最新研究生数值分析考试试题
研究生《数值分析》试卷

研究生“数值分析”试题一, 填空(20分)1,n +1个互异节点插值型数值求积公式的代数精度为________次,最高为________次。
2,SOR 方法收敛的必要条件:松弛因子ω满足条件_________。
3,对于插值型求积公式∑⎰=-≈nk k k x f A dx x f 011)()(,其节点),,1,0(n k x k =是高斯点的充分必要条件是_________。
4,设)(ij a A =为n ×n 矩阵,则1A =________,∞A =________。
5,设解方程组b Ax =的迭代法为d Bx x k k +=+1,则迭代收敛的充分必要条件是________。
6,判断下面的函数是否为三次样条函数(填是或否)(1)211001)1(0)(233≤≤<≤<≤⎪⎩⎪⎨⎧-+=x x x x x x x f - (2)⎩⎨⎧≤≤<≤-++++=100112212)(33x x x x x x x f二,(10分)在22-≤≤-x 上给出x e x f -=)(等距节点函数运用二次插值求x e -的近似值,要使误差不超过610-,问使用函数表的步长应取多大?三,(10分)四,(10分)设)(x f 在[]30,x x 上有三阶连续导数,且3210x x x x <<<,试作一个次数不高于四次的多项式)(x p ,满足条件)()(j j x f x p ==j 0,1,2,3)(')('11x f x p = 推导它的余项)()()(x p x f x E -=的表达式五,(10分)试用Romberg (龙贝格)方法,计算积分⎰311dx x,并精确到小数点后4位。
六,(10分)利用数值积分的Simpson (辛甫生)公式,导出公式)''4'(31111-+-++++=n n n n n y y y h y y 并指出次方法的阶七,(10分)设0)(=x f 的单根α,)(x F x =是0)(=x f 的等价方程,则:)(x F 可表为)()()(x f x m x x F -=证明: 当1)]('[)(-≠ααf m 时,)(x F 是一阶的。
研究生数值分析考试

工科研究生《数值分析》复习练习一.填空(共4分,每空44分)(1)设i x i =(n i ,,2,1,0⋯=)插值结点,)(x l i 是相应的n 次Lagrange 插值基函数,则()ni i l x ==∑(),=∑=ni i i x l x 0)(().(2)用简单迭代法求方程3()10f x x x =−−=的正实根,迭代格式()至少是二阶收敛的。
(3)求解非线性方程01=−x xe 的牛顿迭代公式是()(4)在所有首项系数为1的n 次多项式中,首项系数为1的n 次()多项式在[-1,1]上与零的平方逼近误差最小。
(5)设211314122A −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,则1||||A =(),||||A ∞=().(6)32()272f x x x =−+,则[1,2,3,4]f =(),[1,1,1]f =()(7)n 次Chebyshev 多项式在[-1,1]上的零点为()(8)插值型求积公式0()()nbk k ak A f x f x dx =≈∑∫至少具有()次代数精度,求积系数之和0nk k A ==∑(),而Gauss 求积公式至少具有()次代数精度。
(9)初值问题'24,(0)2,y y x y =−−=,则显式Euler 格式,隐式Euler 格式和梯形格式分别为(),(),()。
(10)已知数据对),,2,1)(,(n k y x k k ⋯=,用直线c bx ax y ++=2拟合这n 个点,则参数c b a ,,满足的法方程组是()(11)第一种幂法迭代格式为()二(10分)求一个次数不高于4次的代数多项式()p x ,使它满足(0)'(0)0,(1)'(1)1,(2)1p p p p p =====,并写出其余项表达式。
(利用Newton 插值公式,制作带重节点的差商表)三(10分)证明:区间[a,b]上带权()x ρ的正交多项式()n g x 的零点都是实数,相异的,且全部落在开区间(,)a b内部。
研究生数值分析试题

一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分)
1、一般用高斯消元法解线性代数方程组要采用的技术是(
)
(1)调换方程位置; (2)选主元; (3)直接求解; (4)化简方程组。
⎛ 2 2 3⎞ ⎛ 1 0 0 ⎞⎛2 2 3⎞
2、设矩阵
A
为初值迭代一步。
四、(12 分)应用牛顿法于方程
f (x) =
xn
−a
Байду номын сангаас
=
0和
f (x) =1−
a xn
= 0 ,分别导出求 n
a
的
迭代公式,并求极限 lim n a − xk+1 。 k→∞ ( n a − xk )2
五 、 ( 12 ) 方 程 x3 − 6 x − 8 = 0 在 x = 3 附 近 有 根 , 把 方 程 写 成 三 种 不 同 的 等 价 形 式
零, A = LU 为 Doolitte 分解,则上三角矩阵 U 的上半带宽为
