钛合金相变知识(整理)

钛合金相变知识(整理)
钛合金相变知识(整理)

钛合金的固体相变(整理版)

钛的主要相及其结构

纯钛在固态下有两种同素异构体,常温下以密排六方(hcp)晶格结构存在,称之为α钛。hcp单元晶胞如图1-1左图所示,在室温下点阵常数a=0.295nm,c=0.468nm。纯钛的c/a=1.587,小于理想hcp结构的c/a值1.663,(0001)是称为底面(basal plane),为密排面;(1010)称为棱柱面,(1011)称为棱锥面;a1、a2、a3轴是密排方向,即<1120>方向。当温度升到882.5℃以上时,变成体心立方(bcc)晶格结构,称之为β钛。bcc单元晶胞如图1-1右图所示,(110)为密排面,密排方向为<111>,900℃时,点阵常数a=0.332nm。

图1-1 α钛和β钛的原子结构示意图

钛合金两相间的具体的转变温度会受间隙和置换元素含量的强烈影响,所以钛的合金元素被分为α稳定元素、中性元素和β稳定元素,如图所示:

α稳定元素提高α/β转变温度,置换式的Al和间隙式的C、N、O都是强α稳定元素,这些元素含量越多,则钛合金的α/β转变温度越高。Zr,Hf和Sn 等属于中性元素,因为它们含量很低时略微降低α/β相变温度,当们含量增加时,又会提高α/β相变温度。β稳定元素能够降低钛的同素异型转变温度,扩大β相区并增加β相在热力学上的稳定性,这类元素包括间隙式的H和大量的置换式元素,其中置换式β稳定元素又分为β同晶元素和β共析元素,这取决于所产生的二元相图的细节。

钛合金的相变

钛合金热处理是钛合金学科领域内一个重要的分枝。其典型特征为: 淬火过程中发生了马氏体相变,或保留高温组织,合金的塑性韧性稍有升高,强度硬度稍有降低。在随后时效过程中,由于亚稳定相和中间相的生成,合金硬度、强度升高,塑性、韧性降低。对过渡阶段的每一种亚稳相和中间相都有其产生的条件和相应的性质,钛合金热处理的研究实际上就是对其淬火和时效过程中中间相的研究。

金属材料的热处理可以归纳为三大类: 第一类,淬火+ 回火;第二类, 固溶+ 时效;第三类,淬火+ 时效。对于这三类热处理,它们的基础理论都是相同的,即在高温保温过程中,使合金元素固溶到基体中,然后在急冷过程中发生非平衡转变,形成过饱和固溶体,随后的时效使过饱和度弱化,析出第二相。淬火和固溶、回火和时效的区别主要是根据材料性质的不同,以及它们所产生的力学性能不同而约定成俗的。淬火和固溶的区别在于是否发生同素异构转变,凡是在急冷过程中发生同素异构转变的就称为淬火,而只发生过饱和固溶的就称为固溶。钢和钛合金在淬火过程中都发生同素异构转变,即钢由奥氏体为基体的面心结构转变为以铁素体为基体的体心结构,钛合金由体心结构的转变为六方结构。而铝合金没有这种结构转变。回火和时效的区别就在于回火的结果使合金的硬度和强度下降,塑性和韧性升高;时效则使合金的硬度和强度升高, 塑性和韧性降低。可以认为凡是在固溶后能使合金的硬度和强度下降、塑性和韧性升高的较低温度保温都叫回火,相反的结果就叫时效。

钛合金中的固态相变主要有同素异构转变、共析转变和有序化转变。它们共同构成了钛合金知识体系的理论基础,为合金的设计、加工和后期热处理提供指导。研究钛合金的固态相变,其实就是研究钛合金的热处理,因为所有的相变是发生在热处理的过程中,固态相变是热处理的实质

在冷却过程中,根据冷却速度的不同,发生的主要相变有β→α′,β→α",β→ω(althermal),β→α。

α′(αprime/hexagonal martensite)相变为马氏体相变中的一种,是在快速冷却的过程中通过非扩散切变而形成的,α′相呈六方结构,为{334}和{344}型,与体心立方的β相近似保持Burgers关系[4]:六方晶胞的(0001)α′与体心立方(011)β平行,六方晶胞的[1210]α′方向平行于[111]β方向。一般近α合金或β稳定元素含量较小的α+β合金从β相区或接近α+β/β相变点的高温淬火都能生成α′。其中六方晶胞的尺寸分别为:a=0.293 nm,c=0.4675 nm,c/a=1.596。

α″(αdouble prime/orthorhombic martensite)相是由β相以非扩散转变形成的过饱和非平衡斜方相,是马氏体相变中的一种,与体心立方的β相的对应结晶关系如图2所示。斜方晶胞的α″相的[100]α″,[010]α″和[001]α″分别与体心立方β相

的晶胞[100]β,[01 1]β和[011]β相对应。Bagaryatskiy曾计算斜方马氏体的晶胞尺寸(Ti15W):a=0.301 nm,b=0.496 nm和c=0.466 nm。在β稳定元素较多的α+β合金,由β相区或接近α+β/β相变点高温淬火可以生成α″。

