马尔科夫链模型的应用研究
马尔可夫链理论及其在经济管理领域的应用研究

马尔可夫链理论及其在经济管理领域的应用研究马尔可夫链理论及其在经济管理领域的应用研究一、绪论马尔可夫链是20世纪初由俄罗斯数学家马尔可夫提出的一种数学模型,它在经济管理领域的应用研究中起着重要的作用。
马尔可夫链理论可以用来预测未来状态的概率,并通过对现有状态和转移概率的分析,帮助决策者做出科学合理的决策。
本文将探讨马尔可夫链理论的基本原理及其在经济管理领域的应用研究。
二、马尔可夫链的基本原理马尔可夫链是一种随机过程,它具有“无记忆”的特点,即未来状态只与当前状态有关,与过去状态无关。
马尔可夫链由状态空间、初始状态和转移概率矩阵组成。
1. 状态空间状态空间是指所有可能的状态的集合。
在经济管理领域的研究中,状态可以表示为市场行情、公司利润、经济指标等。
根据实际问题,选择合适的状态空间是影响马尔可夫链分析效果的关键。
2. 初始状态初始状态是指马尔可夫链开始的状态。
它通常由观察到的实际数据确定,可以是某个具体的状态,也可以是一组状态的概率分布。
初始状态的选取与经济管理问题的实际情况密切相关,需要根据具体问题进行合理选择。
3. 转移概率矩阵转移概率矩阵是马尔可夫链的核心内容,它描述了从一个状态转移到另一个状态的概率。
转移概率矩阵的元素分布在0和1之间,表示从一个状态到另一个状态的转移概率,且每行概率之和为1。
转移概率矩阵是根据历史数据进行建模得到的,可以通过最大似然估计等方法计算得到。
三、马尔可夫链在经济管理中的应用研究马尔可夫链理论在经济管理领域的应用研究涵盖了多个方面,包括市场预测、风险评估、经济政策制定等。
1. 市场预测马尔可夫链可以用来预测市场的未来走势。
通过分析历史市场数据,建立马尔可夫链模型,并根据当前市场状态和转移概率矩阵,可以计算出未来市场状态的概率。
这对投资者和决策者来说是有益的,可以帮助他们在投资和决策过程中做出更加准确的判断。
2. 风险评估马尔可夫链还可以用来评估风险。
通过构建风险状态空间和相应的转移概率矩阵,可以计算不同风险状态之间的转移概率。
马尔可夫链的均匀化理论及应用

马尔可夫链的均匀化理论及应用马尔可夫链是一种随机过程模型,它具有“无记忆”的特点,即下一状态只与当前状态有关,与过去的状态无关。
由于其简洁的数学形式和广泛的应用领域,马尔可夫链吸引了众多研究者的关注。
本文将介绍马尔可夫链的均匀化理论以及其在各个领域的应用。
一、马尔可夫链的均匀化理论马尔可夫链的均匀化理论是对马尔可夫链进行状态平衡分析的方法。
均匀化理论旨在寻找马尔可夫链的平稳分布,即在长时间的演化后,链式系统中状态的分布趋于稳定。
在实际应用中,均匀化理论提供了对系统的稳定性、收敛速度等重要指标的分析手段。
1. 马尔可夫链的平稳分布马尔可夫链的平稳分布指的是在马尔可夫链的状态转移过程中,状态的分布呈现稳定的特征。
这种稳定性由平稳分布来描述,即当状态经过足够长的时间演化后,状态分布不再发生改变。
2. 马尔可夫链的细致平衡条件马尔可夫链的细致平衡条件是均匀化理论的基础,它表明链式系统中每对状态的转移概率与从目标状态返回到原状态的转移概率之比必须等于两个状态的平稳分布之比。
3. 马尔可夫链的时间平衡方程马尔可夫链的时间平衡方程描述了状态转移概率与平稳分布之间的关系。
通过求解时间平衡方程,可以得到马尔可夫链的平稳分布,并进一步分析系统的稳定性和性能指标。
二、马尔可夫链在实际应用中的应用马尔可夫链作为一种强大的数学工具,被广泛应用于多个领域。
以下是一些典型的应用案例:1. 自然语言处理马尔可夫链在自然语言处理中被用于语言模型的建立和文本生成。
通过分析语料库中的马尔可夫链特性,可以实现自动的文本生成和语言生成。
2. 金融风险管理马尔可夫链可以用于金融领域的风险管理和投资组合优化。
基于历史数据的马尔可夫链模型可以帮助分析市场趋势和资产价格的演化规律,提供决策支持。
