加减法解二元一次方程组练习

加减法解二元一次方程组练习
加减法解二元一次方程组练习

加减法解二元一次方程组练习

班级: 姓名: 分数:

1.若y=mx+n,当x= -1时,y=1,当x=2时,y=-2,则m 与n 的值为 ( )

A .???=-=1n 1m

B. ???=-=0n 1m

C. ???==2n 1m

D. ???-==4

n 1m

2.用加减法解方程组?

??=-=+8y 2x 31y 3x 2时,要使两个方程中同一未知数的系数相等或互为相反数,有以下四种变形的结果:

①???=-=+8y 4x 61y 9x 6 ②???=-=+8y 6x 91y 6x 4 ③???=-=+24y 6x 92y 6x 4 ④?

??=-=+1646396y x y x 其中变形正确的是

( ) A .只有①② B. 只有①③ C. 只有②④ D. 只有③④

3.将方程3

1x +2y =1中的x 项的系数化为2,则下列变形中正确的是 ( ) A .2x +6y =1 B .2x +2y =6 C .2x +6y =3 D .2x +12y =6

4.已知x a+b-3-2y a-b-1=7是关于x 、y 的二元一次方程,则a= , b= .

5.对于x 、y ,规定一种新的运算:x*y =ax +by ,其中a 、b 为常数,等式右边是通常的加法和乘法运算,已知3*5=15,4*7=28,则a +2b =_______.

6.用加减法...

解下列方程组: 2512236x y x y +=??+=?

① 55715207x y x y -=??+=?②

32847

x y y x -=??+=?③ 2224

x y x y -=??-=?④

124205223x y x y -=??+=?

⑤ 2333+211x y x y -=??=?

8.已知???-=-=???==3

y 4x ,3y 7x 都是关于x,y 的二元一次方程ax+by=6的解,求a,b 的值.

9.已知:|2x+3y+5|+(3x+2y-25)2=0,求x,y 的值.

10.甲、乙两个小马虎,在练习解方程组 时,由于粗心,甲看错了方程组中的a ,得到方程组的解为 ;乙看错了方程组中的b ,得到方程组的解为

ax +y =10 x +by =7 x = y =6 x =-1 y =12

二元一次方程组计算题50道(答案)

.. 中 考 真 题 50 道 中考真题之《二元一次方程组计算题》 -----专项练习50题(有答案) 1.(2012?德州)已知 ,则a+b 等于( ) A. 3 B C. 2 D. 1 2.(2012菏泽)已知???==1 2 y x 是二元一次方程组81mx ny nx my +=??-=?的解,则n m -2的算术平方根为( ) A .±2 B . 2 C .2 D . 4 3.(2012临沂)关于x 、y 的方程组3, x y m x my n -=?? +=?的解是1,1,x y =??=? 则m n -的值是( ) A .5 B .3 C .2 D .1 4.(2012?杭州)已知关于x ,y 的方程组 ,其中﹣3≤a ≤1,给出下列结论: ①是方程组的解; ②当a=﹣2时,x ,y 的值互为相反数; ③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( ) A .①② B .②③ C .②③④ D .①③④ 5. (2012广东湛江) 请写出一个二元一次方程组 ,使它的解是. 6.(2012广东)若x ,y 为实数,且满足|x ﹣3|+ =0,则()2012的值是 1 .

7.(2012安顺)以方程组的解为坐标的点(x ,y )在第 象限. 8.(2012?连云港)方程组的解为 . 9.(2012?广州)解方程组 . 10.(2012广东)解方程组: . 11.(2012?黔东南州)解方程组. 12、(2012湖南常德)解方程组:???==+1-25y x y x 13. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是.. 该方程的解的是 A .0 12 x y =???=-?? B .11x y =??=? C .1 0x y =??=? D .11x y =-??=-? 14. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( ) A .12xy x y =??+=? B . 523 13x y y x -=???+=?? C . 20 135x z x y +=?? ? -=?? D .5723 z x y =???+=?? 15. (2011广东肇庆,4,3分)方程组?? ?=+=-4 22 y x y x 的解是 ① ②

《解二元一次方程组》教案(例题+练习+答案)

二元一次方程组的解法 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做 二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个方程是为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 2(1)3x y y z +=?? +=?, 5(2)6 x y xy +=?? =?,7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211321 m n -=??-=?1 (2)2 a x a y -+-=