ω(althermal)相为无热ω相,当β合金元素成分范围达到某一临界值时(大致同室温下能保留β相的成分极限相近),合金在β相区淬火可以形成ω(althermal 相。对于ω相结构尚存在一定争议,现普遍认为它是密排六方结构在冷却过程中当冷却速度很慢时,会发生α相变,也可称之为近平衡相变,与上述3类相变不同的是它相变过程中的同素异构转变是通过原子扩散进行的,而不是切变,所以也不能称为淬火相变。由于冷却速度很慢,此类相变得到的组织为近平衡组织,没有时效强化效果,有较好的塑性,但是强度较低,一般退火炉冷过程中都会发生此类相变。

重要的共析元素及相应的化合物

钛合金中,根据共析性质的不同,共析元素的作用也不同。对于慢共析元素(Mn,Fe,Cr等),在一般的加工和热处理过程中不能产生中间相,它们主要是以固溶强化形式强化合金,它们又都是强β稳定元素,对合金的强化效果大,是高温亚稳定β型钛合金的主要添加剂,但是与钛形成慢共析反应性质使得合金在高温长期使用过程中会形成有序相,恶化性能。快共析元素(Cu,Si等)主要是以沉淀强化为主,在冷却和时效过程中形成细小弥散的中间相强化合金。

Al元素是钛合金中最重要的合金元素,在Ti-Al系合金中,当铝当量含量较低时,主要沉淀出Ti3Al(α2)有序相,当铝当量含量较高时,有TiAl(γ)及其他钛铝化合物形成,在正常使用的含铝钛合金中以α2沉淀强化为主,所以α2相为钛合金中一个极为重要的有序相。

作为间隙型共析元素,Si元素的作用一直没有得到重视,直到20世纪70年代,Seagle等人发现了Si元素对抗蠕变性能的独特作用后,Si元素的作用才被广泛重视,Si元素也被介绍到高温钛合金的设计中,现存的高温钛合金中,几乎都含有Si,主要应用的就是Si元素的抗蠕变作用。含Si高温钛合金中的硅化物主要有两种:S1型的Ti5Si3和S2型的Ti6Si3。当其他合金元素加入,根据合金类型的不同,将在S1和S2晶型中置换部分Ti元素或Si元素,形成晶体结构相同,晶格常数有所不同的新S1和S2型。比如,当Ti-Si合中加入了Zr元素后,在不同的处理条件下,会形成(TiZr)5Si3和(TiZr)6Si3硅化物;在含Zr元素的S2型化合物再含加入Sn元素,则Sn会置换一小部分Si形成(Ti,Zr)6(Sn,Si)3。而在Ti-Al-Si系合金中,通常也会看到Ti3(Al,Si)和Ti5(Al,Si)3相。由于Si元素是快共析元素,所以形成中间化合物较容易,这些弥散分布的化合物不但可以强化合金,而且在蠕变过程中可以阻止位错的运动,提高合金蠕变抗力。

Cu元素属于β稳定元素,在钛合金是快共析元素,形成的化合物主要有Ti2Cu,TiCu和Ti2Cu3,其中以Ti2Cu最为常见。由于Cu元素的快共析性质及在α相中低的固溶度,故可以通过时效沉淀强化来提高合金的强度,其强化相主要为Ti2Cu。作为中间相,Ti2Cu还有一个重要性质,就是低熔点性,其在990℃就可以熔化,根据这一性质,有人设计了阻燃剂合金。

Cr元素是钛合金中最为重要的共析元素之一,它具有较强的β稳定能力,强化能力强,几乎所有的高强亚稳β合金中都有Cr元素。由于Cr元素属于慢共析元素,形成的TiCr2是一个有序相,在一般的钛合金加工和热处理过程中都不会出现TiCr2有序相,所以Cr元素在钛合金中的作用主要是固溶强化。但是一旦其发生共析反应,生成TiCr2有序相,往往对合金产生极为不利的影响,强烈降低合金的塑性,所以在钛合金中应该控制Cr元素的含量。

在钛合金杂质元素中,以析出化合物对钛合金影响性能最大的是H元素,由于H在β-Ti中的溶解度远大于α-Ti,且在α-Ti中的溶解度随温度降低而急剧下降,当合金冷却到室温时,析出脆性氢化物TiH2,使合金变脆,这就是所谓的氢脆。含氢的α-Ti在应力作用下,促进氢化物析出,由此导致的脆性叫应力感生氢化物氢脆。此外,溶解在晶格中的氢原子,在应力作用下,经过一定时间会扩散到晶体缺陷处,在那里与位错发生交互作用,位错被钉扎,引起塑性降低,当应力去除并静止一段时间,再进行高速变形时,塑性又可以回复,这种脆性成为可逆氢脆。当钛及钛合金中氢含量小于0.015%时,可防止发生氢化物型氢脆,但应力感生氢化物氢脆和可逆氢脆是很难避免的。减少氢脆的主要措施是减少氢含量。

