(2>求△ABC面积的最大值.当堂练习:1.在△ABC中,已知a=5错误!, c=10, A=30°,则∠B= ( >b5E2RGbCAP(A> 105° (B> 60° (C> 15° (D> 105°或15°p1EanqFDPw2在△ABC中,若a=2, b=2错误!, c=错误!+错误!,则∠A的度数是( >DXDiTa9E3d(A> 30° (B> 45° (C> 60° (D>75°RTCrpUDGiT3.在△ABC中,已知三边a、b、c 满足(a+b+c>·(a+b-c>=3ab,则∠C=( >5PCzVD7HxA(A> 15° (B> 30° (C> 45° (D>60°jLBHrnAILg4.边长为5、7、8的三角形的最大角与最小角之和为( >(A> 90° (B> 120° (C> 135° (D>150°xHAQX74J0X5.在△ABC中,∠A=60°, a=错误!, b=4, 那么满足条件的△ABC ( >LDAYtRyKfE(A> 有一个解 (B> 有两个解 (C> 无解 (D>不能确定6.在平行四边形ABCD中,AC=错误!BD, 那么锐角A的最大值为( >Zzz6ZB2Ltk(A> 30° (B> 45° (C> 60° (D>75°dvzfvkwMI17. 在△ABC中,若==,则△ABC的形状是( >(A> 等腰三角形 (B> 等边三角形 (C> 直角三角形 (D> 等腰直角三角形8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为< )(A> 锐角三角形 (B> 直角三角形 (C> 钝角三角形 (D> 由增加的长度决定9.在△ABC中,若a=50,b=25错误!, A=45°则B=.10.若平行四边形两条邻边的长度分别是4错误!cm和4错误!cm,它们的夹角是45°,则这个平行四边形的两条对角线的长度分别为.rqyn14ZNXI11.在等腰三角形 ABC中,已知sinA∶sinB=1∶2,底边BC=10,则△ABC的周长是。
2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3.5.2 精品

S()
S
OAP
S
BAP
1 2
OA
OPsin
3 AP2 4
sin 3 (5 4cos) sin 3cos 5 3
sin
sin
【规律方法】 1.三角恒等变换的化简、求值问题的求解策略 (1)对于和、差式子,见到平方要降幂、消项、逆用公 式等. (2)对于分式,通分后分子分母化简时尽量出现约分的 式子,或逆用公式.
(3)对于二次根式,要用升幂公式,或配方,出现完全平 方,注意倍角公式的逆用. (4)观察角的关系,尽量异角化同角,合理拆分角. (5)观察三角函数的名称的关系,常用弦切互化,异名化 同名. (6)观察结构特征,明确变形方向,遇到分式要通分,整 式要因式分解.
4
4
cos2α·cos2β+cos2α+cos2β)- ·1cos2α·cos2β
2
=1 .2Fra bibliotek答案: 1
2
【一题多解】解答本题,还有以下解法:
方法一:(从“名”入手,异名化同名)
原式=sin2α·sin2β+(1-sin2α)·cos2β-
1 cos2α·cos2β=cos2β-sin2α(cos2β-sin2β)
3
3
ON=OD-NcoDs= 3 sin,
3
S=ON·PD(=cos 3 sin·s)inθ
3
sincos 3 sin 2 1 sin 2 3 (1 cos 2)
3
2
6
1 sin 2 3 cos 2 3
2
6
6
3 sin(2 ) 3,因为 (0, ),
3
66
3
所以2 ( , 5 ),sin(2 ) (1 ,1].
2018年高三数学(文)一轮复习课件 解三角形

关闭
由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B, 所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2. 故△ABC 为等腰三角形或直角三角形. 等腰三角形或直角三角形
解析
π
关闭
答案
第四章
知识梳理 双基自测 自测点评
4.7
解三角形
知识梳理 核心考点
解析
关闭
答案
第四章
知识梳理 双基自测 自测点评
4.7
解三角形
知识梳理 核心考点
-10-
1
2
3
4
5
3.(2016 全国乙卷,文 4)△ABC 的内角 A,B,C 的对边分别为 a,b,c. 已知 a=√5,c=2,cos A= ,则 b=( A.√2 B.√3
2 3
) C.2 D.3
关闭
由余弦定理,得 a =b +c -2bccos A,即 5=b 又 b>0,解得 b=3,故选 D.
