高三数学解答题难题突破—圆锥曲线中探究向量关系式几何意义
高中数学圆锥曲线与向量的交汇(解析版)

圆锥曲线与向量的交汇一、考情分析平面向量与圆锥曲线的交汇是高考命题的一个显著特征,这类试题的常规形式是用向量形式给出某些条件或结论,其难点往往不在向量上,对向量部分只需运用向量基础知识即可实现相应转化.平面向量作为工具可以处理圆锥曲线中的长度、角度、共线、垂直、射影等许多问题,使得这类问题成为高考命题的一个热点,且时常出现在解答题中.二、解题秘籍(一)圆锥曲线中常见的向量条件及求解圆锥曲线与向量问题的策略1.设u 为直线l 的方向向量,若u =1,k ,则l 斜率为k ;若u =m .n (m ≠0),则l 斜率为n m;2.A 、B 、C 是平面内不重合的三点,若有下列条件之一,则A 、B 、C 共线:①AB =λAC ;②OC=λOA +μOB 且λ+μ=1;③OC =(OA +λOB)/(1+λ);④AB ∥AC .3.A 、B 、C 是平面内不重合的三点,若有下列条件之一,则C 为线段AB 的中点:①AC =CB ;②OC =12(OA +OB ).4.在四边形ABCD 中,若AB ∙AC =0,则AB ⊥AC ;若∣AB +AD ∣=∣AB -AD ∣,则AB ⊥AD ;若AB∙AC =AD ∙AC,则AC ⊥BD .5.圆锥曲线中涉及向量相等,通常利用横坐标或纵坐标相等进行转化,涉及向量共线问题,通项利用非零向量a=x 1,y 1 ,b =x 2,y 2 共线⇔x 1y 2-x 2y 1=0转化,涉及向量的数量积,通常利用数量积的坐标运算进行转化.6.圆锥曲线中两直线垂直问题,通常转化为两直线的方向向量的数量积为零,这样做可避免讨论直线的斜率是否存在.7.圆锥曲线中涉及数量积问题,通常利用数量积的坐标运算把所给条件转化为关于横(纵)坐标的表达式.【例1】(2023届黑龙江省鸡西市鸡东县高三上学期月考)已知两点M 0,-4 ,N 0,4 ,动点P 在x 轴的投影为Q ,且PM ⋅PN=3PQ 2,记动点P 的轨迹为曲线C .(1)求C 的方程.(2)过点F 26,0 的直线与曲线C 在y 轴右侧相交于A ,B 两点,线段AB 的垂直平分线与x 轴相交于点H ,试问ABFH是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)设P x ,y ,则Q x ,0 ,PM =-x ,-4-y ,PN=-x ,4-y ,PQ =0,-y .因为PM ⋅PN=3PQ 2,所以x 2+y 2-16=3y 2,故C 的方程为x 216-y 28=1.(2)由题可知直线AB 的斜率一定存在,且不为0,不妨设直线AB 的方程为y =k x -26 ,A x 1,y 1 ,B x 2,y 2 .联立方程组y =k (x -26)x 216-y 28=1,消去y 整理得1-2k 2 x 2+86k 2x -48k 2-16=0,则Δ=384k 4+1-2k 2 192k 2+64 >0x 1+x 2=-86k 21-2k 2>0x 1x 2=-48k 2-161-2k 2>0 ,整理得k 2>12.x 1+x 22=-46k 21-2k 2,y 1+y 22=-26k1-2k 2,则线段AB 的垂直平分线的方程为y +26k 1-2k 2=-1k x +46k 21-2k 2,令y =0,得x =-66k 21-2k 2,则H -66k 21-2k 2,0,FH =26+66k 21-2k 2=261+k 2 1-2k 2.AB =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-86k 21-2k 2 2-4⋅-48k 2-161-2k 2=1+k 2⋅384k 41-2k 2 2+192k 2+64 1-2k 21-2k 22=81+k 21-2k 2则AB FH =826=263.故AB FH是定值,该定值为263.(二)把点共线问题转化为向量共线此类问题通常是把点A ,B ,C 共线转化为AB =λBC,或点C 在直线AB 上.【例2】(2022届新疆昌吉教育体系高三上学期诊断)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分別为A 1,A 2,右焦点为F (1,0),且椭圆C 的离心率为12,M ,N 为椭圆C 上任意两点,点P 的坐标为(4,t )(t ≠0),且满足A 1M =λ1MP ,A 2N =λ2NP.(1)求椭圆C 的方程;(2)证明:M ,F ,N 三点共线.