3. 生物信息学马尔可夫链在生物信息学中应用广泛,例如用于DNA序列分析和蛋白质结构预测。
通过马尔可夫链模型,可以揭示基因序列和蛋白质结构之间的关联性和演化规律。
马尔可夫链理论及其在经济管理领域的应用研究

马尔可夫链理论及其在经济管理领域的应用研究一、本文概述本文旨在深入探索马尔可夫链理论及其在经济管理领域的应用研究。
马尔可夫链,作为一种重要的随机过程,具有描述事物状态转移特性的独特优势,广泛应用于众多领域。
本文首先将对马尔可夫链的基本理论进行系统的梳理和阐述,包括马尔可夫链的定义、性质、分类以及常见的求解方法。
在此基础上,本文将重点分析马尔可夫链在经济管理领域的应用,包括但不限于风险管理、市场预测、库存管理、决策优化等方面。
通过实例分析和实证研究,本文将展示马尔可夫链理论在经济管理实践中的有效性,为相关领域的研究和实践提供新的视角和思路。
本文还将对马尔可夫链理论的应用前景进行展望,以期推动该理论在经济管理领域的进一步发展和应用。
二、马尔可夫链理论基础马尔可夫链(Markov Chn)是一种数学统计模型,它描述了一个随机过程在给定现在状态的情况下,其未来状态的演变不依赖于过去状态。
这种特性使得马尔可夫链在多个领域,包括经济管理领域,具有广泛的应用。
马尔可夫链的基本假设是“未来只与现在有关”,也就是说,给定现在的状态,过去的状态对未来的影响就可以忽略不计。
这个假设大大简化了复杂系统的分析,使得我们能够通过研究当前状态来预测未来的可能变化。
马尔可夫链由一系列状态和转移概率组成。
状态是随机过程所处的位置或条件,而转移概率则是从一个状态转移到另一个状态的可能性。
这些转移概率通常表示为状态转移矩阵,它反映了随机过程在任意两个状态之间的转移规律。
马尔可夫链的一个重要性质是它具有平稳性,也就是说,无论初始状态是什么,经过足够长的时间后,状态转移的概率分布将趋于稳定,这个稳定的分布被称为平稳分布。
这个性质使得我们可以通过分析平稳分布来预测马尔可夫链的长期行为。
马尔可夫链的另一重要性质是可遍历性,它表示从任意一个状态出发,经过有限步的转移,都有可能到达其他任何一个状态。
这个性质保证了马尔可夫链的遍历性,使得我们可以通过观察和分析马尔可夫链的行为来推断其整体特性。
马尔可夫链模型在金融市场中的应用

马尔可夫链模型在金融市场中的应用马尔可夫链模型是一种重要的概率模型,在许多领域都有广泛的应用。
在金融市场中,马尔可夫链模型也被广泛运用,它能够帮助分析市场的走势和预测未来的发展。
本文将探讨马尔可夫链模型在金融市场中的应用,并介绍其原理和实际操作。
一、马尔可夫链模型的原理马尔可夫链模型是一种基于状态转移的概率模型。
它假设未来的状态只与当前的状态有关,与过去的状态无关。
在金融市场中,我们可以将各种不同的市场状态看作是一种状态,通过观察历史数据来判断未来市场状态的转移概率,从而进行预测和分析。
二、马尔可夫链模型在金融市场中的应用1. 股票市场预测马尔可夫链模型可以帮助分析股票市场的走势。
通过建立股票市场不同状态之间的转移矩阵,我们可以预测出未来市场状态的概率分布。
这有助于投资者制定投资策略和决策,提高投资收益。
2. 期货市场分析在期货市场中,马尔可夫链模型可以帮助分析不同合约之间的关系。
通过观察历史数据,我们可以建立各个期货合约状态之间的转移矩阵,从而预测未来合约之间的关系和价格走势。
这对期货交易者来说非常重要,可以帮助他们做出更加明智的交易决策。
3. 外汇市场预测外汇市场的波动性较大,马尔可夫链模型可以帮助我们预测汇率的走势。
通过建立不同汇率状态之间的转移矩阵,我们可以分析未来汇率变动的可能性,指导外汇交易决策。
4. 信用评级在金融市场中,信用评级是非常重要的一项工作。
马尔可夫链模型可以用于信用评级的建模和分析。
通过观察不同借款人状态之间的转移矩阵,我们可以预测借款人信用等级的转移情况,并评估其信用违约的可能性。
