循环冷却水系统计算
冷却循环水加药计算说明书

冷却循环水加药计算说明书1.设计依据冷却循环水系统的主要问题:腐蚀的主要原因是水中存在溶解的氧气,氧气在水中很容易与金属发生氧化反应生成金属氧化物而使金属逐渐被侵蚀丧失原有强度。
金属被侵蚀后容易造成穿孔泄露,其侵蚀产物亦容易沉积下来形成锈垢降低传热效率,增加运行成本。
结垢的原因主要有两种:一种是硬水垢,这是由于循环水蒸发被带走热量的同时,亦会使矿物质发生浓缩,浓缩达到一定程度时,水中的矿物质如碳酸钙就会发生过饱和而结晶出来。
这种水垢坚硬如石难以用机械的方法去除;另一种是循环冷却水不断洗刷空气,以至空气中的灰尘洗涤下来,不断积累在系统中,不仅会滋生细菌而且会逐渐沉积下来形成淤泥垢,这种淤泥垢和矿物质水垢结晶形成的水垢都会对传热效率产生非常大的影响,不仅大量浪费能源而且容易在水垢下产生极强的微孔腐蚀,加速金属设备的损坏。
菌藻粘泥:菌藻滋生的原因是:循环冷却水具备了细菌和水藻滋生的良好条件,营养丰富,温度适宜,酸碱度适中,而且水和空气中的细菌极易进入系统。
这些水和细菌的种子一旦有了良好的环境就会迅速繁殖,其中细菌分泌的粘液易粘附灰尘形成细菌垢,严重影响热交换。
2.设计技术规格设备名称及数量:钢混结构冷却塔/一期4座b设备性能描述总循环水量:一期8000 m3/h循环水补充水量:一期500 m3/h单台冷却水量: 2000 m3/h冷却塔台数: 4 台进水温度: 42.0 ℃出水温度: 32.0 ℃大气压: 100.36 Pa参考标准:HG-T3923-2007《循环冷却水用再生水水质标准》GB/T 50102-2003《工业循环水冷却设计规范》3.设计水质3.1 进水水质3.2 出水水质4.药品及加药计算4.1 药品规格4.2阻垢剂加药及运行成本总投加量=200÷33%=606mg/L=606g/m³=0.606kg/m³,即每处理一吨循环冷却水需要投加0.606kg规格为33%的缓蚀阻垢剂溶液。
空调冷却塔循环水计算公式

空调冷却塔循环水计算公式空调冷却塔是一种用于降低循环水温度的设备,它通过将循环水暴露在大气中,利用蒸发散热的原理来降低水温。
在设计和运行空调冷却塔时,需要对循环水的流量、温度和湿度等参数进行计算,以保证系统的正常运行和高效能。
本文将介绍空调冷却塔循环水计算公式,并探讨其在实际工程中的应用。
首先,我们来看一下空调冷却塔循环水的基本参数。
循环水的流量通常用单位时间内的水量来表示,常用的单位有m³/h、L/s等。
循环水的温度是指水的实际温度,通常用摄氏度(℃)来表示。
循环水的湿度是指水蒸气的含量,通常用相对湿度(%RH)来表示。
在空调冷却塔中,循环水的温度和湿度会随着蒸发散热而发生变化,因此需要对其进行计算和控制。
空调冷却塔循环水的计算公式涉及到很多参数,其中最重要的是湿球温度和焓值。
湿球温度是指在一定大气压下,水蒸气饱和时的温度,通常用摄氏度(℃)来表示。
焓值是指单位质量的物质所具有的能量,通常用千焦耳/千克(kJ/kg)来表示。
在空调冷却塔中,循环水的湿球温度和焓值会随着蒸发散热而发生变化,因此需要对其进行计算和控制。
空调冷却塔循环水的计算公式可以用来计算循环水的温度和湿度,以及蒸发散热的量。
其中,循环水的温度和湿度可以通过湿球温度和焓值来计算,而蒸发散热的量可以通过湿球温度和焓值的差值来计算。
具体的计算公式如下:1. 循环水的湿球温度计算公式:Twb = Ta ar (rh 0.01)^(1/8)。
其中,Twb表示湿球温度(℃),Ta表示大气温度(℃),ar表示大气压力比(kPa/kPa),rh表示相对湿度(%RH)。
2. 循环水的焓值计算公式:h = 1.006 Ta + (2501 + 1.86 Ta) (1 rh 0.01)。
其中,h表示焓值(kJ/kg),Ta表示大气温度(℃),rh表示相对湿度(%RH)。
