函数零点综合应用测试题(含答案)

函数零点综合应用测试题(含答案)
函数零点综合应用测试题(含答案)

函数零点综合应用一、单选题(共10道,每道10分)

1.函数在定义域内的零点个数为( )

A.0

B.1

C.2

D.3

答案:C

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

2.若函数有两个零点,则的取值范围是( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

3.若函数有唯一的零点,则实数a的值为( )

A.-3

B.-2

C.-1

D.0

答案:C

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

4.若函数有两个零点,则的取值范围是( )

A.或

B.

C. D.或

答案:D

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

5.若函数有且只有一个零点,则a的取值范围是( )

A. B.

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:函数的零点

6.若函数的两个零点为,且,则下列式子错误的是( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

7.若函数有三个零点,则的取值范围是( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

8.已知函数,若函数至少有三个零点,则实数的取值范围是( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:函数图象的对称变换

9.若函数有4个零点,则的取值范围是( )

函数的零点试题

函数七、函数的零点 一、选择题(每小题 6分,共36分)1、函数f (x )=e x +x -2的零点所在的一个区间是() A. (-2,-1) B. (-1,0) C. (0,1) D. (1,2)2、如图所示的函数图象与 x 轴均有交点,其中不能用二分法求图中交点横坐标的是() A. ①② B. ①③ C. ①④ D. ③④3、若定义在 R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数 y =f (x )-log 3|x|的零点个数是() A. 多于4个 B. 4个 C. 3个 D. 2个4、函数f (x )= x 2+2x -3,x ≤0, -2+lnx ,x >0的零点个数为()A. 0 B. 1 C. 2 D. 3 5、函数f (x )=log 3 x -x +2的零点的个数是()A. 0 B. 1 C. 2 D. 3 6、不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是 7、定义在R 上的偶函数y =f (x ),当x ≥0时,y =f (x )是单调递增的,f (1)·f (2)<0.则函数y =f (x )的图象与 x 轴的交点个数是8、在用二分法求方程x 3-2x -1=0的一个近似解时,已知一个根在区间( 1,2)内,则下一步可断定该根所在的区间为 9、若函数|1|1()2x y m 存在零点,则m 的取值范围是 __________. 10、已知函数f (x )=4x +k ·2x +1仅有一个零点,求实数 k 的值,并求出该零点 .

11、已知a∈R,函数f(x)=x2+2ax+1,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围。 12、已知函数f(x)=x2+bx+c满足条件:f(x-3)=f(5-x),且方程f(x)=x 有相等实根. (1)求f(x)的解析式; (2)当x∈[-1,+∞)时,f(x)≥2(a-1)x+a+1 4 恒成立,求a的取值范围.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

函数的零点和方程的根经典练习题

函数的零点和方程的根经典练习题 1.函数2()41f x x x =--+的零点为( ) A 、12-+ B 、12-- C 、12 -± D 、不存在 2、函数32()32f x x x x =-+的零点个数为( ) A 、0 B 、1 C 、2 D 、3 3、函数()ln 26f x x x =+-的零点一定位于区间( ). A. (1, 2) B. (2 , 3) C. (3, 4) D. (4, 5) 4、已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x 的零点,则g (x 0)等于________ 5、若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且当x ∈[0,1]时,f(x)=x ,则函数y =f(x)-log 3|x|的零点个数是 6、定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤x x ,若关于x 的函数 +=)(22x f y 1)(2+x bf 有8个不同的零点,则实数b 的取值范围是____________. 11、求证方程231 x x x -= +在(0,1)内必有一个实数根. 12、已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.