二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 练一练:1、若 =-?? =? x 1 y 2是关于 x 、y 的方程 5x +ay = 1 的解,则a=( ). 2、方程组 +=?? -= ?y z 180y z ()的解是 =??=?y 100 z (). 3、若关于x 、y 的二元一次方程组––=?? + =?4x 3y 1 kx k 1y 3()的解x 与 y 的值相等,则k =( ). 3、用一个未知数表示另一个未知数 想一想:(1)24x y ,所以________x ; (2)345x y ,所以________x ,________y ; (3) 2y x =,所以x = ,________y . 总结出用一个未知数表示另一个未知数的方法步骤: ①被表示的未知数放在等式的左边,其他的放在等式的右边. ②把被表示的未知数的系数化为1. 4.二元一次方程的解法 (1)用代入法解二元一次方程组 将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数; ②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值; ④把这个未知数的值代入一次式,求出另一个未知数的值; ⑤检验,并写出方程组的解.

100道二元一次方程组计算题

1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______. 2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______. 4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______. (1)方程y=2x-3的解有______; (2)方程3x+2y=1的解有______; (3)方程y=2x-3与3x+2y=1的公共解是______. 9.方程x+y=3有______组解,有______组正整数解,它们是______. 11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程. 12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______. 13.方程2x+y=5的正整数解是______. 14.若(4x-3)2+|2y+1|=0,则x+2=______. 的解. 当k为______时,方程组没有解.

______. (二)选择 24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ] A.y=5x-3; B.y=-x-3; D.y=-5x-3. [ ] 26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ] A.10x+2y=4; B.4x-y=7; C.20x-4y=3; D.15x-3y=6. [ ] A.m=9; B.m=6; C.m=-6; D.m=-9. 28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ] A.1; B.-1; C.-3; D.以上答案都不对.

解二元一次方程组计算题

解二元一次方程组计算题1. 3x+y=34 2x+9y=81 2..3..4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33.. x+8y=15

34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=73x-2y=7 50. 51. 3x+6y=18 3x+y=72x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=112x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6x+y=5 55.8x+2y=16 9x-3y=123x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3 70. 4x+9y=77 8x+6y=94 71. 4x+7y=3 x+y=0 72. 3x+y=10 7x-y=20 73. 44x+10y=27 x+y=1 74. 8x-y=0

部编人教版七年级下册数学1.2.2第1课时《用加减法解较简单系数的方程组》教案

1.2.2 加减消元法 第1课时 用加减法解较简单系数的方程组 1.掌握用加减法解系数较简单的二元一次方程组;(重点、难点) 2.进一步理解解二元一次方程组的基本思想——消元. 一、情境导入 小玲与小丽两人星期日相约去超市买文具,小玲买了2支钢笔和3支铅笔,共花费19元;小丽买了3支钢笔和2支铅笔,共花费26元.如果买1支钢笔和1支铅笔,需要多少元? 二、合作探究 探究点:用加减法解较简单系数的方程组 【类型一】 用加减法直接解二元一次方程组 解方程组:? ????x +3y =8,5x -3y =4. 解析:两方程相加即可消去y 求得x 的值,然后将x 的值代入第一个方程即可求得y 的值. 解:?????x +3y =8①,5x -3y =4②.①+②,得6x =12,解得x =2.把x =2代入①,得2+3y =8,解得y =2,因此原方程组的解是? ????x =2,y =2. 方法总结:解二元一次方程组时,如果两个二元一次方程中同一未知数的系数相同或互为相反数,把这两个方程相减或相加,就能消去一个未知数,从而得到一个一元一次方程,再解这个一元一次方程,求出一个未知数的值;然后把这个未知数的值代入原方程组中系数比较简单的一个方程中,求出另一个未知数的值.最后再把两个未知数的值用大括号联立起来即为方程组的解. 【类型二】 适当扩大系数后,用加减法解二元一次方程组 解方程组:? ????3x +y =2. 解析:把②×2,再与①式相加,消去y ,把二元一次方程组转化为一元一次方程求解. 解:?????x -2y =3①,3x +y =2②.②×2,得6x +2y =4③,①+③,得7x =7,解得x =1.将x =1代入②,得y =-1.因此,原方程组的解为? ????x =1,y =-1. 方法总结:解二元一次方程组时,如果两个方程中的某一未知数的系数是倍数关系,可选取系数的绝对值较小的一个方程乘以一个适当的数,把两个方程中的这个未知数的系数化为相同或互为相反数,