三、使用马尔可夫链模型的注意事项在应用马尔可夫链模型时,有一些注意事项需要注意:1. 数据选择:选择合适的历史数据进行分析是非常关键的。
数据的准确性和全面性对模型的预测效果有着重要的影响。
同时,还需要注意数据的时间序列性,确保数据的连续性和可靠性。
2. 模型选择:马尔可夫链模型有多种变种,如一阶、高阶、隐马尔可夫模型等。
马尔可夫链模型在股票市场预测中的应用分析

马尔可夫链模型在股票市场预测中的应用分析随着现代经济的快速发展,股票市场成为了人们最为熟悉的金融市场之一。
在过去的几十年中,人们对于股票市场的研究越来越深入,不断有新的算法以及模型被引入到预测股票市场的研究中。
其中,马尔科夫链模型就是一种经典的预测模型,在股票市场预测中有着广泛的应用。
一、马尔科夫链模型的概念及工作原理马尔可夫链模型是指一种有限状态机模型,它满足马尔可夫性质,即下一个状态只与当前状态有关,与前面的状态无关。
在预测股票市场中,我们把股票市场的变化看作一个状态序列,每个状态都对应着一段时间内的股票市场状况。
根据这个状态序列,我们可以构建一个马尔科夫链模型。
马尔可夫链模型的工作原理非常简单。
首先,我们需要确定马尔科夫链的状态。
在预测股票市场中,通常我们将市场波动分为三种状态:上涨,下跌,持平。
接着,我们通过统计历史数据,计算出每种状态之间的转移概率,即从一个状态转移到另一个状态的概率。
最后,我们通过当前的状态,根据转移概率计算出下一个可能的状态,从而得到股票市场的未来走势。
二、马尔科夫链模型在股票市场预测中的应用马尔科夫链模型在股票市场预测中的应用有很多,其中最主要的是预测股票价格的涨跌趋势。
我们可以通过构建马尔科夫链模型,根据当前的市场状况和历史数据,计算出未来市场的走势。
通过对马尔科夫链模型进行优化和调整,可以让我们更加准确地预测股票价格的涨跌趋势,从而帮助投资者制定更加科学合理的投资计划。
除了股票价格的涨跌趋势,马尔科夫链模型在股票市场预测中还有其他的应用。
例如,我们可以使用马尔科夫链模型来预测股票市场的波动范围,从而制定更加具体的交易计划。
同时,马尔科夫链模型也可以帮助我们分析市场的风险和机会,并基于此制定出相应的投资策略。
三、马尔科夫链模型的优缺点尽管马尔科夫链模型在股票市场预测中有着广泛的应用,但是它还是存在一些优缺点。
首先,马尔科夫链模型的预测精度有一定的限制。
由于股票市场的变化过于复杂,所以马尔科夫链模型无法考虑所有相关的因素。
马尔可夫链模型及其应用领域

马尔可夫链模型及其应用领域马尔可夫链模型是一种描述随机过程的数学工具,它以马尔可夫性质为基础,描述了一个系统在不同状态之间转移的概率。
马尔可夫链模型在各个领域都有广泛的应用,包括自然科学、金融、计算机科学等。
本文将介绍马尔可夫链模型的基本原理,并探讨其在不同应用领域中的具体应用。
马尔可夫链模型的基本原理是基于马尔可夫性质。
马尔可夫性质指的是一个系统在给定当前状态下,其下一个状态只依赖于当前状态,而与过去的状态无关。
这种性质使得马尔可夫链模型成为处理许多问题的理想模型。
首先,我们来了解一下马尔可夫链模型的基本概念。
一个马尔可夫链由一组状态和状态转移矩阵组成。
状态表示系统可能处于的情况,状态转移矩阵描述了状态之间的转移概率。
状态转移矩阵是一个方阵,其元素表示从一个状态到另一个状态的转移概率。
在实际应用中,马尔可夫链模型可以用于解决许多问题。
其中一个常见的应用是预测未来状态。
根据当前的状态和状态转移矩阵,我们可以计算下一步系统处于不同状态的概率。
通过不断迭代计算,我们可以预测未来系统状态的分布。
另一个常见的应用是基于马尔可夫链模型的推荐系统。
推荐系统通过分析用户的历史行为,预测用户未来的喜好,并向其推荐相关的内容。
马尔可夫链模型可以用于建模用户的行为转移过程,推断用户下一步的行为。
在金融领域,马尔可夫链模型被广泛应用于股票市场的预测和风险评估。
通过分析历史股票价格的变化,我们可以建立一个马尔可夫链模型,来预测股票未来的涨跌趋势。