钛合金相变的研究方法

与其它材料一样,对于钛合金固态相变的研究也包括显微分析技术和相关测试技术。在这里,主要介绍研究钛合金相变最为有效的原位电阻测量法、同步X 射线分析法等。电阻测量法研究相变的基本原理是:在一定条件下,当材料中发生相转变时,由于所形成的新相在成分、结构等和母相不同,引起其点阵结构、界面等的变化,从而导致电阻的变化。因此,通过测量材料在热机械处理过程中电阻随温度、时间等的变化,来确定相变过程的动力学曲线,从而研究其相关相变机制。同步X射线是指电子同步加速器或储存环中所发出的同步辐射X射线源,它是高速运动的电子经磁场偏转加速而产生的磁韧致辐射,其中波长在X 射线波段的电磁辐射用作有效的X射线源。下图为同步X射线原位相变分析法示意图。

结论:

钛合金的固态相变的研究仍然是钛合金领域的研究热点之一。尽管已经有较多的研究工作,但目前尚有许多问题没有明确的答案,如关于相转变动力学和热力学、w相的形核长大机制以及其对α形成的影响、通过相转变对合金组织的控制以及多元钛合金的计算相图等,这些问题仍然需要大量的研究工作给予解决。

参考文献:

[1]辛社伟,赵永庆,曾卫东等.钛合金固态相变的归纳与讨论(Ⅰ)——同素异构转变[J].钛工业进展,2007,24(5):23-28.

[2]辛社伟,赵永庆,曾卫东等.钛合金固态相变的归纳与讨论(Ⅱ)——共析和有序化转变[J].钛工业进展,2008,25(1):40-44.

[3]辛社伟,赵永庆,曾卫东等.钛合金固态相变的归纳与讨论(Ⅲ)——常用检测方法[J].钛工业进展,2008,25(3):26-33.

[4]辛社伟,赵永庆.钛合金固态相变的归纳与讨论(Ⅳ)——钛合金热处理的归类[J].钛工业进展,2009,26(3):26-29.

[5]常辉. Ti-B19合金的固态相变动力学及其组织演变规律[D]. 西北工业大学, 2006 .

[6]辛社伟,赵永庆.关于钛合金热处理和析出相的讨论[J].金属热处理,2006,31(9):39-42.

钛合金切削加工知识

合金磨削刀具-钛合金的切削加工 首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器 材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将 制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配厂-扩 大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工 刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以 上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合 金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1800℃,导热系数 λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在4.5g/cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料, 见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件 及起落架等都使用钛合金。

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

对钛合金及钛合金车架知识的几个误导

对钛合金及钛合金车架知识的几个误导----纠正篇 8月份的时候,我就想起草一篇小短文了,想讲下车友们对钛合金车架普遍存在的一些误解。或者说是一些传闻造成的误导。时间拖到现在,一个人的忙的昏天暗地,失去了闲暇。直到接近月尾的时候才抽出时间来完成这个小短文。写这个短文的目的,不是为了让人们不要买钛车,也不是把钛合金吹嘘到神的位置,而是通过实践比对,总结经验,让更多人认识钛合金。 随着国家实力的日益强大,人们的消费水平和对物质的认识程度都越来越高,原来主要销往欧美发达国家的钛合金自行车架在国内的销量也开始日渐增多。网络上和实体车店里的钛合金车架出现的频率比5年前高了40倍。卖的多了,买的也多了。这是一股潜流,慢慢会形成一种趋势。当然,距离普及还远远不是时候。 然而,无奈的发现,不论买的还是卖的,对钛合金的了解都还不够全面,甚至有些人云亦云的信息,存在了不少误导。有的是夸大,有的是歪曲,有的甚至是无知的妄谈。毕竟在国内实际10年以上使用钛架的人并不多,对国内国外钛合金车架生产状况全面了解的人更不多。有不少人在网店内销售钛合金车架,只是抄袭别人的描述,自己根本没用过,甚至对自行车也不甚了解。这样的其实不在少数。今天,我抛开门户之见,不提及任何品牌,从实际经验和原始数据开始,来破除几个对钛合金车架以及钛材料的误解。并希望这些知识能帮到别人,并逐渐被你的实践来验证。 这些误解,包括我自己也曾经有过,能把这些误区总结出来,是用我多年来对钛合金材料以及车架的经验来说话的,很欢迎有实际经验的人一起来探讨和鉴证。 误导一:钛合金很轻,比铝轻,跟碳纤维差不多的重量。 我暂时没有碳纤维的准确数据,先抛开。我们看下常用在自行车上的三种金属材料: 钢,铝,钛的比重吧。 同样体积的3种材料,用这3个数字计算可以得出,钛约为钢的重量的57.4%,铝约为钢重量的34.4%。所以铝是最轻的,简单说,同样体积的铝材比钛合金轻了40%,比钢轻了65%。 同时,另外一个经常在网上出现的说辞也会被戳破。钛是钢的一半重量。准确地说,应该是57%以上才对。 误导二:钛是稀有金属,所以比较贵。

钛合金材料

钛合金材料 《新型工程材料应用》课程论文

摘要:随着新技术革命浪潮的推进,继合金钢和金属铝之后,新崛起的第三金属——钛,越来越多地渗透到工业、技术和科学的各个领域,它的魅力向人类展示了它的美好前景。本文介绍了钛合金的合金化原理、性能特性,综述近年来国内外钛合金材料的发展应用和研发状况,对钛合金材料的发展前景进行了展望。 关键词:钛合金、合金化、特性、发展 概述: 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。而钛合金是以钛为基加入其他元素组成的合金。 合金化原理: 钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:(1)稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。(2)稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。应用了钛合金的产品前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。(3)对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 TA是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。TB是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。TC是双相合金,具有良好的综合