解二元一次方程组计算题

解二元一次方程组计算题 解二元一次方程组计算题 1. 3x+y=34 2x+9y=81 2..3.. 4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33..

x+8y=15 34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=7 3x-2y=7 50. 51. 3x+6y=18 3x+y=7 2x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=11 2x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6 x+y=5 55.8x+2y=16 9x-3y=12 3x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3

二元一次方程组计算题专项训练+

二元一次方程组计算题专项训练 一、用代入法解下列方程组 (1)? ??=+=-5253y x y x (2) ? ? ?=--=523 x y x y 二、用加减法解下列方程组 (1)???-=+-=-53412911y x y x (2)? ??=+=-524753y x y x 三、用适当的方法解下列方程组: 1、? ??=+=+16156653y x y x 2、{ 3x y 304x 3y 17--=+= (3)?????=-= +2.03.05.0523151 y x y x 4、x 2y+2=02y+22x 536????? ---= 7?? ? ??=+=+=+634323x z z y y x 8 234x y y z z x +=?? +=??+=?

四、解答题 1、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =? b =? 2、已知???-==24y x 与? ??-=-=52 y x 都是方程y =kx +b 的解,则k 与b 的值为多少? 3、若方程组322, 543 x y k x y k +=??+=+?的解之和为x+y=-5,求k 的值,并解此方程组. 4、已知方程组4234ax by x y -=??+=?与2 432 ax by x y +=??-=?的解相同,那么a=?b=? 5、关于x 、y 的方程组? ??=-=+m y x m y x 932的解是方程3x +2y =17的一组解,那么m 的值是多少? 6、一个星期天,小明和小文同解一个二元一次方程组{ ax+by=16bx+ay=1 ① ② 小明把方程① 抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{ x=3 y=2,求原方程组的解。

解二元一次方程组练习题经典

学习好资料欢迎下载 解二元一次方程组练习题 梅州)解方程组2013?.1.( 淄博)解方程组.2.(2013? 邵阳)解方程组:2013?.3.( (4.2013?.遵义)解方程组 2013?.湘西州)解方程组:5.( (6.2013?荆州)用代入消元法解方程组. .?汕头)解方程组2013.7( ?2012.8(湖州)解方程组. 学习好资料欢迎下载

广州)解方程组2012?.9.( 常德)解方程组:?10.(2012 2012?.南京)解方程组(11. 厦门)解方程组:12.(2012?. .2011?永州)解方程组:(13. 14.(2011怀化)解方程组:?. 桂林)解二元一次方程组:.?(15.2013 ?(.162010.南京)解方程组: 学习好资料欢迎下载 丽水)解方程组:(2010?17.

广州)解方程组:.?.18(2010 巴中)解方程组:.? 19.(2009 天津)解方程组:? 20.(2008 宿迁)解方程组:.2008? 21.( 桂林)解二元一次方程组:.(22.2011? ?郴州)解方程组:200723.( .?(24.2007常德)解方程组: 学习好资料欢迎下载 宁德)解方程组:2005?25.(

岳阳)解方程组:?.(2011.26 苏州)解方程组:.27.(2005? ?(2005江西)解方程组:28. 29.(2013自贡模拟)解二元一次方程组:.? 黄冈)解方程组:.?(30.2013 解二元一次方程组练习题学习好资料欢迎下载 参考答案与试题解析

一.解答题(共30小题) 梅州)解方程组.2013? 1.( 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答: 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:.点评本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键 3.(2013?邵阳)解方程组:.

二元一次方程组计算题

23, 328; y x x y =-?? +=? 25, 342;x y x y -=?? +=? 31, 3112; x y x y -=-?? =-? 8320,4580.x y x y ++=?? ++=? 1 36,2 12;2 x y x y ?+=-????+=?? 23(2)1,21;3 a a b a b -+=?? +?=?? ?? ?-=+-=+1)(258 y x x y x ?? ?=-+=-0133553y x y x ?? ?=-=+34532y x y x ???-=+-=+734958y x y x ???=-=+1321445q p q p ?? ?=+-=8372y x x y ? ??=++=+053212y x y x ??? ??=-+=+1 2332 4 1y x x y ? ??=+=+30034150 2y x y x ()()??? ??=--+--=+2 54272y x y x y x y x 6152423+-=+=+y x y x y x ?? ?-=-=+22223y x y x ?? ?-=+=-176853y x y x ?? ?=-=+7382y x y x ?? ?=+=+3435 2y x y x ?? ?=-=+335 y x y x ?? ?=+-+=+++7 )1(3)2(217 )1(3)2(2y x y x