此外,马尔可夫链模型还被用于计算资产组合的风险价值,帮助投资者制定合理的投资策略。
在自然科学领域,马尔可夫链模型可以用于模拟复杂系统的行为。
例如,生态学家可以使用马尔可夫链模型来模拟生物群落的动态变化,预测不同物种的数量和分布。
此外,马尔可夫链模型还可以用于研究气象系统、生物化学反应等的动态特性。
另一个马尔可夫链模型的应用领域是自然语言处理。
马尔可夫链模型可以用于根据已有的语料库生成新的文本。
随机过程中的马尔可夫链应用
随机过程中的马尔可夫链应用马尔可夫链(Markov Chain)是一种数学模型,用于描述一系列随机事件之间的转移关系。
它是通过状态和概率转移矩阵来表示的。
在现实生活中,马尔可夫链在许多领域中都有广泛的应用,如经济学、生态学、计算机科学等。
本文将从几个具体的应用领域出发,介绍随机过程中马尔可夫链的应用。
一、经济学中的马尔可夫链应用在经济学中,马尔可夫链被广泛用于描述和分析经济系统的状态转移。
例如,在宏观经济中,可以将经济的不同状态定义为就业、通货膨胀和经济增长等。
通过构建一个状态空间和状态转移概率矩阵,可以模拟和预测不同状态之间的转移情况。
这对于政府制定经济政策和公司的投资决策具有重要意义。
二、生态学中的马尔可夫链应用在生态学研究中,马尔可夫链可以用于分析生态系统的演替和物种多样性变化。
生态系统中的物种组成和数量通常会发生变化,而马尔可夫链可以描述不同物种之间的种群转移。
通过观察和记录不同物种间的转移规律,可以更好地理解和预测生态系统的演替过程,为保护生物多样性提供科学依据。
三、计算机科学中的马尔可夫链应用在计算机科学中,马尔可夫链被广泛用于模拟和预测随机过程。
例如,在自然语言处理中,可以通过构建一个基于马尔可夫链的模型来生成自然语言的句子和文本。
通过学习和分析大量的文本数据,模型可以识别出不同单词之间的转移规律,从而生成具有连贯性和自然性的句子。
另外,在搜索引擎中,马尔可夫链也可以用于优化搜索结果的排序。
通过分析用户的搜索行为和点击模式,可以构建一个基于马尔可夫链的模型,预测用户在搜索结果中的点击概率。
这样,搜索引擎可以根据用户的偏好和行为,为其提供更加准确和个性化的搜索结果。
总结:以上介绍了随机过程中马尔可夫链的几个应用领域,包括经济学、生态学和计算机科学。
在这些领域中,马尔可夫链提供了一种有效的数学工具,用于模拟和预测随机事件的转移情况。
通过构建状态空间和转移概率矩阵,我们可以更好地理解和掌握系统的演变规律,并为相关领域的决策和优化提供科学依据。
马尔可夫链理论及其在经济管理领域的应用研究
3、生产计划和库存管理:通过马尔可夫链理论模拟产品的生产和销售过程, 优化生产计划和库存管理,提高企业的效率和利润。
方法
应用马尔可夫链理论解决实际问题通常包括以下步骤:
1、明确问题:首先需要明确所要解决的问题,并确定所要使用的马尔可夫 链模型。
2、数据收集:收集与问题相关的历史数据和信息,以便构建模型和进行预 测。
2、马尔可夫链在经济管理领域 的应用
在经济管理领域,马尔可夫链理论的应用主要包括以下几个方面:
1、金融市场预测:通过分析历史数据和市场趋势,利用马尔可夫链理论预 测未来金融市场的变化和波动。
2、消费者行为分析:利用马尔可夫链模型分析消费者购买行为的变化,为 企业制定更加精准的市场营销策略提供依据。
马尔可夫链理论及其在经济管 理领域的应用研究
01 引言
03 理论 05 案例
目录
02 背景 04 方法 06 less
目录
07 A -> B: 0.3
09 B -> A: 0.25
08 A -> C: 0.4 010 B -> C: 0.5
目录
011 C -> A: 0.15
013 结论
012 C -> B: 0.45 014 参考内容
引言
马尔可夫链理论是一种概率论方法,广泛应用于各个领域,特别是在经济管 理领域中。该理论主要研究随机过程中未来的状态只与当前状态有关,而与过去 状态无关的特性。本次演示将介绍马尔可夫链理论的背景、概念、在经济管理领 域的应用以及具体方法,并通过案例分析来阐述其实际应用。