函数零点的题型总结

函数零点的题型总结 例题及解析 考点一函数零点存在性定理的应用 【例1】已知函数f(x)=(1 2 )x-13x,那么在下列区间中含有函数f(x)零点的是( ) (A)(0,1 3) (B)(1 3 ,1 2 ) (C)(1 2,2 3 ) (D)(2 3 ,1) 解析:f(0)=1>0,f(1 3)=(1 2 )13-(1 3 )13>0, F(1 2)=(1 2 )12-(1 2 )13<0,f(1 3 )f(1 2 )<0, 所以函数f(x)在区间(1 3,1 2 )内必有零点,选B. 【跟踪训练1】已知函数f(x)=2 x -log3x,在下列区间中包含f(x)零点的是( ) (A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4) 解析:由题意,函数f(x)=2 x -log3x为单调递减函数, 且f(2)= 2 2-log32=1-log32>0,f(3)= 2 3 -log33=-1 3 <0, 所以f(2)·f(3)<0, 所以函数f(x)=2 x -log3x在区间(2,3)上存在零点,故选C.

【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( ) (A)[0,1] (B)[-1,0] (C)[0,2] (D)[-1,1] 解析:f(1)=ln 2>0, 当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D; 当a=2时,f(1 2)=ln 3 2 -1 2 <0,所以f(x)在(1 2 ,1)上至少有一个零点,舍 去C.因此选A. 考点二函数零点的个数 考查角度1:由函数解析式确定零点个数 【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( ) (A)5 (B)4 (C)3 (D)2 (2)已知f(x)=2x x +x-2 x ,则y=f(x)的零点个数是( ) (A)4 (B)3 (C)2 (D)1 解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以 x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π 2 ,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B. 解析:(2)令2x x +x-2 x =0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由 图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

函数零点与方程的根练习题

方程的根与函数的零点 1、函数()? ? ?>+-≤-=1,341 ,442 x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1 2、函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,21 D.(1,2) 3、函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( ) A. ()41f x x =- B. ()2(1)f x x =- C. ()1x f x e =- D.)2 1 ln()(-=x x f 4.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A .??? ??1,32 . B .??? ??32,21 . C .??? ??21,31 D .?? ? ??31,0 5.若0x 是方程式lg 2x x +=的解,则0x 属于区间( ) A .(0,1). B .(1,1.25). C .(1.25,1.75) D .(1.75,2) 6.函数()x x f x 32+=的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 7.函数()2-+=x e x f x 的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 8.已知0x 是函数()x x f x -+ =11 2的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( ) A .()01x f C .()01>x f ,()02x f ,()02>x f 9.已知以4T =为周期的函 数(1,1] ()12,(1,3] x f x x x ?∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( )

高中数学求函数零点近似解测试题(附答案)

高中数学求函数零点近似解测试题(附答案) 2.4.2求函数零点近似解的一种计算方法二分法测试题 一、选择题 1.函数f(x)=-+4x-4在区间[1,3]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点 2方程在区间[-2,4]上的根必定属于区间()A.[-2,1]B.[2.5,4]C.[1,]D.[,2.5] 3.下列关于二分法的叙述,正确的是() A.用二分法可以求所有函数零点的近似值 B.用二分法求方程近似解时,可以精确到小数点后任一数 字 C.二分法无规律可寻,无法在计算机上进行 D.二分法只用于求方程的近似解 4.函数f(x)= 在[0,2]上() A.有3个零点 B.有2个零点 C.有1个零点 D.没有个零点5.函数f(x)=3 ax-2a+1在[-1,1]上存在一个零点,则a的取值范围是() A.a B.a C. D..a 或a 6.方程在区间[-2,4]上的根必定属于区间( )

A.[-2,1]B C.[1, D.[ 二、填空题 7.函数f(x)=-5的零点近似值(精确到0.1)是. 8.方程-6=0的近似解(精确到0.01)是. 三、解答题 9.求方程的无理根(精确到0.01) 参考答案: 一、选择题 1.B 2.D 3.B 4.C 5.D 6.D 二、填空题 7.2。2 8.2.45 三、解答题 9.原方程可化为,显然方程的一个有理根为-1,而方

程的无理根就是方程的根,令,则只须求函数f(x)的零点即可,又因为f(x)是偶函数,所以只须求出f(x)的一个正零点即可,用二分法求得正零点的近似值为2.83.因此,原方程的无理根的近似值为2.83和-2.83。