。
5、设对称正定矩阵
A
=
(aij
)∈
Rn×n , a11
≠
0
,经过一次
Gauss
消元得到形如
A
=
⎛ ⎜ ⎝
a11 0
∗⎞
A1
⎟ ⎠
的
矩阵,则 A1 是
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤
3、设矩阵 A ∈ Rn×n , Q ∈ Rn×n ,且 QT Q = E ,则下列关系式不成立的是(
)
(1) A = AQ ;(2) QA = A ;(3) Qx = x ,其中 x ∈ Rn ;
东华大学研究生数值分析试题

东华大学研究生数值分析试题(笔试部分)班级 _______ 学号 ________ 姓名 ___________ 得分 _________ 一、 由f(x) =3x 在0,1,-1的值分别按不同要求计算3 3的数值解 (计算过程均保留2位小数,其中“ 1” “2”需估计结果有几位有效数字) 1、1、按f(x)在0,1,-1处的值由分段线性插值计算; 2、2、按f(x)在0,1处的值及f(0)9n3“.10由二阶Hermite 插值计算;3、3、按f (x)在0,1, -1处的值由直线拟合计算;1J3x xdx 茫 0.83 4、4、由[-1,1]上一次平方逼近多项式计算(取 」 )的二阶导数且满足P( 2)=°;22、由“ 1” 当 f(x)满足 f(1)二 P(1),f(2) =P(2),f '(1) = P '(1)时求的数 值解及对应余项1f (x)dx : Af (0) Bf (1) Cf ' (1)bf (x) dx2、由(*)导出解a的数值积分公式并由此公式将[0,1] n 等分导出解1f(x)dx的复化求积公式并求 Cond ::(A);2、由三角分解A=LU 解AX=B ,、1、求a 及不超过二次多项式P(x)使S(x)0_x_ 1仁x±2具有连续三、1、求A ,B ,C 使 度;(*)至少有2次代数精四、1、由选主元Gauss 消去法解AX=B ,其中z-3 0 0 ' \ ,A = 1 1-2,B = 1「-21』A 二其中 并写出对应“消去法”的3 | 2五、 1、讨论求X 3 -3x 2 •仁0在[2.5,3]上根的迭代格式X k 1「3X k - 1(**)的合 理性并由迭代收敛定理讨论(**)的收敛性;2、写出(** )的“迭代一加速”格式并讨论加速效果。
^y = f (x, y )六、 1、求a i,a2使解 ,&0)=丫0 ( *** )的显式差分格式y n+ = yn +h (aK 七2心)K = f (X n , y n ) 2 =f (Xn+襄丫广昨)Z 二f X 哼几+爭K )有二阶精度;2、写出“ 1”中格式与隐式差分格式y n^ynl[f (Xn,y n )f (xn 1,yn1)]联合解(*** )的“预报一较正”格式1"a "■b 0、1,L =,U =,B =3 4丿<0 1<cJ 丿“回代”过程。
数值分析(研究生)试卷

华中科技大学研究生课程考试试卷课程名称:_______________________ 课程类别考核形式数值分析学生类别______________考试日期______________学生所在院系_______________ □公共课□专业课√□开卷□√闭卷2009.5.6学号__________________姓名__________________任课教师___________________ 一、填空题(每空2分,共20分) 1. 为避免有效数字的损失,应将,1,ln )1ln(>>-+x x x 改写为_____________。
2. 设其三阶差商,200720082009)(3++=x x x f =]3,2,1,0[f _____________,四阶差商____________。
=]4,3,2,1,0[f 3. 设是上带权b x x x +-=22)(?]1,0[1)(=x ρ的正交多项式,则=b ___________。
4. 对于常微分方程数值解,若某算法的局部截断误差为,则称该算法有_____________阶精度;显式欧拉法有____________阶精度。
)O(h1p+5. 设是的二重根。
*x 0)(=x f )(x f ′′在邻近连续,则用迭代公式________________*x 求此根的近似值所产生的序列至少具有二阶收敛性。
6. ,当a 满足条件___________时,A 可作LU 分解,当a 满足条件__________时,必有分解式,这种分解唯一吗? _____________ ??????+=1221a A TL L A ?=二、(10分)函数在上有三阶连续导数,作一个不高于二次的多项式满足)(x f ],[10x x )(x P .)()(),()(),()(110000x f x P x f x p x f x P =′=′=证明其唯一性,并写出它的余项的表达式。
研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。
(即Gauss 型求积公式)2. 已知数值求积公式为311()[(1)4(2)(3)]3f x dx f f f ≈++⎰ ,则其代数精度为______。