背景
马尔可夫链理论起源于20世纪初,由俄罗斯数学家安德烈·马尔可夫提出。 该理论最初应用于气象学和统计学,随后逐渐扩展到经济管理领域。在经济管理 领域,马尔可夫链理论的应用范围广泛,如金融市场预测、消费者行为分析、生 产计划和库存管理等。
连续时间马尔可夫链的研究和应用
连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的转移仅依赖于当前状态,与过去状态无关。
在时间离散的情况下,马尔可夫链的数学理论已经十分成熟且应用广泛。
然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。
为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的焦点之一。
一、连续时间马尔可夫链的基本定义和性质连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的变化满足马尔可夫性质。
与离散时间马尔可夫链不同的是,在连续时间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续的时间区间内发生。
连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。
该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。
连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。
连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。
该矩阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。
连续时间马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。
二、连续时间马尔可夫链的稳定性与收敛性连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分布是否趋于稳定。
对于稳定的连续时间马尔可夫链,其状态转移概率在时间的演化中不再发生显著改变。
连续时间马尔可夫链的稳定性与其转移速率矩阵相关。
转移速率矩阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之间转移的速率。
只有当连续时间马尔可夫链的转移速率矩阵满足一定条件时,系统的状态分布才会趋于稳定。
在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的可靠性、资源分配方案以及市场行为等。
利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。
三、连续时间马尔可夫链的应用案例1. 金融市场预测连续时间马尔可夫链可以应用于金融市场的预测和风险评估。
统计学中的马尔可夫链模型及其在经济金融中的应用分析
统计学中的马尔可夫链模型及其在经济金融中的应用分析马尔可夫链是一种重要的统计模型,它在统计学中具有广泛的应用。
马尔可夫链模型以其简洁的数学形式和强大的预测能力而受到广泛关注。
本文将介绍马尔可夫链模型的基本概念和数学原理,并探讨其在经济金融领域中的应用。
马尔可夫链模型是一种随机过程模型,其基本思想是当前状态只与前一状态有关,与过去的状态无关。
马尔可夫链模型可以用状态转移矩阵来描述,该矩阵表示从一个状态转移到另一个状态的概率。
马尔可夫链模型可以分为离散和连续两种类型,其中离散型马尔可夫链模型适用于状态空间为有限集合的情况,而连续型马尔可夫链模型适用于状态空间为实数集合的情况。