3. 蒸发散热的计算公式:Q = m (h1 h2)。
其中,Q表示蒸发散热(kW),m表示循环水的流量(kg/s),h1表示循环水的进口焓值(kJ/kg),h2表示循环水的出口焓值(kJ/kg)。
冷却塔循环水池容积计算

冷却塔循环水池容积计算冷却塔是工业生产过程中常用的设备,用于降低水温。
而冷却塔循环水池是冷却塔系统中非常重要的组成部分,它负责储存和循环冷却水。
在设计和运行冷却塔循环水池时,准确计算其容积是非常关键的。
本文将介绍如何计算冷却塔循环水池的容积。
我们需要了解冷却塔循环水池的功能。
冷却塔循环水池既要有足够的容积来储存冷却水,又要能够满足冷却系统对水量的需求。
因此,容积的计算需要考虑以下几个因素:1. 冷却系统的需水量:根据冷却系统的设计参数,确定其每小时的需水量。
这个需水量通常由冷却塔的设计师或工程师提供。
2. 循环水池的循环时间:冷却塔循环水池的容积应该能够满足冷却系统循环一定时间内的水需求。
根据冷却塔系统的循环时间,可以确定循环水池的容积。
循环时间一般在4小时到8小时之间,具体取决于冷却系统的要求。
3. 水池的储存容量:除了满足冷却系统的需水量外,冷却塔循环水池还需要有一定的储存容量来应对突发情况。
例如,当冷却系统停机时,水池需要能够维持一定时间的供水。
通常,储存容量为需水量的2倍到3倍之间。
在计算冷却塔循环水池容积时,可以按照以下步骤进行:1. 确定冷却系统的需水量,单位为m³/h。
2. 确定冷却系统的循环时间,单位为小时。
3. 计算冷却塔循环水池的容积,单位为m³。
容积计算公式为:容积 = 需水量× 循环时间 + 储存容量。
4. 根据容积计算结果,选择合适的水池尺寸和形状。
常见的冷却塔循环水池形状有圆形、方形和长方形等。
需要注意的是,在进行容积计算时,还需要考虑到一些特殊情况,例如冬季的低温环境和水的蒸发损失等。
这些因素都会对容积的计算结果产生一定的影响,因此在实际应用中需要进行合理的修正。
总结起来,冷却塔循环水池容积的计算是一个综合考虑冷却系统需水量、循环时间和储存容量等因素的过程。
通过准确计算容积,可以确保冷却塔循环水池能够满足冷却系统的需水量,并能够应对突发情况。
敞开式循环冷却水循环补充水量的计算方法

敞开式循环冷却水循环补充水量的计算方法工业项目中用水的相当一部分是用作敞开式循环冷却水的补充水,其中补充水的绝大部分是用来弥补因蒸发而引起的循环冷却水量的损失。
环评报告中在进行水平衡分析时考虑循环冷却水的补充水用量时即遇到一个问题,补充水量到底怎么去核算呢?蒸发水量的准确计算对于水平衡分析和废水污染源分析有着至关重要的影响。
在敞开式循环冷却水系统[注1]中,循环水是通过对流、蒸发、辐射三种方式将热量传递到空气中。
夏季蒸发传热掌控总传热量的主导地位,冬季对流传热占总传热量的一半左右。
总体来说循环冷却水损失量以蒸发损失为主,严格来说,要精确计算蒸发损失水量应根据进入和排出冷却塔的空气的含水量计算,实际上是不可行的,通常环评报告、期刊规范中冷却循环冷却水蒸发水量计算是采用理论或经验公式计算。
常见的有以下几种:公式1:Qe=Qr*△t*C/γ(式中:Qe指蒸发水量;Qr指循环冷却水量;△t指冷却水进、出冷却塔的温度之差;C指水的热容[注2];γ指蒸发潜热[注3])此公式的意义:冷却水由进口温度t1一降低到出口温度t2时放出的显热[注4]需要通过在进口温度t1下蒸发一定的水量而带走。
此公式的缺点:只考虑了对流、蒸发、辐射三种热量传递方式中的一种。
其中,化工、石化项目中,进却塔温度通常为40℃,出却塔温度通常为30℃,为了计算方便,直接使用公式:Qe=0.0015Qr×△t Qm=Qe+Qp,N=Qm/Qp(式中:Qm为循环水系统的补充水量,Qe为蒸发水量,Qp 为排污水量,N为系统浓缩倍数。
)一般的,循环冷却水量Qr、冷却水进、出冷却塔的温度之差△t、系统浓缩倍数N是已知的。