钛合金及其热处理工艺简述精修订

钛合金及其热处理工艺 简述 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

钛合金及其热处理工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在℃以上为体心立方晶格的β相,在℃以下为密排六方晶格的α相。钛 合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。 2 钛合金的合金化特点

第四章 钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需

钛锆的基本知识

钛的基本性质 原子结构 钛位于元素周期表中ⅣB族,原子序数为22,原子核由22个质子和20-32个中子组成,核外电子结构排列为1S22S22P63S23D24S2。原子核半径5x10-13厘米。 物理性质 钛的密度为4.506-4.516克/立方厘米(20℃),熔点1668±4℃,熔化潜热3.7-5.0千卡/克原子,沸点3260±20℃,汽化潜热102.5-112.5千卡/克原子,临界温度4350℃,临界压力1130大气压。钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为0.38-0.4K。在25℃时,钛的热容为0.126卡/克原子·度,热焓1149卡/克原子,熵为7.33卡/克原子·度,金属钛是顺磁性物质,导磁率为1.00004。钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。 化学性质 钛在较高的温度下,可与许多元素和化合物发生反应。各种元素,按其与钛发生不同反应可分为四类: 第一类:卤素和氧族元素与钛生成共价键与离子键化合物; 第二类:过渡元素、氢、铍、硼族、碳族和氮族元素与钛生成金属间化物和有限固溶体; 第三类:锆、铪、钒族、铬族、钪元素与钛生成无限固溶体; 第四类:惰性气体、碱金属、碱土金属、稀土元素(除钪外),锕、钍等不与钛发生反应或基本上不发生反应。 与化合物的反应: ◇HF和氟化物 氟化氢气体在加热时与钛发生反应生成TiF4,反应式为(1);不含水的氟化氢液体可在钛表面上生成一层致密的四氟化钛膜,可防止HF浸入钛的内部。氢氟酸是钛的最强熔剂。即使是浓度为1%的氢氟酸,也能与钛发生激烈反应,见式(2);无水的氟化物及其水溶液在低温下不与钛发生反应,仅在高温下熔融的氟化物与钛发生显著反应。 Ti+4HF=TiF4+2H2+135.0千卡(1)2Ti+6HF=2TiF4+3H2 (2) ◇HCl和氯化物 氯化氢气体能腐蚀金属钛,干燥的氯化氢在>300℃时与钛反应生成TiCl4,见式(3);浓度<5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生瓜在生成紫色的TiCl3,见式(4);当温度长高时,即使稀盐酸也会腐蚀钛。各种无水的氯化物,如镁、锰、铁、镍、铜、锌、汞、锡、钙、钠、钡和NH4离子及其水溶液,都不与钛发生反应,钛在这些氯化物中具有很好的稳定性。 Ti+4HCl=TiCl4+2H2+94.75千卡(3)2Ti+6HCl=TiCl3+3H2 (4) ◇硫酸和硫化氢 钛与<5%的稀硫酸反应后在钛表面上生成保护性氧化膜,可保护钛不被稀酸继续腐蚀。但>5%的硫酸与钛有明显的反应,在常温下,约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛,见式(5),(6),加热的浓硫酸可被钛还原,生成SO2,见式(7)。常温下钛与硫化氢反应,在其表面生成一层保护膜,可阻止硫化氢与钛的进一步反应。但在高温下,硫化氢与钛反应析出氢,见式(8),粉末钛在600℃开始与硫化氢反应生成钛的硫化物,在900℃时反应产物主要为TiS,1200℃时为Ti2S3。

钛金属基本知识

钛 钛的发现及命名英国牧师格雷戈尔,是一位矿物爱好者,家中陈列着五颜六色的矿石标本。1791年,他在默纳陈河谷中采集到一种黑色磁性砂,新自动手分析这黑色磁性砂的组成,发现除含有磁铁矿、氧化硅外,还有近一半的棕红色粉未。为解开棕红色粉未之谜,他做了大量的试验。最后,他确信这棕红色粉未中含有一种尚未被人们发现的新金属元素。所以,人们就以发现地“默纳陈”给这种新镏金属元素命了名。 1795年,奥地利科学家克拉普罗特在研究匈牙利出产的金红石时,也发现了格雷戈尔发现的那种奇石物质。便给它起了新名-钛。意思是说,这种金属像古希腊神话中的大力士神“泰坦”那样力大无比。钛的性质钛是银白色金属,熔点为1667℃,密度为4.5克/厘米3。其化学性质与锆相似,而在水溶液中低价钛的某些性质又与钒相似。钛在高温下易与多种气体反应,是良好的吸气剂。在一定温度下它能吸氢,温度升高时又能放氢,可用作贮氢材料。由于钛表面能生成致密的氧化膜,有保护作用,所以钛在海水和大多数酸、碱、盐中有良好的耐蚀性。钛是化学活性高的金属,高温下能和多种元素反应而受到污染,因而给熔炼、铸造、热加工和热处理带来一定困难,钛在自然界中分布极广,地壳中钛的含量,仅次于铝、铁、镁等。比常见的铜、铅和锌的总量还要多。近十年来,由于钛被广泛应用,开发速度加快,被称为倔起的“第三金属”。已发现含钛1%以上的矿物有80多种,但目前工业上使用的仅有金红石和钛铁矿两种。钛的用途钛的强度大,纯钛抗拉强度最高可达180kg/mm2。有些钢的强度高于钛合金,但钛合金的比强度(抗拉强度和密度之比)却超过优质钢。钛合金有好的耐热强度、低温韧性和断裂韧性,故多用作飞机发动机零件和火箭、导弹结构件。钛合金还可作燃料和氧化剂的储箱以及高压容器。现在已有用钛合金制造自动步枪,迫击炮座板及无后座力炮的发射管。在石油工业上主要作各种容器。现在已有用钛合金制造自动步枪,迫击炮座板及无后座力炮的发射管。在石油工业上主要作各种容器、反应器、热交换器、蒸馏塔、管道、泵和阀等,钛可用作电极和发电站的冷凝器,以及环境污染控制装置。钛镍形状记忆合金在仪器仪表上已广泛应用。在医疗中,钛可作人造骨头和各种器具。钛还是炼钢的脱氧剂和不锈钢以及合金钢的组元。钛白粉是颜料和油漆的良好原料。碳化钛,碳(氢)化钛是新型硬质合金材料。氮化钛颜色近于黄金,在装饰方面应用广泛。金属