马尔可夫链模型在经济金融领域中有着广泛的应用。
例如,在股票市场中,投资者常常希望能够预测未来的股票价格走势。
利用马尔可夫链模型,可以分析股票价格的状态转移规律,从而预测未来的价格走势。
另外,马尔可夫链模型还可以应用于宏观经济领域,如货币政策的制定和宏观经济指标的预测等。
马尔可夫链模型在经济金融领域的应用可以通过以下几个方面进行分析。
首先,马尔可夫链模型可以用于分析金融市场的波动性。
通过构建马尔可夫链模型,可以研究金融市场的波动性是否具有持续性,从而为投资者提供参考。
其次,马尔可夫链模型可以用于分析金融市场的风险传导。
通过构建马尔可夫链模型,可以研究金融市场中不同资产之间的关联程度,从而识别系统性风险和非系统性风险。
最后,马尔可夫链模型还可以用于分析金融市场的长期依赖性。
通过构建马尔可夫链模型,可以研究金融市场中的长期依赖性是否存在,从而为投资者提供长期投资策略。
除了在经济金融领域,马尔可夫链模型还在其他领域中有着广泛的应用。
例如,在自然语言处理领域,马尔可夫链模型可以用于分析文本的语法结构和语义关系。
在医学领域,马尔可夫链模型可以用于分析疾病的传播和治疗效果的评估。
在社交网络分析领域,马尔可夫链模型可以用于分析用户的行为模式和社交网络的演化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理预测与决策马尔科夫链模型的应用研究
姓名:
学号:
专业:
指导教师:
2012年11月1日
摘要
预测春运客流量是铁路部分的一项重要工作。
运用马尔科夫链模型可以对春运期间一天中的客流量进行预测。
首先,介绍了马尔科夫链模型及其预测的基本原理;其次,分析了**火车站2011年春运期间每天的客流量,并按照**火车站突发事件三级预警方案将客流量数据处理为三个状态;最后,运用马尔科夫链模型对2011年的春运客流进行预测,结果表明,运用马尔科夫链模型具有良好的预测结果。
关键词:马尔科夫链模型;火车站;客流量
马尔科夫链模型的应用研究
**站每年春运都面临着大规模客流。
大量人群的聚集会带来许多安全隐患,相关领导部门非常重视。
如果能够根据以往的客流量,对下一年的春运客流量做出正确预测,就能够为领导决策层提供有力的信息支持,使他们能够提前做好应对高峰客流的准备,从而降低风险。
影响春运客流的因素很多,并且各个因素的作用机制无法用精确的熟悉模型描述。
目前常用的预测方法主要有数学模型方法和人工经验模型法。
对客流量做预测,目前所知道的是以前客流量的记录。
如何从大量已知的数据中挖掘出有用的信息或知识,为下一步工作服务,这是数据挖掘技术所完成的工作。
数据挖掘领域中有许多新的研究成果,如关联规则、Web挖掘、马尔科夫链模型等。
其中马尔科夫链模型是近年来在数据挖掘方法的一个研究热点。
本文运用该方法对**站春运客流进行预测。
1.马尔科夫链模型
1.1马尔科夫链
马尔科夫链,是数学领域中具有马尔科夫性质的离散时间随机过程。
该过程中,在给定当前指示或信息的情况下,过去(即现在时期以前的历史状态)对与预测将来(即现在时期以后的状态)是无关的。
如果n个连续变动事物在变动过程中,其中任一次变动的结果都具有无后效性,那么,这n个连续变动事物的集合就叫做马尔科夫链,这类事物演变的过程称为马尔科夫过程。
1.2 马尔科夫预测的基本原理
对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。
这就是关于事件发生的概率预测。
马尔科夫预测法,就是一种关于事件发生的概率预测方法。
它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。
1.2.1 状态
在马尔科夫预测中,“状态”是一个重要的术语。
所谓状态,就是指某一事件在某个时刻出现的某种结果。
譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态。