3. 数值积分公式1'12()[(1)8(0)(1)]9f x dx f f f -≈-++⎰的代数精度为_________。
4. 要使求积公式11101()(0)()4f x dx f A f x ≈+⎰具有2次代数精度,则1x =___,1A =___。
5. 在Newton-Cotes 求积公式:()()()()nbn i i a i f x dx b a C f x =≈-∑⎰中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。
()8()7()10()6A n B n C n D n ≥≥≥≥6. 若用复化梯形公式计算10x e dx ⎰,要求误差不超过610-,利用余项公式估计,至少用______个求积节点。
7. 对于Gauss 型求积公式31()()()bk k a k f x x dx A f x ρ=≈∑⎰,其中()x ρ为权函数,下列说法错误的是_________。
(A )该求积公式一定是稳定的; (B )31()k k k A f x b a ==-∑;(C )该求积公式的代数精度为5;(D )2(35)()()0ba x x x x dx ωρ-=⎰ ,其中31()()k k x x x ω==∏-。
8. 0{()}k k x ϕ∞=是区间[0,1]上权函数()x x ρ=的最高系数为1的正交多项式族,其中0()1x ϕ=,则140()_______x x dx ϕ=⎰。
9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度:10101()()(1)2xf x dx A f A f ≈+⎰10. 数值积分公式形如1()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++⎰(1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4()[0,1]f x C ∈,推导余项公式10()()()R x xf x dx S x =-⎰,并估计误差。
060708研究生数值分析试卷(A).doc
武汉大学2006〜2007学年第一学期硕士研究生期末考试试题(A 卷)科H 名称:数值分析 学生所在院: 学号: 姓名:注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、(12分)设方程组Ax = 0为■1、 (1\J 1>(1)用Doolittle 分解法求解方程组;(2) 求矩阵A 的条件数Cwd(A)g 二、(12分)设A 为n 阶对称正定矩阵,A的n 个特征值为山 < 心< .•. V 九,为 求解方程组Ax = b,建立迭代格式求出常数s 的取 值范围,使迭代格式收敛。
三、(12分)已知数据试用二次多项式p ⑴=ax 1 2+hx + c 拟合这些数据。
四、(14分)已知y = /(x)的数据如下:取得最小值。
六、 (12)确定常数片,使求积公式1求f (x)的Hermite 插值多项式W 3(x);2 为求\\f{x)dx 的值,采用算法:•⑴必:=「久3)击+ R 试导出截断误差R五、(12分)确定常数。
,b 的值,使积分r I.2I(a,b) = J 0(czx + /?-/) dxc 2^f{x)dx a A/(0) + A2/(l) + A3/(2)的代数精度尽可能高,并问是否是Gauss型公式。
七、(12分)设伊⑴导数连续,迭代格式x M =(p{x k)—阶局部收敛到点x*。
对于常数人,构造新的迭代格式:A 1 ,、队=一从+ 一心)1 +2 1 + 人问如何选取人,使新迭代格式有更高的收敛阶,并问是儿阶收敛。
八、(14分)对于下面求解常微分方程初值问题」方= 的单步法:Mo) = JoA)'〃+】=儿 + hk2< k、=(1)验证它是二阶方法;(2)确定此单步法的绝对稳定区域。
武汉大学2007~2008学年第一学期硕士研究生期末考试试题科目名称:数值分析学生所在院:学号:姓名:注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
数值分析试题及答案
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
武汉大学研究生课程数值分析期末考试
武汉大学研究生课程《数值分析》半开卷考试资料
姓名: 学号: 第 1 章 绪论 1.1 误差的基本概念 绝对误差:∆ ������ = ������ ∗ − ������ ; ∆f(x) = ������������(������) = ������ ′ (������)������������ ; 绝对误差:∆������ ������ = 有效数字:������ = (0. ������1 ������2 … ������������ × 10−������ ) × 10������ ,则有 n 位有效数字。 1 1 误差限:|∆ ������| = |������ ∗ − ������| ≤ × 10������−������ ; |∆������ ������| ≤ × 10−(������−1)