合金成分影响相变温度

五、合金成分影响相变温度 大家知道,我国幅员广大,人口众多,各地有各地的生活习惯,各人有的爱好。一位高明的厨师,就要能够掌握多种不同的烹调技艺,善于做出各具特色的饭菜来,才能满足不同的顾客的要求。我们炼制记忆合金,和厨师烧莱一样,也是“众口难调”呀。

譬如,把记忆合金做成紧固铆钉,用来紧固飞机上的零部件,就必须在-55℃变形,才能保证飞机顺 利通过严寒的高空。如果用在航天飞 行器的控制系统,则必须保证记忆合 金部件能在0℃?60℃的范围内正常 工作。如果要想把记忆合金作为生物 工程材料,用到人体上去,那就要求 更严了。它必须在37℃左右,回复设计的形状,因为这是人体的正常温度。可以想一想,如果记忆合金部件,低于这个温度就开始逆转变,力图回复原来的形状,手术不是就没有办法顺利进行了吗?相反,如果记忆合金部件高于40℃才开始回复原形,把它埋在体内也就起不了任何特殊作用了。 正因为不同顾客的“众口难调”,金华瑞普也能像厨师一样,针

对用户不同的要求,做出可口的“饭莱”。技艺高超的冶金工作者,调节记忆合金相变温度的第一个办法,就是善于选择合金的成分,好像高明的厨师,精心选择做菜的配料一样。 经过各国冶金专家的研究试验,我们已经知道,合金成分对记忆合金相变温度的影响,是极其灵敏的。就拿我们熟悉的镍钛合金和铜基记忆合金来说吧,成分稍有一点变化,就能在很大程度上影响合金变形的温度。 对于镍钛合金来说,各国专家研 究的结果可能还有一些出入,但大致 有这样一个规律,就是合金中镍的含 量增加,合金的变形温度起始点和终 点都下降。相反,如果合金中钛的含 量增加,合金变形温度的起始点和终 点都上升。 比如有的专家研究的结果是这样的:当镍钛合金中,含镍和含钛的原子浓度相等时,也就是说合金中镍含量大约占55%的时候,在40℃开始生成马氏体。就是从40℃开始,合金逐渐变软,易于加工。如果把合金中的镍含量降低到54%,合金的马氏体开始生成的温度,一下子就上升到70℃。反过来,如果把合金中的镍含量增加1%,达到56%,那么,合金的马氏体开始生成温度,就会猛然下降到0℃。当镍含量再增加1%,达到57%的时候,马氏体开始生成的温度还会继续下降,达到-10℃。