a b c
余弦定理 a2=b2+c2-2bccos A; b2=a2+c2-2accos B; c2=a2+b2-2abcos C cos A= cos B=
b 2 +c 2 -a 2 2bc a 2 +c 2 -b 2
; ;
cos C=
2ac a 2 +b 2 -c 2 2ab
第四章
知识梳理 双基自测 自测点评
������ ������ ������sin������ 21 21 又因为sin������ = sin������,所以 b= sin������ = 13. 13
2018届高考数学理科全国通用一轮总复习课件:第三章 三角函数、解三角形 3-6 精品

易错提醒:(1)应用正弦定理求角时容易出现增解或丢 解的错误,要根据条件和三角形的限制条件合理取舍. (2)求角时忽略角的范围而导致错误,需要根据大边对 大角,大角对大边的规则,画图帮助判断.
【变式训练】(2015·安徽高考)在△ABC中,AB= 6 ,
A=75°,B=45°,则AC=
.
【解析】由正弦定理可知:
那么k的取值范围是 ( )
A.k=8 3 C.k≥12
B.0<k≤12 D.0<k≤12或k=8 3
【解题导引】(1)利用正弦定理,将边化为角,借助式子 的特点,利用和角公式与相关的诱导公式解决问题. (2)由正弦定理和三角函数的图象求解.
【规范解答】(1)选A.根据正弦定理,
设 a b 则ca=kks,inA,b=ksinB,
6
考向一 正弦定理、余弦定理的简单应用
【典例1】(1)(2016·济宁模拟)在△ABC中,内角A,B,C
的对边分别为a,b,c.若asinBcosC+csinBcosA= 1 b,且
2
a>b,则B= ( )
A.
B.
C. 2
6
3
3
D. 5 6
(2)如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,
a2 c2 b2
b2=_a_2_+_c_2-_2_a_c_c_o_s_B_,cosB=_____2a_c____;
a2 b2 c2
c2=_a_2_+_b_2-_2_a_b_c_o_s_C_,cosC=____2_a_b____.
3.勾股定理 在△ABC中,∠C=90°⇔_a_2_+_b_2=_c_2_.
【规律方法】 1.应用余弦定理判断三角形形状的方法 在△ABC中,c是最大的边, 若c2<a2+b2,则△ABC是锐角三角形; 若c2=a2+b2,则△ABC是直角三角形; 若c2>a2+b2,则△ABC是钝角三角形.
2018届高考数学(文)一轮(课标通用)复习课件(高手必备+萃取高招):专题十六 三角恒等变换
tan������±tan������ 1∓tan������tan������
,α,β,α±β≠ +kπ(k∈Z);
π 2
(4)两角和与差的正切公式的逆用: tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).
π 0, 2 π ������- 4 π ������- 4 5 2 5 , 所以 cos α= 5 ,sin α= 5 . π π =cos αcos 4 +sin αsin4 , 5 2 2 5 2 3 10 = 5 × 2 + 5 × 2 = 10 . 1 5
高手洞考 考点35 考点36
高手锻造
3 5
-2
π
π 又 θ 是第四象限角, ∴θ-4 是第三或第四象限角. π 4 π 4 ∴sin ������- 4 =-5. ∴tan ������- 4 =-3.
高手洞考 考点35 考点36
高手锻造
试做真题 高手必备 萃取高招 对点精练
1.两角和与差的三角函数公式 (1)两角和与差的正弦公式:sin(α±β)=sin αcos β±cos αsin β,α, β∈R; (2)两角和与差的余弦公式:cos(α±β)=cos αcos β∓sin αsin β,α, β∈R; (3)两角和与差的正切公式:
试做真题 高手必备 萃取高招 对点精练
5. (2016 课标Ⅰ, 文 14)已知 θ 是第四象限角, 且 sin ������ + tan ������π 4
π 4
= ,则
3 5
=
4
.