|������ ∗ −������������+1 | ������→∞ |������ ∗ −������������|������
= C (对于收敛的迭代格式,当|������′(������)| = 0,则是线性收敛)
������(������ )
������
若碰到求收敛阶:迭代公式是个方程,准确解带进去是个方程,两方程相减,然后适当变形利用微分中值定理。 3.3 Newton 法 (二阶收敛):������������+1 = ������������ − ������′(������������ ) ; 假设������ ∗ 是 f(x) = 0 的单根, f(x)在������ ∗ 的邻域内具有连续的二阶导数且 f ′(������ ∗ ) ≠ 0 , 则牛顿公式具有局部收敛性;若 f′′(������ ∗ ) ≠ 0 且������0 ≠ ������ ∗ , 则序列{������������ }是平方收敛。 第 4 章 矩阵特征值特征向量 (略) Householder 变换(H=I-2wwT) 、 Givens 变换、幂法 第 5 章 插值与逼近 5.1 插值多项式的唯一性 Pn (x) = ������0 + ������1 ������ + ������2 ������ 2 + ⋯ + ������������ ������ ������ ; |������| = ∏(������������ − ������������ ) ≠ 0
硕士研究生数学分析真题试卷
硕士研究生数学分析真题试卷一、选择题(每小题 5 分,共 30 分)1、函数$f(x) =\frac{x^2 1}{x 1}$在$x = 1$ 处()A 连续B 可导C 有极限但不连续D 以上都不对2、设函数$f(x)$在$a,b$ 上连续,在$(a,b)$内可导,且$f(a) = f(b)$,则在$(a,b)$内()A 至少存在一点$\xi$,使得$f'(\xi) = 0$B 一定不存在点$\xi$,使得$f'(\xi) = 0$C 恰存在一点$\xi$,使得$f'(\xi) = 0$D 不一定存在点$\xi$,使得$f'(\xi) = 0$3、下列级数收敛的是()A $\sum_{n=1}^{\infty} \frac{1}{n}$B $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ C $\sum_{n=1}^{\infty}\frac{1}{n^2}$ D $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$4、函数$f(x) = x^3 3x^2 + 2$ 的单调递增区间是()A $(\infty, 0)$B $(0, 2)$C $(2, +\infty)$D $(\infty, 0) \cup (2, +\infty)$5、设函数$f(x)$具有二阶连续导数,且$f(0) = 0$,$f'(0)= 1$,$f''(0) = 2$,则$\lim_{x \to 0} \frac{f(x) x}{x^2}$等于()A 0B 1C 2D 不存在6、曲线$y =\ln x$ 上与直线$x + y = 1$ 垂直的切线方程为()A $y = x 1$B $y = x + 1$C $y = x + 1$D $y = x 1$二、填空题(每小题 5 分,共 30 分)1、极限$\lim_{x \to 0} \frac{\sin 3x}{x}$=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年研究生数值分析考试试题
2004年非数学类各专业研究生《数值分析》考试试题
姓名 学院 专业 分数
1. 当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶
段? 在哪些阶段将有哪些误差产生?
2. 已知函数)(x f 在],[b a 上的各离散点: b x x x x x a n n =<<<<<=-1210
处的函数值 )(i x f , n i ,,2,1,0 =.
1) 构造)(x f 在],[b a 上的分段线性插值多项式.
2) 假定)(x f 在],[b a 上有连续的2阶导数, 试估计以上分段插值的误差.
1) .
3. 设],[2
b a L ρ是],[b a 上的带权内积空间,)(x ρ是权函数. 又设
)(,),(),(21x x x n ϕϕϕ 是],[2
b a L ρ中一组线性无关的函数, 并记由它
们所有的线性组合所组成的函数集合为)}(,),(),({21x x x Span X n ϕϕϕ =.
对任意的函数],[)(2
b a L x f ρ∈, 求)(x f 在],[b a 中的最佳平方逼近.
4. 试给出],[b a 上复化梯形求积公式, 并描述其自适应算法.
5. 试分别给出求解线性代数方程组B AX =的Jacobi 迭代、Gauss —Seidle 迭
代及超松弛迭代格式。
6)试用有限差分方法求解2阶常微分方程边值问题:
,)),
(),(,()(b x a x y x y x f x y ≤≤'='' ,)()(,)()(1010ββαα
=+'=-'b y b y a y a y
.0,0000
,0>+≥βαβα。