导数在函数零点中的应用

方程根的个数 图像法 1. 已知函数?(x )=2 -x e x (1)求?(x )的单调区间 增),3(+∞减)3,2()2,( -∞ (2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况 2已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++= 利用单调性 1已知二次函数)(x f 的二次项系数为a ,且不等式)(x f >x 2的解集为(-1,3)。 (1)若方程a x f 7)(-=有两个相等的实数根,求)(x f 的解析式 34)(2++-=x x x f (2)若函数)()(x xf x g =在区间?? ? ??∞-3,a 内单调递减,求a 的取值范围 (]1,-∞- (3)当a =-1时,证明:方程12)(3 -=x x f 仅有一个实数根 2、已知a >0,l x n x ax x f ),1(112)(2+++-=是曲线)(x f y =在点))0(,0(f P 处的切线 (1)求l 的方程 1+-=x y (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值 2 1=a (3)证明:对任意的),(*N ∈=n n a 函数)(x f y =总有单调递减区间,并求出)(x f 的单调递减区 间的长度的取值范围(区间[]21,x x 的长度=12x x -) (] 2,1 分离参数求值域 1. 已知函数=)(x f log 4)()14(R x kx x ∈++是偶函数 (1)求k 的值 2 1-=k (2)若方程0)(=-m x f 有解,求m 的取值范围 m ≥ 21

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). < A.()2,1-- B.()1,0- C.()0,1 D.() 1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选 C. 二、 基础知识回顾

1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 · 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根

函数的零点二分法练习题精选

函数的零点二分法练习题精选 一、填空题 1.设f (x )的图象在区间(a ,b )上不间断,且f (a )·f (b )<0,取x 0=a +b 2 ,若f (a )·f (x 0)<0,则用二分法求相应方程的根时取有根区间为________. 答案:(a ,a +b 2 ) 2.一块电路板的AB 线路之间有64个串联的焊接点,如果电路不通的原因是因为焊口脱落造成的,要想用二分法检测出哪一处焊口脱落,至多需要检测________次. 解析:由二分法可选AB 中点C ,然后判断出焊口脱落点所在的线路为AC ,还是BC .然后依次循环上述过程即可很快检测出焊口脱落点的位置,至多需要检测6次. 答案:6 3.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间是 解析:设f (x )=e x -x -2,由图表可知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,f (3)>0.所以f (1)·f (2)<0,所以根在(1,2)内. 答案:(1,2) 4 函数f (x )在区间(1,6)内的零点至少有________个. 解析:在区间(2,3),(3,4),(5,6)内至少各有一个. 答案:3 5.设f (x )=3x +3x -8,由二分法求方程3x +3x -8=0在(1,2)内近似解的过程中,得f (1)<0,f (1.5)>0,f (1.25)<0,则方程根所在的大致区间是________.

解析:虽然f (1)·f (1.5)<0,f (1.5)·f (1.25)<0,但(1.25,1.5)比(1,1.5)更精确. 答案:(1.25,1.5) 6.下列方程在区间(0,1)内存在实数解的有________. ①x 2+x -3=0;②1x +1=0;③12 x +ln x =0;④x 2-lg x =0. 解析:00,x 2-lg x >0. 答案:③ 7.设函数y =x 3与y =(12 )x -2的图象的交点为(x 0,y 0),则x 0所在的区间是________(填写序号). ①(0,1) ②(1,2) ③(2,3) ④(3,4) 解析:令g (x )=x 3-22-x ,可求得g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0.易知函数g (x )的零点所在区间为(1,2). 答案:② 8.函数f (x )=|x 2-2x |-a 有三个零点,则实数a 的取值范围是________. 解析:数形结合可知. 答案:a =1 9.下列函数中能用二分法求零点的是________. 解析:由二分法应用条件知只有③符合题意. 答案:③ 10.下面关于二分法的叙述,正确的是________. ①二分法可求函数所有零点的近似值 ②利用二分法求方程的近似解时,可以精确到小数点后任一位有