根据公式:N=Qm/Qp=Qm/Qm-Qe=Qm/(Qm-0.0015Qr△t),假设Qr△t=1,则N=Qm/(Qm-0.0015),Qm=0.0015N/(N-1),得出函数曲线图:当系统浓缩倍数N超过5时,循环水系统补充水量Qm无明显变化。
循环冷却水系统简易计算及各循环水工艺简易介绍-liujc-20111231

������
年用量=150kg×4次/月×4月+150kg×3次/月×8月=2400kg+3600kg=6t
◙ 非氧化性杀菌剂单次用量计算:
非氧化性杀菌剂用量(kg)= 药剂投加浓度×保有水量 = ������×������������������������=300kg
������
������
年用量=300kg×3次/月×4月+300kg×2次/月×8月=3600kg+4800kg=8.4t
= ������×.×������������×������������×������=35251kg/年≈35t/年
������
◙ 氧化性杀菌剂单次用量计算:
氧化性杀菌剂用量(kg)= 药剂投加浓度×保有水量 = ������×������������������������=150kg
������
投加方式 月使用量 年使用量
缓蚀阻垢剂
阻垢剂
缓蚀剂
氧化性杀菌剂
非氧化性杀菌剂
黏泥剥离剂
其他
5.2处理效果
结垢状况
微生物滋生状况
腐蚀状况(mm/a)
碳钢腐蚀率
不锈钢腐蚀率
铜腐蚀率
换热效率
6、服务内容
□售前技术支持;□技术方案;□售后回访;□系统清洗;□应急处理;□其他
7、技术、服务要求及其他需说明的问题:
二、循环冷却水系统部分参数及药剂用量简易计算
◙ 蒸发水量(m³/h):
经验式:
经验值,全年平均值按照 ������. ������‰计算
蒸发水量 = 循环水量 × 季节损失系数 × 温差
◙ 排放水量(m³/h):
经验式:
循环冷却水挥发量计算公式

循环冷却水挥发量计算公式循环冷却水是工业生产中常用的一种冷却介质,它通过循环流动来带走设备或工艺过程中产生的热量,以维持设备或工艺的正常运行温度。
在循环冷却水的使用过程中,由于环境温度和循环流速等因素的影响,冷却水会发生挥发现象,这会导致循环冷却水的浓缩度增加,从而影响其冷却效果。
因此,了解循环冷却水的挥发量是非常重要的。
循环冷却水的挥发量可以通过以下公式进行计算:E = A × (B C) × D。
其中,E为循环冷却水的挥发量,单位为kg/h;A为循环冷却水的表面积,单位为m2;B为循环冷却水的饱和蒸汽压,单位为kPa;C为环境温度下的蒸汽压,单位为kPa;D为循环冷却水的挥发系数,无单位。
通过这个公式,我们可以计算出循环冷却水在特定条件下的挥发量,从而更好地控制冷却水的浓缩度,保证其正常的冷却效果。
在实际应用中,我们需要根据具体情况来确定循环冷却水的表面积、饱和蒸汽压和挥发系数。
下面,我们将分别介绍这些参数的确定方法。
首先是循环冷却水的表面积。
循环冷却水的表面积可以通过冷却设备的尺寸和形状来确定。
一般来说,冷却塔、冷却器等设备的表面积可以通过设备的设计图纸或实际测量来获取。
如果是在开放式循环冷却系统中使用,还需要考虑水面的面积。
通过这些数据,我们就可以得到循环冷却水的表面积。
接下来是循环冷却水的饱和蒸汽压。
饱和蒸汽压是指在一定温度下,液体表面上的蒸汽压力达到平衡时的压强。
循环冷却水的饱和蒸汽压可以通过查阅相关的物性数据手册或者在实验室中进行实际测量来获取。
一般来说,这个数值是已知的,我们只需要在计算时将其代入公式中即可。
再来是环境温度下的蒸汽压。
环境温度下的蒸汽压可以通过气象站的数据或者气象数据手册来获取。
由于环境温度是一个动态的参数,因此在实际应用中,我们需要根据实际情况来确定环境温度下的蒸汽压。
最后是循环冷却水的挥发系数。
循环冷却水的挥发系数是一个经验值,它可以通过实际测量和经验积累来确定。