π + 4 3 = , 5 π ������ + 4
(全国通用)近年高考数学一轮复习 第3章 三角函数、解三角形 热点探究课2 三角函数与解三角形中的高
(全国通用)2018高考数学一轮复习第3章三角函数、解三角形热点探究课2 三角函数与解三角形中的高考热点问题教师用书文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第3章三角函数、解三角形热点探究课2 三角函数与解三角形中的高考热点问题教师用书文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第3章三角函数、解三角形热点探究课2 三角函数与解三角形中的高考热点问题教师用书文新人教A版的全部内容。
热点探究课(二)三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图象与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图象与性质(答题模板)要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f(x)=2错误!sin错误!·cos错误!-sin(x+π).(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移错误!个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.[思路点拨](1)先逆用倍角公式,再利用诱导公式、辅助角公式将f(x)化为正弦型函数,然后求其周期.(2)先利用平移变换求出g(x)的解析式,再求其在给定区间上的最值.[规范解答] (1)f(x)=2错误!sin错误!·cos错误!-sin(x+π)3分=错误!cos x+sin x=2sin错误!,5分于是T=2π1=2π.6分(2)由已知得g(x)=f错误!=2sin错误!.8分∵x∈[0,π],∴x+π6∈错误!,∴sin错误!∈错误!,10分∴g(x)=2sin错误!∈[-1,2].11分故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.12分[答题模板]解决三角函数图象与性质的综合问题的一般步骤为:第一步(化简):将f(x)化为a sin x+b cos x的形式.第二步(用辅助角公式):构造f(x)=a2+b2·错误!。
【课标通用】2018届高考数学(理)一轮课件:16-三角恒等变换(含答案)
考点35
考点36
试做真题
高手必备 萃取高招 对点精练
典例导引 1(1)(2017 广东汕头模拟)设 α,β∈
1 且 tan α-tan β= ,则( cos������ π π A.3α+β= B.2α+β= 2 2 π π C.3α-β= D.2α-β= 2 2
π 0, 2
,
)
(2)(2017 山西临汾一中等五校三联)若 tan α则 sin 2������ +
专题十六
三角恒等变换
考点35
考点36
试做真题
高手必备 萃取高招 对点精练
考点35三角函数式的化简与求值
1.(2016 课标Ⅱ,理 9)若 cos A.
7������ 4
3 5 1 C.5
= ,则 sin 2α=( D.2
)
3 2 7 -1=- , 5 25
7 25
【答案】 D 方法一:cos 2 且 cos 2
,所以 α-β= -α,即 2α-β= ,故选 D.
π 2
=
2 . 10
π tan(α±β)= ,α,β,α±β≠ +kπ(k∈Z); 2 1∓tan������tan������ tan������±tan������
(4)两角和与差的正切公式的逆用: tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).
考点35
考点36
试做真题
高手必备 萃取高招 对点精练
2.二倍角公式 (1)二倍角的正弦公式:sin 2α=2sin αcos α; (2)二倍角的余弦公式:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3)二倍角的正切公式:tan 2α= (4)降幂公式:sin αcos
2018版高考数学理一轮复习文档:第四章 三角函数、解三角形 4-6 含解析 精品
1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a、b和A时,解的情况如下:3.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】1.三角形内角和定理: 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × ) (5)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( √ )(6)在三角形中,已知两边和一角就能求三角形的面积.( √ )1.(2016·天津)在△ABC 中,若AB =13,BC =3,C =120°,则AC 等于( ) A .1 B .2 C .3 D .4 答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C ,即13=AC 2+9-2AC ×3×cos 120°,化简得AC 2+3AC -4=0,解得AC =1或AC =-4(舍去).故选A. 2.(教材改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ) A .5 2 B .10 2 C.1063D .5 6答案 C解析 由A +B +C =180°,知C =45°, 由正弦定理得a sin A =c sin C ,即1032=c 22,∴c =1063.3.在△ABC 中,若sin B ·sin C =cos 2A2,且sin 2B +sin 2C =sin 2A ,则△ABC 是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形 答案 D解析 sin B ·sin C =1+cos A2,∴2sin B ·sin C =1+cos A =1-cos(B +C ), ∴cos(B -C )=1,∵B 、C 为三角形的内角,∴B =C , 又sin 2B +sin 2C =sin 2A ,∴b 2+c 2=a 2, 综上,△ABC 为等腰直角三角形.4.(2016·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则角C = . 答案2π3解析 因为3sin A =5sin B , 所以由正弦定理可得3a =5b . 因为b +c =2a ,所以c =2a -35a =75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C , 得49=25+9-2×3×5cos C ,解得cos C =-12,所以C =2π3.5.(2016·济南模拟)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为 .答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.题型一 利用正弦定理、余弦定理解三角形例1 (1)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .答案 1解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin2π3=b 12,解得b =1.(2)(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .①证明 根据正弦定理,可设 a sin A =b sin B =c sin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . ②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.思维升华 应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(1)△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba 等于( )A .2 3B .2 2 C. 3D. 2(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=b ,且sin(A -C )=2cos A sin C ,则b 等于( ) A .6 B .4 C .2D .1答案 (1)D (2)C 解析 (1)(边化角)由a sin A sin B +b cos 2A =2a 及正弦定理,得 sin A sin A sin B +sin B cos 2A =2sin A ,即sin B =2sin A ,所以b a =sin Bsin A = 2.故选D.(2)(角化边)由题意,得sin A cos C -cos A sin C =2cos A sin C , 即sin A cos C =3cos A sin C , 由正弦、余弦定理,得 a ·a 2+b 2-c 22ab =3c ·b 2+c 2-a 22bc ,整理得2(a 2-c 2)=b 2,① 又a 2-c 2=b ,②联立①②得b =2,故选C. 题型二 和三角形面积有关的问题例2 (2016·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.932C.332 D .3 3答案 C解析 ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的简单应用 命题点1 判断三角形的形状例3 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形 (2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 (1)A (2)B解析 (1)由c b <cos A ,得sin Csin B <cos A ,所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形. (2)由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.引申探究1.例3(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos B sin A , ∴sin(A -B )=0,又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.例3(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 (2015·课标全国Ⅱ)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6, 又由(1)知AB =2AC ,所以解得AC =1. 思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a-b )cos A ,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形(2)(2015·课标全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .答案 (1)D (2)(6-2,6+2) 解析 (1)∵c -a cos B =(2a -b )cos A , C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , ∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , ∴cos A (sin B -sin A )=0, ∴cos A =0或sin B =sin A , ∴A =π2或B =A 或B =π-A (舍去),∴△ABC 为等腰或直角三角形.(2)如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CBF 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°, BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.二审结论会转换典例 (12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值.(1)求cos A ―――――→根据余弦定理求三边a ,b ,c 的长或长度问题-a c →已有利用正弦定理将sin B =6sin C 化为b =6c(2)求cos ⎝⎛⎭⎫2A -π6―→求cos 2A ,sin 2A ―→ 求sin A ,cos A ―――――→第(1)问已求出cos A 根据同角关系求sin A 规范解答解 (1)在△ABC 中,由b sin B =c sin C及sin B =6sin C , 可得b =6c ,[2分] 又由a -c =66b ,有a =2c ,[4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.[7分](2)在△ABC 中,由cos A =64,可得sin A =104.[8分] 于是,cos 2A =2cos 2A -1=-14,[9分]sin 2A =2sin A ·cos A =154.[10分] 所以,cos ⎝⎛⎭⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝⎛⎭⎫-14×32+154×12=15-38.[12分]1.在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( ) A .135° B .105° C .45° D .75°答案 C解析 由正弦定理知BC sin A =AB sin C ,即2sin A =3sin 60°,所以sin A =22,又由题知,BC <AB ,∴A =45°. 2.(2016·全国乙卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b 等于( ) A. 2 B. 3 C .2 D .3 答案 D解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去,故选D. 3.(2016·西安模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为( ) A .等腰三角形 B .锐角三角形 C .直角三角形 D .等腰直角三角形答案 D解析 由b cos C +c cos B =a sin A , 得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A ,在三角形中sin A ≠0, ∴sin A =1,∴A =90°,由sin 2B =sin 2C ,知b =c ,综上可知△ABC 为等腰直角三角形.4.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定答案 C解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( ) A.π6 B.π4 C.