1、明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,?问明明两种邮票各买了多少枚? 2、现有长18米的钢材,要锯成7段,而每段的长只能取“2米或3米”两种型号之一,问两米长和三米长的各应取多少段? 3、将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;?若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 4、有48个队共520名运动员参加篮、排球比赛,其中篮球队每队10人,排球队每队12人每个运动员只参加一种比赛.篮、排球队各有多少队参赛? 5、甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙;如果甲让乙先跑2秒钟,甲跑4秒钟就能追上乙.求甲乙两人的速度. 6、已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度。 7、有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6 辆小车一次可以运货35吨。3辆大车与5辆小车一次可以运货多少吨? 8、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1小时后到达县城,他骑车的平均速度是25千米/时,步行的平均速度是5千米/时,路程全长20千米.他骑车与步行各用多少时间? 9、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少? 10、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。”请问老师、学生今年多大年龄了呢? 11、一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50?个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,?多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.

用加减法解二元一次方程组

用加减法解二元一次方程组 一、创设情境 李阿姨平日喜欢逛超市,恰碰上超市搞促销活动,她抓住这个好机会,第一天买 了2件衣服和3个杯子共花了23元。回家之后,她家的小朋友很喜欢这种衣服,她自己也觉得很划算、第二天她又买了2件衣服和5个杯子共花了29元。她晚上和朋友闲聊时,告诉朋友这两天购物情况,朋友对此也很感兴趣,希望让李阿姨帮买3件衣服和2个杯子。于是,李阿姨就产生了这样的问题:这两天所买的衣服和杯子我并没有知道它们的单价,只知道2件衣服和3个杯子共花了23元,2件衣服和5个杯子共花了29元,现在帮朋友买3件衣服和2个杯子,我该向朋友要多少钱呢?同学们你们能不能帮李阿姨想想办法? 评析:从生活事件入手,让学生“爱心”高涨,积极为李阿姨想办法,成功地促进了学生的认知与情意的参与。同时也体现“数学是来源于生活,服务于生活”这一教学理念。师:要解决这个问题,关键是什么? 生:先求出每件衣服和每个杯子的单价。 因为本节课是在用代人法解二元一次方程组的基础上教学,因此学生有解决问题的知识基础,所以请学生集体回答,师板演: 解:设每件衣服卖x元,每个杯子卖y元, 李阿姨该向朋友要(3x+2y)元钱 29 522332yxyx ① 让学生独立解方程组。请一名学生上黑板板演解题过程。生板书:由①得:x=2 323y③. 把③代人②,得2×2 323y+5y=29 解之得y=3 把y=3代人①,得2x+3×3=23 解得x=7 李阿姨该向朋友要3x+2y=3×7+2×3=27元。 师肯定该生的解答过程正确及书写规范,问:其他同学还有不同解法吗?生:老师,我用整体代人法 ② wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); 由①得:2x=23-3y ③. 把③代人②,得23-3y+5y=29 解之得 y=3 师:这个同学通过观察方程组特点,恰当地使用解题技巧简化了计算过程。

二元一次方程组练习题含答案

二元一次方程组专题训练 1、???=-=+33651643y x y x 2、???=+=-6251023x y x y 3、 ???=-=+15 725 32y x y x 4、???=+-=18435276t s t s 5、 ???=-=+574973p q q p 6、???=-=+4 26 34y x y x 7、???-=-=+22223n m n m 8、???=--=-495336y x y x 9、? ??=-=+195420 23b a b a 10、???=-=-y x y x 23532 11、???=-=+124532n m n m 12、???=+=+10 2325 56y x y x 13、???=+=+2.54.22.35.12y x y x 14、?????=-+-= +6 )(3)1(26 132y x x y x 15、?? ???=+--=-+-042 3513042 3512y x y x 16、?????=--= +-4 323122y x y x y x 17、?? ? ??-=-++=-+52251230223x y x y x