【材料分析方法】相变研究以及相变温度的确定方法

相变研究以及相变温度的确定方法 材料科学与工程1121900133 缪克松 关键词:相变研究是材料科学与工程中重要的一门研究,温度、压力等因素会诱发材料的相变,相变前后材料的微观结构的差异将使材料在物理性质、化学性质等方面发生较 大程度的改变,从而决定了材料的应用范围。温度作为材料在制备、加工、应用中 常常面对的环境变量,对于相变的影响最为直观可控,本文就确定材料的相变温度 介绍了几种方法。 关键词:相变温度;膨胀法;差示扫描量热法;X射线法;声发射法;电阻法 1相变概述 从广义上讲,构成物质的原子或分子的聚合状态、相状态发生变化的过程均称为相变。[1]例如液相到固相的凝固过程、液相到气相的蒸发过程等。相变前的相状态称为旧相或者母相,相变后的相状态成为新相。固态相变发生后,新相与母相之间必然存在某些差别。这些差别或者表现在晶体结构上(同素异构转变),或者表现在化学成分上(调幅分解),或者表现在表面能上(粉末烧结),或者表现在应变能上(形变再结晶),或者表现在界面能上(晶粒长大),或者几种差别兼而有之(过饱和固溶体脱溶沉淀)。 相变的发生往往收到外界环境的激发,温度是最直观也最容易控制的参数,通过对材料在不同温度下几种不同类型的相变的控制,就可以获得预期的组织和结构,充分发挥材料体系的潜能,因此,确定材料的相变温度十分有意义。 随温度的变化,材料在相变前后的差别可以作为检测材料相变温度的依据,本文所述的几种方法其基本原理都是通过比对材料随温度变化发生的改变从而来确定相变温度。 2 膨胀法 2.1 原理 物质的热膨胀是基于构成物质的质点间平均距离随温度变化而变化的一种现象,晶体发生相结构变化的同时总是伴随着热膨胀的不连续变化,因此相变过程中的热膨胀行为的测量是研究相变的重要手段之一。 将样品放入加热炉内,按给定的温度程序加热,加热炉和样品的温度分别由对应的热电偶进行测量,样品长度随温度变化而变化,同时样品支架和样品推杆的长度也发生变化,测量的长度变化结果是样品、样品支架和推杆三者长度变化总和。样品推杆将该长度变化总和传递给位移传感器后,使位移传感器的铁芯发生位置变化而产生电动势,该电动势由测量放大器按比例转换为直流电压,由计算机记录下来。

NiTiHf高温形状记忆合金研究进展

综述 NiTi Hf高温形状记忆合金研究进展 孟祥龙 王 中 赵连城 ( 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 ) 伊胜宁 ( 江苏钢绳集团公司 江阴 214433 ) 文 摘 介绍了Ni T i H f高温形状记忆合金的研究状况,重点评述了Ni T i H f合金的设计以及Hf的添加和热处理对合金的相变、力学行为和形状记忆效应的影响,并对它们所对应的微观机制作了一定的分析。 关键词 NiTiHf高温合金,形状记忆合金,合金设计,相变,力学行为,形状记忆效应 Development of Ni Ti Hf High Temperature Shape Memory Alloys Meng Xianglong Wang Zhong Zhao Liancheng ( School of Materials Science and Eng i neering,Harbin Insti tute of Technology Harbin 150001 ) Yi Shengning ( Jiangsu Steel Wire Rope Bloc Crop. Jiangyin 214433 ) Abstract The research on Ni T i H f high te mperature shape me mory alloys is revie wed with emphasis on the design of NiTiHf alloys,and the effect of Hf addition and heat treatment on the alloys transformation,mechanical behavior and shape memory effect.Its micro mechanism is also briefly analyzed in this paper. Key words NiTiHf high te mperature alloys,Shape memory alloys,Design of the alloys,Transformation,Mechan ical behavior,Shape memory effect 1 引言 形状记忆合金是现代智能材料的主要代表之一,具有丰富的马氏体相变现象、奇特的形状记忆效应和良好的超弹性性能。目前开发应用的主要是NiTi基形状记忆合金和Cu基形状记忆合金,其M s 点一般不高于150!,因而只能在低于150!的条件下使用。而在实际应用中的许多场合,如火灾或过热情形的预警及自动防护系统、卫星发射塔、火箭发动机、电流过载保护器等装置中都需要在更高的温度下使用形状记忆合金,特别是在核反应堆工程中,要求记忆合金热敏驱动器的动作温度高达600![1]。因此,为了满足实际应用的需要,人们对高温形状记忆合金进行了一系列的开发和研究。 目前,国内外主要开发出三类高温形状记忆合金:CuAlNi基五元合金CuAlNiMn X(X=Ti,B,V )[2],NiAl基金属间化合物NiAl X(X=Fe,Mn,B )[3~4],Ni T i基三元合金NiTi X(X=Pd,Pt,Au,Zr, Hf)[5~7]。其中,C uAlNi基记忆合金中存在着室温塑性差,相变点不稳定及抗热能力低等问题不易解决;NiAl基记忆合金中则存在室温脆性和Ni5Al3时 收稿日期:1998-10-06 孟祥龙,1977年出生,硕士研究生,主要从事Ni Ti基高温形状记忆合金的研究工作