循环水加酸计算方法

循环冷却水中加酸量的计算循环冷却水加酸调pH值,是为提高浓缩倍数及阻垢的需要。
根据酸碱中和原理,理论上加酸量等于碱度降低量。
如果循环水加酸前后的碱度差△M,则:△M=M前-M后M前为循环水调pH值前的碱度,M后为调pH值后的碱度,M 前、M后可由现场实测或由“自然pH值与碱度计算”相关公式计算求得。
如用98%硫酸调pH值,循环水单位用量为:A=49△M/(50×0.98×1000)=△M/1000 (6-2-2)式中:A—循环水单位加酸量,g/L或kg/ m3;49—1〔H+〕molH2SO4质量,g/〔H+〕molH2SO4(即克当量)2 B 循环冷却水系统总加酸量为:系统中首次加酸量=Avkg (6-2-3)9 j4 Z# O2 系统运行时加酸量=AB•24•kg/d (6-2-4) 式中:V—系统保有水量或系统容积, m3;B—系统排污量(包括飞溅及风吹m3损失量),m3/h。
公式(6-2-3)是为中和循环冷却水碱度,系统首次加入的酸量。
公式(6-2-4)是在公式(6-2-3)基础上,为维持循环冷却水一定浓缩倍数下的pH值一天的加酸量。
例:V=5000 m3、B=93 m3/h,M前=320 mg/L、M后=135 mg/L (控制pH值8.2),求系统硫酸(98%)加入量kg解:循环水单位加酸量A=(320-135)/1000=0.185 kg/ m3系统首次加酸量=A V=0.185×5000=925 kg. p' t7 I" 为维持系统pH值,其运行时加酸量=AB•24=0.185×93×24=412.92 kg/ d! ^) }1 答:为中和该系统冷却水碱度首次加酸量需925 kg,为继续维持该系统一定浓缩倍数下的循环水的pH值,一天的加酸量为412.92 kg。
冷却系统计算

冷却系统计算冷却系统计算一、闭式强制冷却系统原始参数都以散入冷却系统的热量Q W 为原始数据,计算冷却系统的循环水量、冷却空气量,以便设计或选用水泵、散热器、风扇1.冷却系统散走的热量Q W冷却系统散走的热量Q W ,受很多复杂因素的影响,很难精确计算,初估Q W ,可以用下列经验公式估算:(千焦/秒) (1-1)---传给冷却系统的热量占燃料热能的百分比,对汽油机A=0.23~0.30,对柴油机A=0.18~0.25---内燃机燃料消耗率(千克/千瓦.小时)---内燃机功率(千瓦)---燃料低热值(千焦/千克)如果内燃机还有机油散热器,而且是水油散热器,则传入冷却系统中的热量,也应将传入机油中的热量计算在冷却系统中,则按上式计算的热量值应增大5~10%一般把最大功率(额定工况)作为冷却系统的计算工况,但应该对最大扭矩工况进行验算,因为当转速降低时可能形成蒸汽泡(由于气缸体水套中压力降低)和内燃机过热的现象。
具有一般指标的内燃机,在额定工况时,柴油机可取0.21~0.27千克/千瓦.小时,汽油机可取0.30~0.34千克/千瓦.小时,柴油和汽油的低热值可分别取41870千焦/千克和43100千焦/千克,将此值带入公式即得汽油机=(0.85~1.10)3600h N g Q u ee W A A g e Ne h u Q W g e g e Q W N e柴油机=(0.50~0.78)车用柴油机可取=(0.60~0.75),直接喷射柴油机可取较小值,增压的直接喷射式柴油机由于扫气的冷却作用,加之单位功率的冷却面积小,可取=(0.50~0.60),精确的应通过样机的热平衡试验确定。