二元一次方程组练习题 一、选择题: 1.下列方程中,是二元一次方程的是() A.3x-2y=4z B.6xy+9=0 C.1 x +4y=6 D.4x= 2.下列方程组中,是二元一次方程组的是() A. 2 2 8 423119 (23754624) x y x y a b x B C D x y b c y x x y += +=-=?? = ?? ????+=-==-=???? 3.二元一次方程5a-11b=21 () A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是() A. 3333 ... 2422 x x x x B C D y y y y ==-==-???? ????===-=-???? 5.若│x-2│+(3y+2)2=0,则的值是() A.-1 B.-2 C.-3 D.3 2 6.方程组 43 235 x y k x y -= ? ? += ? 的解与x与y的值相等,则k等于() 7.下列各式,属于二元一次方程的个数有() ①xy+2x-y=7;②4x+1=x-y;③1 x +y=5;④x=y;⑤x2-y2=2 ⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x A.1 B.2 C.3 D.4 8.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,?则下面所列的方程组中符合题意的有() A. 246246216246 ... 22222222 x y x y x y x y B C D y x x y y x y x +=+=+=+= ???? ????=-=+=+=+???? 二、填空题 9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________. 10.在二元一次方程-1 2 x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______. 12.已知 2, 3 x y =- ? ? = ? 是方程x-ky=1的解,那么k=_______. 13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____. 14.二元一次方程x+y=5的正整数解有______________. 15.以 5 7 x y = ? ? = ? 为解的一个二元一次方程是_________. 16.已知 23 16 x mx y y x ny =-= ?? ?? =--= ?? 是方程组的解,则m=_______,n=______. 三、解答题 17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)?有相同的解, 求a的值. 18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?

八年级数学7.2-2用加减法解二元一次方程组教案北师大版

7.2-2用加减法解二元一次方程组 【教学目标】 【知识目标】使学生正确掌握用加减法解二元一次方程组的方法。 【情感目标】使学生理解加减消元法的基本思想所体现的“化未知为已知”的化归思想方法。【教学重点】掌握用加减消元法解二元一次方程组的方法 【教学难点】明确用加减法解元一次方程组的关键是必须使用权两个方程中同一个未知数的系数的绝对值相等 【教学过程】 一、想一想 怎样解下面的二元一次方程组呢? 3x+5y=21 ① 2x-5y= -11 ② (分四人小组讨论,教师巡回听讲,然后请三位同学到黑板上板演) 三位同学那位的解法简单呢? 我们发现此题的解题方法有三种, 1、把②式转化为 x= 211 5 y 形式然后代入①,就是我们已经熟悉的代入消元法了。 2、把②式转化为5y=2x+11,然后把5y看成是一个整体,就可以直接代入①5y-5y 3、因为5y和-5y是互为相反数,那么我们考虑是否可以把①+② 我们知道两个方程相加,可以得到 5x=10 x=2 将x=2代入①,得 6+5y=21 y=3 所以方程组的解是 x=2 y=3 (注意方程组的解要用大括号括起来) 下面我们能否用类似的方法解决下面问题呢? 例3解方程组 2x-5y=7 ① 2x+3y= -1 ② 解:②-①,得 8y= - 8 y= - 1 将y= - 1代入①,得2x+5=7 x=1 所以原方程组是 x=1 y= -1 例4解方程组 2x+3y=12 ① 3x+4y=17 ② 解:①×3, 得6x+9y=36 ③ ②×2,得6x+8y==34 ④ ③-④,得y=2 将y=2代入①,得x=3 所以原方程组的解是 x=3 y=2 二、议一议

解二元一次方程组计算题

解二元一次方程组计算题 1. 3x+y=34 2x+9y=81 2..3.. 4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33..

x+8y=15 34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=7 3x-2y=7 50. 51. 3x+6y=18 3x+y=7 2x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=11 2x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6 x+y=5 55.8x+2y=16 9x-3y=12 3x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3

(完整版)解二元一次方程组基础练习

解二元一次方程组基础练习 肖老师 知识点一:代入消元法解方程组: (1)23321y x x y =-?? +=? (2)?? ?-=-=+4 23 57y x y x (3) 23 3418x y x y ?=? ??+=? (4)56 3640 x y x y +=?? --=? 知识点二:用加减法解方程组: (1)?? ?=+=-13y x y x (2)?? ?=+=-8 3120 34y x y x (3)?? ?=+=-1464534y x y x (4)?? ?=-=+1 235 4y x y x