π3 D.3π4 答案 C解析 根据正弦定理a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b , 即a 2+c 2-b 2=ac , 得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( ) A .23+2 B.3+1 C .23-2 D.3-1答案 B解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C ,得c =b sin Csin B =2×2212=22,A =π-(π6+π4)=712π,∴sin A =sin(π4+π3)=sin π4cos π3+cos π4sin π3=6+24. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.7.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = . 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为 .答案 8解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得a 2=b 2+c 2-2bc cos A =52-2×24×⎝⎛⎭⎫-14=64, ∴a =8.*10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为 . 答案 12解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3(b +c 2)2,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.11.(2015·湖南)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .(1)证明 由正弦定理知a sin A =b sin B =c sin C=2R , ∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得 sin A =sin B ·sin Acos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)解 由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝⎛⎭⎫0,π2,∴cos A =32,A =π6. sin B =32,B =2π3,∴C =π-(A +B )=π6. 12.(2015·陕西)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积. 解 (1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)方法一 由余弦定理,得a 2=b 2+c 2-2bc cos A , 而由a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0, 因为c >0,所以c =3,故△ABC 的面积为S =12bc sin A =332.方法二 由正弦定理,得7sinπ3=2sin B , 从而sin B =217, 又由a >b ,知A >B ,所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3 =sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为S =12ab sin C =332.*13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.由sin A sin B =cos 2 C2,得12sin B =1+cos C 2, 即sin B =1+cos C , 则cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin(5π6-C )=1+cos C ,化简得cos(C +π3)=-1,解得C =2π3,∴B =π6.(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a 2)2-2b ·a 2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18届高考数学一轮复习三角专题(三)
解三角形
一、考点、要点、疑点:
考点:理解正弦定理、余弦定理及其应用。
要点:
1、 正弦定理:C
c B b A a sin sin sin == 2、 余弦定理:
① 已知三边求角,如 bc
a c
b A 2cos 2
22-+=; ② 已知两边及其夹角,求第三边:如 A bc c b a cos 222⋅-+=
3、 三角形面积公式:B ca A bc C ab S sin 2
1sin 21sin 21=== 疑点:解三角形问题解决过程中,注意:
① 角的联系:π=++C B A ② 角的范围:),0(,,π∈C B A
③ 边角的关系与转换,如:B A b a B A sin sin ⇔⇔
二、激活思维:
1、在△ABC 中,若a =5,b =15,A = 300,则C 等于
2、满足条件a = 4,b = 23,A = 450的三角形ABC 有 个
3、在ΔABC 中,若2cosBsinA =sinC ,则ΔABC 的形状一定是 三角形。
4、在ΔABC 中,a 、b 、c 分别是角A 、B 、C 的对边,S 是ΔABC 的面积,
若a =4,b =5,S =53,则c 的长度为 ;
三、典型例题解析:
例1、已知△ABC 中,13
5cos ,54sin ==B C ,则A cos = ; 例2、已知△ABC 中,sinA (sinB +cosB )-sinC =0 ,sinB +cos2C =0 ,
求角A 、B 、C 的大小
例3、在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.
例4、已知ABC △1,且sin sin A B C +=.
(I )求边AB 的长;(II )若ABC △的面积为
1sin 6C ,求角C 的度数. 四、课堂练习:
1、在ABC ∆中,已知C B A sin 2tan
=+,给出以下四个论断,其中正确的是 ①1cot tan =⋅B A
②2sin sin 0≤+<B A
③1cos sin 22=+B A ④C B A 222sin cos cos =+
2、在直角三角形ABC 中,A 、B 为锐角,则sinAsinB 的取值范围是
3、在ΔABC 中,sinA ︰sinB ︰sinC =2︰3︰4,则cos C =
4、等腰三角形顶角的正弦值为25
24,则底角的余弦值为_______________。
5、给出下列四个命题,则正确的命题为
⑴ 若sin2A=sin2B ,则△ABC 是等腰三角形 ⑵ 若sinA=cosB ,则△ABC 是直角三角形 ⑶ 若cosA·cosB·cosC <0, 则△ABC 是钝角三角形
⑷ 若cos(A -B)cos(B -C)cos(C -A) = 1, 则△ABC 是等边三角形
6、设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围.
参考解答:
激活思维:1、030或090 2、2 3、等腰 4、21或61
例题解析:1、65
33 2、125,3,4πππ 3、(1))32,0(,32)32sin(
4sin 4ππ∈+-+=x x x y (2)36 4、(1)1 (2)60°
课堂练习:1、②④ 2、]21
,0( 3、41- 4、54或5
3 5、(3)(4) 6、(1)30° (2))2
3,23(。