函数的零点及应用

函数的零点及应用 一、要点扫描 1.函数零点的理解:(1)函数的零点、方程的根、函数图象与x 轴的交点的横坐标,实质是同一个问题的三种不同表达形式;(2)若函数f (x )在区间[a ,b ]上的图象是一条连续的曲线且f (a )f (b )<0,则f (x )在区间(a ,b )内有零点. 2.函数零点的判定常用方法:(1)零点存在性定理;(2)数形结合法;(3)解方程f (x )=0. 3.曲线的交点问题:(1)曲线交点坐标即为方程组的解,从而转化为方程的根;(2)求曲线y =f (x )与y =g (x )的交点的横坐标,实际上就是求函数y =f (x )-g (x )的零点,即求f (x )-g (x )=0的根. 二、典型例题剖析 1.求函数的零点 例1 求函数f (x )=x 3-3x +2的零点. 解 令f (x )=x 3-3x +2=0,∴(x +2)(x -1)2=0. ∴x =-2或x =1, ∴函数f (x )=x 3-3x +2的零点为-2,1. 评注 求函数的零点,就是求f (x )=0的根,利用等价转化思想,把函数的零点问题转化为方程根的问题,或利用数形结合思想把函数零点问题转化为函数图象与x 轴的交点问题. 2.判断函数零点的个数 例2 已知函数f (x )=a x +x -2 x +1 (a >1),判断函数f (x )=0的根的个数. 解 设f 1(x )=a x (a >1),f 2(x )=-x -2 x +1 ,则f (x )=0的解,即为f 1(x )=f 2(x )的解,即为函数f 1(x ) 与f 2(x )的交点的横坐标.

函数的零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的 联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点 个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念

对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗? 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗? 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根 图像有交点.

函数零点经典习题

函数零点经典习题 一.选择题 1.函数f(x)=-x2+4x-4在区间[1,3]上的零点情况是: A 没有零点 B 有一个零点 C 有两个零点 D 有无数个零点 2函数f(x)=(x2-4)/(x-2)的零点是 A -2,2 B 2 C -2 D 不存在 3.函数f(x)=x2+27/x的零点是 A -3 B -1/3 C 3 D 1/3 4.如果方程2ax2+x-3=0在区间(0,1)内有一个解,则a的取值范围是 A a<-1 B a>1 C -1-1/4 C a≥-1/4 D a≤-1/4 6.二次函数y=ax2+bx+c,若ac>0则函数的零点的个数是 A 0 B 1 C 2 D 无法确定 7.已知二次函数y=ax2+bx+c,x∈R的部分对应值如下表: x-3-2-101234 y104d-2-2e410 不求a、b、c的值,可以判断方程的两根所在的区间分别是 A(-3,-2)(2,4)B(-2,0)(1,3)C(-3,-1)(-1,1)D(-∞,-3),(4,∞) 8.函数y=lnx+2x-6的零点一定在下列哪个区间 A (1,2) B (2,3) C (3,4) D (5,6)

9.函数f(x)=x 2-ax-b 的两个零点是3,5 则函数g(x)=bx 2-ax-1的零点是 A -3,-5 B 3,5 C -1/3,-1/5 D 1/3,1/5 1.函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,2 1 D.(1,2) 2.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A . ?? ? ??1,3 2 . B .?? ? ??32,21 . C .?? ? ??21,31 D .?? ? ? ?31,0 3.函数x x x f 2ln )(-=的零点所在的大致区间是( ) A .)2,1( B .)3,2( C .)1 ,1(e 和)4,3( D .),(+∞e 二.填空题 10.已知函数f9x)=x 2-1则函数f(x+2)的零点是------------ 11.方程x 2-2x-5=0在区间(2,3)内有实数根,取区间的中点x 0=2.5,下一个有根区间是------------- 12.若函数f(x)=ax+b 的零点是-3则函数g(x)=bx 2-ax 的零点是-------- 10.若函数 a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围 是