(5)?? ?=+=+132645y x y x (6)?? ?=+=-17 327 23y x y x 拓展训练: 解下列方程: (1)(先化简)?? ?-=-+=-85)1(21 )2(3y x x y (2)(化简后整体法)?????=+= 18 433 2y x y x (3)(整体法)?? ?=--=--0232560 17154y x y x (4)(先化简)???? ?=-=+2 3432 1332y x y x (5)(化简后整体法)?????=-+= +1 323 241y x x y (6)(整体法)?? ?=+=+241 2123243 2321y x y x

(7)(先化简)?????=+-+=-+-0 42 35 132 423512y x y x (8)(可化简或整体法)?????=+--=++-5 7326 231 732623y x y x y x y x (9)(你懂的) (10)(先化简) (11)(先化简) (12)(整体法) 综合训练: 一.填空题 1.在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =; 2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________; 3. 已知?? ?==1 2 y x 是方程2x +ay=5的解,则 a= . 4.二元一次方程343x my mx ny -=+=和有一个公共解1 1 x y =??=-?,则

8-2解二元一次方程组加减法练习题(及答案)

8.2 解二元一次方程组(加减法)(二)一、基础过关 1.用加、减法解方程组 436, 43 2. x y x y += ? ? -= ? ,若先求x的值,应先将两个方程组相_______;若 先求y的值,应先将两个方程组相________. 2.解方程组 231, 367. x y x y += ? ? -= ? 用加减法消去y,需要() A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是() A.266 B.288 C.-288 D.-124 4.已知x、y满足方程组 259, 2717 x y x y -+= ? ? -+= ? ,则x:y的值是() A.11:9 B.12:7 C.11:8 D.-11:8 5.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为() A. 2, 2 x y = ? ? =- ? B. 2, 2 x y =- ? ? = ? C. 1 , 2 1 2 x y ? = ?? ? ?=- ?? D. 1 , 2 1 2 x y ? =- ?? ? ?= ?? 6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-1 7.若2 3 x5m+2n+2y3与- 3 4 x6y3m-2n-1的和是单项式,则m=_______,n=________. 8.用加减法解下列方程组: (1) 3216, 31; m n m n += ? ? -= ? (2) 234, 443; x y x y += ? ? -= ? (3) 523, 611; x y x y -= ? ? += ? (4) 35 7, 23 423 2. 35 x y x y ++ ? += ?? ? -- ?+= ??

解二元一次方程组练习题

第7章 解二元一次方程组复习(1) 初一( )班 学号: 姓名: 月 日 知识点一:二元一次方程的概念 1、 指出下列方程那些是二元一次方程?并说明理由。 (1)3x+y=z+1 ( ) (2) x(y+1)=6 ( ) (3) 2x(3-x)=x 2-3(x 2+y) ( ) 2、下列方程中,是二元一次方程的有( ) ① 1225=-n m ② a z y -=-61147 ③ 312=-+b a ④ mn+m=7 ⑤ x+y=6 A 、1个 B 、2个 C 、3个 D 、4个 3、下列方程中,是二元一次方程组的是 ( ) ① ???=+=-7232z y y x ② ?????-=-=+1241 x y y x ③ ???=-=--51 2)4(3y x x x ④ ?? ?? ?= +=-2132132y x y x A 、①②③ B 、②③ C 、③④ D 、①② 知识点二:用加减法解二元一次方程解方程组: (1)?? ?=+=-13y x y x (2)?? ?=+=-8 3120 34y x y x (3)?? ?=+=-1464534y x y x (4)?? ?=-=+1 235 4y x y x (5)?? ?=+=+132645y x y x (6)?? ?=+=-17 327 23y x y x

知识点三:代入消元法解方程组: (1)23321y x x y =-?? +=? (2)?? ?-=-=+4 23 57y x y x (3) 23 3418x y x y ?=? ??+=? (4)56 3640 x y x y +=?? --=? 综合训练: 一.填空题 1.在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =; 2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________; 3. 已知?? ?==1 2 y x 是方程2x +ay=5的解,则 a= .