1.2.2 状态转移过程(马尔科夫过程)
在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。
譬如,天气变化从“晴天”转变为“阴天”、从“阴天”转变为“晴天”、从“晴天”转变为“晴天”、从“阴天”转变为“阴天”等都是状态转移。
事件的发展,随着时间的变化而所作的状态转移,就称为状态转移过程。
若每次状态的转移只与前一时刻的状态有关而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔科夫过程。
1.2.3 状态转移概率矩阵
在事件的变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。
根据条件概率的定义,由状态Ei转移到状态Ej的状态转移概率P(Ei→Ej)就是条件概率P(Ei/Ej),
假定某一被预测的事件有E1,E2,E3…,En,共n个可能的状态。
记Pij为从状态Ei转为状态Ej的状态转移概率,作矩阵
则称P为状态转移概率矩阵。
如果被预测的某一事件目前处于状E1,那么在下一时刻,它可能由状态E1转向E1,E2,…Ei…En中的任一个状态。
所以Pij满足条件:
一般地,将满足条件(3)的任何矩阵都称为概率矩阵。
不难证明,如果P为概率
矩阵,则对任意整数m>0,矩阵Pm都是概率矩阵。
如果P为概率矩阵,而且存在整数m> 0 ,使得概率矩阵Pm中诸元素皆非零,则称P为标准概率矩阵。
可以证明,如果P为标准概率矩阵,则存在非零向量α=[x1,x2,…,xn],而且xi满足0≤xi≤1及
,这样的向量α称为平衡向量或终极向量。
计算状态转移概率矩阵P,就是要求出每个状态转移到其它任何一个状态的转移概率Pi j (i,j = 1 ,2,…,n)。
为求出每一个Pij,这里采用频率近似概率的思想计算。
1.2.4 马尔科夫预测法
为运用马尔科夫预测法对事件发展过程中状态出现的概率进行预测,需要介绍一个名词:状态概率π i ( k ) 。
π i ( k)表示事件在初始(k = 0 )状态为已知的条件下,经过k次状态转移后,第k个时刻处于状态Ei的概率。
根据概率的性质,显然有:
从初始状态开始,经过k次状态转移后到达状态Ei这一状态转移过程,可以看作是首先经过(k-1)次状态转移后到达状态Ei (i = 1 ,2 ,…,n),然后再由Ei经过一次状态转移到达状态Ej。
根据马尔科夫过程的无后效性及Bayes条件概率公式,有
若记行向量π (k ) = [ π 1 (k ),π 2 (k ),…,π n (k ) ] ,则由(5)式可得逐次计算状态概率的递推公式:
…
2.客流量数据处理
根据上面的分析,运用马尔科夫链模型预测客流量,需要对客流量数据进行简单的处理,按照一定的规则转化为若干“状态”,然后,才能进行预测。
2.1 三级预警方案
要对客流量数据进行处理,转化为若干“状态”,需要一定的依据,这里将《北京西站突发事件三级预警方案》作为标准进行数据到“状态”的转换。
三级预警方案如下(见表1):(下列达到条件中的一条就启动相应预警。
《管规》第208条规定:候车室旅客占用面积标准为1 . 1 ~ 1 . 2 m 2/人,此表标准按1 . 2 m 2/ 人计算,最大可容纳人数为经验值。
)
2.2 生成状态
这里根据三级预警将预测状态规定如表2:
3 马尔科夫链预测过程
3.1 历史数据(见表3)
表3:2011年春运期间的上车人数
3.2 计算转移概率
4.结论
通过马尔科夫链模型及其预测的基本原理,分析**火车站2011年春运期间每天的客流量,并按照**火车站突发事件三级预警方案将客流量数据处理为三个状态;最后,运用马尔科夫链模型对2011年的春运客流进行预测,结果表明,运用马尔科夫链模型具有良好的预测结果,能够为领导决策层提供有力的信息支持,使他们能够提前做好应对高峰客流的准备,从而降低风险。