钛合金及其热处理工艺简述

钛合金及其热处理工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。

钛合金的固态相变

钛合金的固体相变 简介 钛属于ⅣB族元素,原子序数为22,它在地壳中的丰度为0.6%,是地壳中储量较丰富的元素之一,在金属元素中仅次于铝、铁、镁,占第四位。钛自其发现到发展至如今已经过了200多年的历史,从工业价值、资源寿命和发展前景来看,钛仅次于铁、铝,被称为正在崛起的第三金属。 与其他材料相比,钛具有下列优异的性能。 (1)钛的密度小、强度高、比强度大。钛的密度为4.51g·cm-3,仅为铁的57.4%,铜的50.7%,不到铝的两倍,强度却比铝大三倍。钛合金的比强度是常用工业合金中最大的,为不锈钢的3.5倍,是铝合金的1.3倍,是镁合金的1.7倍,所以钛是航空航天工业必不可少的结构材料。 (2)耐蚀性能优异。由于钛能在表面形成致密的钝性氧化膜,所以钛在海水、湿氯气、亚氯酸盐及次氯酸盐溶液、硝酸、铬酸、金属氯化物、硫化物、除草酸和大于10%的甲酸外的有机酸、5%以下的硫酸、盐酸、磷酸等很多腐蚀性介质中不被腐蚀。钛在海水中可保持5年不锈蚀,耐蚀性远远超过不锈钢(3)耐热性能好。钛的耐热性能好,通常铝在150℃,不锈钢在310℃即失去了原有的较高的力学性能,而钛合金在500℃左右仍保持良好的力学性能,有些钛合金的工作温度可高达600℃。 (4)低温性能好。某些钛合金的强度随温度的降低而提高,但仍然保持很好的塑性,在–200℃下仍有较好的延性及韧性。 (5)钛具有良好的生物相容性。医疗用钛合金骨骼、关节,血管支架等等,具有不锈钢等所没有的对人体无排异性的性能[5]。 (6)钛具有无磁性。在20粤斯特条件下,其磁导率为1.00005~1.0001H·m-1,在很强大的磁场中也不会被磁化。 (7)除此之外,钛还有很多其他优异性能,如吸氢功能,能与铌合成超导合金,与镍合成记忆合金等。 钛的主要相及其结构 纯钛在固态下有两种同素异构体,常温下以密排六方(hcp)晶格结构存在,称之为α钛。hcp单元晶胞如图1-1左图所示,在室温下点阵常数a=0.295nm,c=0.468nm。纯钛的c/a=1.587,小于理想hcp结构的c/a值1.663,(0001)是称为底面(basal plane),为密排面;(1010)称为棱柱面,(1011)称为棱锥面;a1、a2、a3轴是密排方向,即<1120>方向。当温度升到882.5℃以上时,变成体心立方(bcc)晶格结构,称之为β钛。bcc单元晶胞如图1-1右图所示,(110)为密排面,密排方向为<111>,900℃时,点阵常数a=0.332nm。

钛合金是什么材料

钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。 合金元素根据它们对相变温度的影响可分为三类: ①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提 高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。 ②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、 锰、铜、铁、硅等。 ③对相变温度影响不大的元素为中性元素,有锆、锡等。 氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。 通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。 性能 编辑 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/立方厘米,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 强度高 钛合金的密度一般在4.51g/cm3左右, 仅为钢的60%,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零部件。飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。 热强度高 使用温度比铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。 抗蚀性好

镍钛合金内支架的基本知识

镍钛合金内支架的基本知识 .1.支架的分类 镍钛合金内支架按表面状态可分为裸支架、药物包被支架、聚合物包被支架、金属涂层支架、放射性支架和人造血管覆盖支架;按支架的植入部分为食管支架、肠道支架、气管支架、胆道支架、尿道支架、外周血管支架、心内血管支架等;按支架植入时间分为永久支架与临时支架。 镍钛合金内支架按其设计可分为五种: (a)弯折丝支架(bent wire)。这种支架通过弯折圆丝或扁丝成重复的正弦花样,卷成螺旋形环,缝合、压榨或焊接到一起。改变正弦几何,重复单元的数量、丝的几何尺寸、环与环之间的连接方式都可以改变支架的性能。这类支架通常提供中等的柔韧性、径向环强度和最少的尺寸缩短。 (b)编织丝支架(braid wire)。这种支架通过在芯棒上编织多股圆丝或扁丝而成。丝在芯棒上形成螺旋线,其中顺时针方向的丝与逆时针方向的丝编结在一起。改变丝的股数、丝的几何尺寸、编织花样和编织角度都可以改变支架的性能。这类支架通常提供良好的柔韧性、较低的径向环强度和较大的尺寸缩短。 (c)线圈丝支架(coild wire)。这种支架通过在芯棒上螺旋渐进缠绕单股或多股圆丝或扁丝而成。改变丝的数量、丝的几何尺寸、线圈间距都可以改变支架的性能。这类支架通常提供良好的柔韧性、较高的径向环强度(在一些加载情况下线圈易于坍塌)和较大的尺寸缩短。

(d)激光切割管支架(laser cut tube)。这种支架通过在一小直径的管材上激光切割出复杂花样排列的“单胞”,这些“单胞”被扩展到需要的几何尺寸,加热定型而成。复杂的单胞花样要求管材的直径尽可能与需要的支架几何尺寸接近,以保证扩展过程中不会损失设计的花样特征。改变管壁厚度、单胞的花样几何、单胞间的连接性都可以改变支架的性能。这类支架通常提供中等的柔韧性、较高的径向强度和较小或没有尺寸缩短。 (e)激光切割板支架(laser cut sheet)。这种支架通过在板材上激光切割出复杂花样排列的“单胞”,卷成管状,焊接或压榨到一起。这种支架的最终尺寸只受板材的宽度限制、单胞的花样几何、单胞间的连接性都可以改变支架的性能。这类支架通常提供中等的柔韧性、较高的径向/环强度和较小或没有尺寸缩短。 镍钛合金支架按其相变温度分为三类: (1)A f温度在体温附近的自膨胀型支架。冷的状态下植入,体温下超弹性恢复形状。 (2)A f温度在体温以上的自膨胀型支架。体温下植入,形状不发生变化,加热到体温以上温度,发生形状恢复。 (3)A f温度在体温以上的球囊扩张型支架。体温下植入,此时镍钛合金处于马氏体状态,利用球囊扩张使得支架直径变大。在需要撤除支架时,局部加热支架,发生形状缩小,箍紧在鞘管上,取出体外。