加减法解方程组(一)

余庆县白泥中学学生自主学习导学案 用加减法解二元一次方程组(一) 时间 星期 上课班级 上课教师 主备人:李良强 导学目标: 1.学生会用加减法解二元一次方程组,体会解二元一次方程组的基本思想——消元. 2.通过对加减法的学习 ,学生能够熟练地运用加减法解简单的二元一次方程组;理解消元,化未知为已知的转化思想. 3.通过自主学习,合作交流,训练学生的运算技巧;培养学生分析问题、解决问题的能力. 导学重点:学会用加减法解二元一次方程组. 导学难点:灵活运用加减消元法的技巧. 教学方法:自主学习 教学过程: 一、忆一忆 1.解二元一次方程组的基本思路是什么? 2.前面我们学习了用什么方法解二元一次方程组? 二、做一做 计算:(1)=-y y ,(2)()=-+y y 1010 , (2)=-x x 77 ,(4)()=--y y 8 。 三、想一想 1.你会解二元一次方程组???=+=+16 210y x y x 吗?用的是什么方法? 2.观察:上面这个方程组的两个方程中,y 的系数分别是多少?它们有什么关系?你用什么方法消去y 呢?(把你的想法与同学们交流一下) 3.写出你的想法. 4.联系上面的解法,想一想怎样解方程组? ??=-=+510151110y x y x 呢?

5.归纳: (1)两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分别 或________,就能消去这个未知数,得到一个____________方程,这种方法叫做________________,简称_________. (2)通过上面的过程,你知道用加减法解二元一次方程组的步骤吗? 四、做一做 用加减法解下列方程组 (1)???=-=+31 y x y x (2)???=+=+4332b a b a 五、练一练 用加减法解下列方程组 (1)???=-=+810159 102y x y x ( 2)???=--=+47587y x y x

(计算题)二元一次方程组练习题-直接打印版

萌学教育 二元一次方程组专题训练 1、???=-=+33651643y x y x 2、???=+=-6 251023x y x y 3、 4、???=+-=18435276t s t s 5、 ???=-=+574973p q q p 6、???=-=+4 26 34y x y x 7、???-=-=+22223n m n m 8、???=--=-495336y x y x 9、? ? ?=-=+195420 23b a b a 10、???=-=-y x y x 23532 11、???=-=+124532n m n m 12、?? ?=+=+10232556y x y x 13、???=+=+2.54.22.35 .12y x y x 14、? ????=-+-=+6 )(3)1(26 1 32y x x y x 15、 16 17、 18、 带入消元法: (5) 请用X 表示Y 1)2X+Y=4 2)2X-Y=5 3)Y-X=6 4)2Y-X=7 5)2Y+X=8 6)2X+2Y=10 7)2X-2Y=12 8)3X=2Y 9)4X=6Y 10)3X+2Y=-9 请用Y 表示X 1)2X+Y=4 2)2X-Y=5 3)Y-X=6 4)2Y-X=7 5)2Y+X=8 6)2X+2Y=10 7)2X-2Y=12 8)3X=2Y 9)4X=6Y 10)3X+2Y=-9 ???=-=+1572532y x y x 3216,31;m n m n +=??-=??? ?? ?=--=+-4 323 122y x y x y x 523,611; x y x y -=??+=?234,443; x y x y +=??-= ?

解二元一次方程组练习题(经典)

| 解二元一次方程组练习题1.(2013?梅州)解方程组. 2.(2013?淄博)解方程组. 【 3.(2013?邵阳)解方程组:. 4.(2013?遵义)解方程组. : 5.(2013?湘西州)解方程组:. 6.(2013?荆州)用代入消元法解方程组 . 】 7.(2013?汕头)解方程组.

8.(2012?湖州)解方程组. ! 9.(2012?广州)解方程组. 10.(2012?常德)解方程组: — 11.(2012?南京)解方程组. 12.(2012?厦门)解方程组:. 、 13.(2011?永州)解方程组:. 14.(2011?怀化)解方程组:. —

16.(2010?南京)解方程组:. · 17.(2010?丽水)解方程组: 18.(2010?广州)解方程组:. … 19.(2009?巴中)解方程组:. 20.(2008?天津)解方程组: ! 21.(2008?宿迁)解方程组:. 22.(2011?桂林)解二元一次方程组:.<

23.(2007?郴州)解方程组: 24.(2007?常德)解方程组:. ~ 25.(2005?宁德)解方程组: ` 26.(2011?岳阳)解方程组:. 27.(2005?苏州)解方程组:. ? 28.(2005?江西)解方程组: ,

29.(2013?自贡模拟)解二元一次方程组:. — 30.(2013?黄冈)解方程组:.

解二元一次方程组练习题 参考答案与试题解析 一.解答题(共30小题) 1.(2013?梅州)解方程组. - 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答:> 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. ? 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:^ 先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:. 点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

相关文档
最新文档