取=0.60考虑到机油散热器散走的热量,所以在上式计算的基础上增大10%额定功率:∴ 对于420马力发动机=0.6*309=185.4千焦/秒增大10%后的=203.94千焦/秒∴ 对于360马力发动机=0.6*266=159.6千焦/秒增大10%后的=175.56千焦/秒∴ 对于310马力发动机=0.6*225=135千焦/秒增大10%后的=148.5千焦/秒最大扭矩:∴ 对于420马力发动机=0.6*250=150千焦/秒增大10%后的=165千焦/秒∴ 对于360马力发动机=0.6*245=147千焦/秒增大10%后的=161.7千焦/秒∴ 对于310马力发动机=0.6*180=108千焦/秒增大10%后的=118.8千焦/秒2.冷却水的循环量根据散入冷却系统中的热量,可以算出冷却水的循环量Q W N eQ W N e Q W N e Q W Q W N eQ W Q W Q W Q W Q W Q W Q W Q W Q W Q W Q W Q W Q W V W(米3/秒) (1-2)式中 ---冷却水在内燃机中循环时的容许温升,对现代强制循环冷却系,可取=6~12℃---水的比重,可近似取=1000千克/米3---水的比热,可近似取=4.187千焦/千克.度取=12℃额定功率:∴ 对于420马力发动机=203.94/(12*1000*4.187)=4.06X10-3(米3/秒)=243.54(L/min)∴对于360马力发动机=175.56/(12*1000*4.187)=3.49X10-3(米3/秒)=209.65(L/min)∴对于310马力发动机=148.5/(12*1000*4.187)=2.96X10-3(米3/秒)=177.33(L/min)最大扭矩:(对应转速1300~1600)∴ 对于420马力发动机=165/(12*1000*4.187)=3.28X10-3(米3/秒)=197.03(L/min)∴对于360马力发动机=161.7/(12*1000*4.187)=3.22X10-3(米3/秒)=193.10(L/min)∴∴对于310马力发动机=118.8/(12*1000*4.187)=2.36X10-3(米3/秒)=141.87(L/min)3.冷却空气需要量冷却空气的需要量一般根据散热器的散热量确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环冷却水系统计算
1.确定散热量和冷却水需求:首先需要确定所需散热量和冷却水的需求量,这取决于被冷却设备或工艺的热量输出。
通常情况下,设备或工艺的额定功率和冷却系数可以用于计算散热量和冷却水需求。
2.计算冷却水流量:冷却水流量的计算取决于冷却水的体积流速和散热量。
通常情况下,冷却水流量可以按照以下公式计算:
冷却水流量=散热量/(冷却水的比热容×冷却水的温度差)
其中,冷却水的比热容可以通过已知的冷却水参数得到,而温度差则是冷却水进出口温度的差值。
3.计算冷却水温度差:冷却水温度差的计算取决于冷却水的进口温度和出口温度。
通常情况下,冷却水的进口温度可以根据环境温度和冷却塔的效率来确定,而出口温度则取决于被冷却设备或工艺的散热量和冷却水流量。
4.计算冷却水泵的功率和扬程:冷却水泵的功率和扬程的计算取决于冷却水的流量和管道的水头损失。
首先需要确定冷却水的流量,然后通过水头损失曲线和管道的水头损失系数,可以计算出所需的冷却水泵的功率和扬程。
5.设计冷却塔:冷却塔是循环冷却水系统中的重要组成部分,它通过将热量传递给周围的空气来散热。
冷却塔的设计取决于冷却水的温度差、流量和环境温度等因素。
通常情况下,可以根据冷却水温度差和流量来确定冷却塔的散热面积,并选择合适的冷却塔类型和尺寸。
6.计算冷却水系统的热效率:冷却水系统的热效率可以通过以下公式
计算:
热效率=散热量/(散热量+冷却水泵的功率)
其中,散热量可以通过已知的冷却水温度差和流量来计算,而冷却水
泵的功率可以通过已知的冷却水流量和水泵的功率系数来计算。
以上就是循环冷却水系统计算的一些基本方法和步骤。
在实际应用中,还需要考虑到系统中的各种热损失和热交换的影响,并进行进一步的调整
和优化。
因此,综合考虑各种因素是确保设计符合实际需求的关键。