功能材料论文形状记忆合金

Ti-Ni形状记忆合金的制备、性能及应用 摘要:Ti-Ni形状记忆合金是现代一种性能优良的新型功能材料,本文主要介绍了其简介、制备方法、主要性能和主要的应用及发展前景。 形状记忆合金的发展背景:在研究Ti-Ni合金时发现:原来弯曲的合金丝被拉直后,当温度升高到一定值时,它有恢复到原来弯曲的形状。人们把这种现象称为形状记忆效应(Shape Memory Effect)简称SME,具有形状记忆效应的金属称为形状记忆合金(SMA)。形状记忆现象的发现可以追溯到1932年,美国在研究Al-Cd合金时观察到马氏体随温度变化而消长;1938年美国哈佛大学和麻省理工学院发现Cu-Sn,Cu-Zn,合金在马氏体相变中的形状记忆效应;同年前苏联对Cu-Al-Ni,Cu-Sn合金的形状记忆机理进行了研究;1951-1953年,美国分别在Au-Cd,In-Ti,合金中观察到形状记忆效应。知道60年代初,形状记忆效应制备看作是一种现象,Ti-Ni合金形状记忆效应发现后,美国研制了最初实用的形状记忆合金“Nitinol”。 形状记忆合金SMA(Shape Memory Alloy)是指具有一定的初始形状,经形变并固定成另一种形状后,通过热、光、电等物理刺激或者化学刺激处理又可以恢复其初始形状的一种新型金属功能材料。由于这种合金具有独特的形状记忆效应和超弹性效应,可以制作小巧玲珑、高自动化、性能可靠的元器件,目前已被广泛应用于电子仪器、汽车工业、医疗器械空间技术、能源开发等领域。 形状记忆效应:形状记忆效应有三种形式。 第一种称为单向状,再重新加热到As以上,马氏体发生逆转变,温度升高至Af 点,马氏体完全消失,材料完全恢复母相形状。一般形状记忆效应,即将母相冷却或加应力,使之发生马氏体相变,然后是马氏体发生塑性变形,改变其形没有特殊说明,形状记忆效应都是指这种单向形状记忆效应。 有些形状记忆合金在加热发生马氏体逆转变时,对母相有记忆效应;当从母相再次冷却为马氏体时,还回复马氏体形状,这种现象称为双向形状记忆效应。 第三种情况是在Ti-Ni合金系发现的,在冷热循环过程中,形状回复到与母相完全相反的形状,称为全方位形状记忆效应。 目前已发现的形状记忆合金种类很多,可分为镍钛系、铜系、铁系合金三大类。另外,近年发现一些聚合物和陶瓷材料也具有形状记忆功能,其形状记忆原理与合金不同,还有待于进一步研究。目前已实用的形状记忆材料只有Ti—Ni合金和铜系形状记忆合金。 Ti-Ni合金的制备 1铸造 Ti-Ni合金是高温延展性良好的材料。当温度超过400℃后.拉伸强度下降,与此相反,延伸率迅速增加。可见.如果温度范围定得合理.Ti-Ni合金无论锤锻、压力机上锻造或径向锻造都是比较容易进行的。实践表明锻造温度不宜高于900℃.否则合金表面将剧烈氧化而产生Ti-Ni—Ti4Nb2低熔点混合物相。过是间隙氧污染物质,具有脆化合金的作用。另一方面温度分布不宜低于750℃,否则材料的变形抗力增大.缺口敏感性突出,常易造成撕裂性质的破坏.使废品率增加。因此,锻造温度范围为750~900℃。铸锭锻造前需经850℃、l2h均匀退火.然后.机加工去表面氧化皮和冒口,再锻成棒料。 2热挤压 从Ti-Ni的高温拉伸性能来看.Ti-Ni合金适宜挤压。但不能进行冷挤压。Rozner 在0.7Tm(Tm为金属的熔点)温度成功的进行了Ti-Ni的热挤压。铸锭经机加工后用碳钢

钛合金的加工与应用资料

钛合金的加工与应用 [摘要]钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。 [关键词]钛合金,加工性能,应用领域 钛是一种化学元素,化学符号Ti,原子序数22,在化学元素周期表中位于第4周期、第IVB族。是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽,耐湿氯气腐蚀。 钛被认为是一种稀有金属,这是由于在自然界中其存在分散并难于提取。但其相对丰富,在所有元素中居第十位。钛的矿石主要有钛铁矿及金红石,广布于地壳及岩石圈之中。钛亦同时存在于几乎所有生物、岩石、水体及土壤中。从主要矿石中萃取出钛需要用到克罗尔法或亨特法。钛最常见的化合物是二氧化钛,可用于制造白色颜料。其他化合物还包括四氯化钛(TiCl )(作催化剂和用 4 )(用于催化聚丙烯的生产)。 于制造烟幕作空中掩护)及三氯化钛(TiCl 3 一、钛合金的结构原理 钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。 合金元素根据它们对相变温度的影响可分为三类: ①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。 ②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。

相关文档
最新文档