函数应用、零点、二分法知识点和练习

一、方程的根及函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象及x 轴交点的横坐标。 即:方程0)(=x f 有实数根?函数)(x f y =的图象及x 轴有交点?函数)(x f y =有零点. 3、函数零点的求法: ○ 1 (代数法)求方程0)(=x f 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它及函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、基本初等函数的零点: ①正比例函数(0)y kx k =≠仅有一个零点。 ②反比例函数没有零点。 ③一次函数(0)y kx b k =+≠仅有一个零点。 ④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象及x 轴有两个交点,二次函数有两个零点. (2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象及x 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象及x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。 ⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1. ⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。 5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是 函数()f x 零点的个数。即f(x)=g(x)的解集 f(x)的图像和g(x)的图像的交点。 6、选择题判断区间(),a b 上是否含有零点,只需满足()()0f a f b <。 7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上连续,且()()0f a f b <②在区

高考理科数学真题练习题导数与函数的零点问题理含解析

高考数学复习 课时作业17 导数与函数的零点问题 1.已知f (x )=ax 2 -(b +1)x ln x -b ,曲线y =f (x )在点P (e ,f (e))处的切线方程为2x +y =0. (1)求f (x )的解析式; (2)研究函数f (x )在区间(0,e 4 ]内的零点的个数. 解:(1)由题知? ?? ?? f e =-2e , f ′e =-2,得? ?? ?? a =1, b =e , ∴f (x )=x 2 -(e +1)x ln x -e. (2)x 2-(e +1)x ln x -e =0?x -(e +1)ln x -e x =0,x ∈(0,e 4 ]. 设g (x )=x -(e +1)ln x -e x ,x ∈(0,e 4 ], 则g ′(x )=1-e +1x +e x 2= x -1 x -e x 2 . 由g ′(x )=0得x 1=1,x 2=e , 当x ∈(0,1)时,g ′(x )>0, 当x ∈(1,e)时,g ′(x )<0, 当x ∈(e ,e 4 ]时,g ′(x )>0, 所以g (x )在(0,1)上单调递增,在(1,e)上单调递减,在(e ,e 4 ]上单调递增. 极大值g (1)=1-e<0,极小值g (e)=-2<0,g (e 4)=e 4 -4(e +1)-1e 3, ∵4(e +1)+1 e 3<4×4+1=17, e 4 >2.74 >2.54 >62 =36,

∴g (e 4 )>0. 综上,g (x )在(0,e 4 ]内有唯一零点, 因此,f (x )在(0,e 4]内有唯一零点. 2.(2019·郑州第一次质量预测)已知函数f (x )=ln x +1ax -1 a ,a ∈R 且a ≠0. (1)讨论函数f (x )的单调性; (2)当x ∈[1e ,e]时,试判断函数g (x )=(ln x -1)e x +x -m 的零点个数. 解:(1)f ′(x )= ax -1 ax 2 (x >0), 当a <0时,f ′(x )>0恒成立, ∴函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )=ax -1ax 2>0,得x >1 a , 由f ′(x )= ax -1ax 2<0,得00时,函数f (x )在(1a ,+∞)上单调递增,在(0,1 a )上单调递减. (2)∵当x ∈[1e ,e]时,函数g (x )=(ln x -1)e x +x -m 的零点,即当x ∈[1e ,e]时,方 程(ln x -1)e x +x =m 的根. 令h (x )=(ln x -1)e x +x ,h ′(x )=(1x +ln x -1)e x +1. 由(1)知当a =1时,f (x )=ln x +1x -1在(1 e ,1)上单调递减,在(1,e)上单调递增, ∴当x ∈[1 e ,e]时, f (x )≥f (1)=0. ∴1x +ln x -1≥0在x ∈[1 e ,e]上恒成立. ∴h ′(x )=(1x +ln x -1)e x +1≥0+1>0, ∴h (x )=(ln x -1)e x +x 在x ∈[1e ,e]上单调递增. ∴h (x )min =h (1 e )=-2e 1e +1e , h (x )max =e.

相关文档
最新文档