【解析】(1)椭圆C 的右焦点为F (1,0),且离心率为12,∴a =2,c =1,则b 2=a 2-c 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)由(1)知,A 1,A 2的坐标分别为(-2,0),(2,0),设M x 1,y 1 ,N x 2,y 2 ,∴A 1M =(x 1+2,y 1),A 1P =(6,t ),A 2N =(x 2-2,y 2),A 2P=(2,t ),∵A 1M =λ1MP ,A 2N =λ2NP ,∴A 1,M ,P 三点共线,A 2,N ,P 三点共线,即6y 1=t x 1+2 2y 2=t x 2-2 ,整理得3y 1y 2=x 1+2x 2-2,两边平方得9y 21y 22=x 1+2 2x 2-2 2,①又M ,N 在椭圆上,则y 21=3-34x 21y 22=3-34x 22,代入①并化简得2x 1x 2-5x 1+x 2 +8=0,又FM =(x 1-1,y 1),FN=(x 2-1,y 2),∴要证M ,F ,N 三点共线,只需证y 2x 1-1 =y 1x 2-1 ,即y 1y 2=x 1-1x 2-1,只需证x 1+23x 2-2=x 1-1x 2-1,整理得2x 1x 2-5x 1+x 2 +8=0,∴M ,F ,N 三点共线.(三)利用向量共线求双变量的关系式此类问题一般是给出形如b =λa ,d =μc的条件,确定关于λ,μ的等式,求解思路是利用两向量相等横坐标与纵坐标分别相等(注意一般情况下横坐标相等与纵坐标相等,使用一个即可,解题时哪一个简单使用哪一个),把λ,μ用其他变量(若点的横坐标或纵坐标)表示,再利用题中条件消去其他变量.【例3】(2023届甘肃省张掖市高三上学期检测)椭圆C 的方程为x 2a 2+y 2b2=1a >b >0 ,过椭圆左焦点F 1且垂直于x 轴的直线在第二象限与椭圆相交于点P ,椭圆的右焦点为F 2,已知tan ∠PF 2F 1=312,椭圆过点A 3,12.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 2作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若MA =λ1AF 2 ,MB =λ2BF 2,求证:λ1+λ2为定值.【解析】(1)依题可知:PF 1=b 2a ,tan ∠PF 2F 1=b 2a2c =a 2-c 22ac =312,所以12a 2-12c 2=23ac ,即6c a 2+3ca-6=0,解得c a =32又∵椭圆C 过点A 3,12 ,则3a 2+14b2=1联立a 2=b 2+c 2c a =323a 2+14b 2=1可得a =2b =1c =3,椭圆C 的标准方程为x 24+y 2=1.(2)设点A x 1,y 1 、B x 2,y 2 ,F 3,0 ,由题意可知,直线l 的斜率存在,可设直线l 的方程为y =k x -3 ,联立y =k x -3 x 24+y 2=1,可得4k 2+1 x 2-83k 2x +12k 2-4=0,由于点F 2在椭圆C 的内部,直线l 与椭圆C 必有两个交点,由韦达定理可得x 1+x 2=83k 24k 2+1,x 1⋅x 2=12k 2-44k 2+1,∵MA =λ1AF 2 ,MB =λ2BF 2,M 0,y 0 ,得x 1,y 1-y 0 =λ13-x 1,-y 1 ,x 2,y 2-y 0 =λ23-x 2,-y 2 ,∴λ1=x 13-x 1,λ2=x 23-x 2,∴λ1+λ2=x 13-x 1+x 23-x 2=3x 1+x 2 -2x 1x 23-3x 1+x 2 +x 1x 2=24k 2-212k 2-44k 2+13+12k 2-4 -24k24k 2+1=-8.(四)利用向量加法的几何意义构造平行四边形若点A ,B ,C .D 满足AB +AD =AC,则四边形ABCD 是平行四边形,涉及圆锥曲线中的平行四边形要注意对边长度相等、斜率相等,两对角线中点为同一个点等条件的应用.【例4】(2023届四川省广安市岳池县高三上学期10月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点M 3,12,左焦点F 1-3,0 .(1)求椭圆C 的方程;(2)过点D 0,3 作直线l 与椭圆C 交于A ,B 两点,点N 满足ON =OA+OB (O 为原点),求四边形OANB 面积的最大值.【解析】(1)设椭圆的焦距为2c ,则c =3,又因为椭圆经过点M 3,12 ,所以3a 2+14b2=1,又a 2-b 2=3 2∴c 2=3,a 2=4,b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)因为ON =OA+OB ,所以四边形OANB 为平行四边形,当直线l 的斜率不存在时,显然不符合题意;当直线l 的斜率存在时,设直线l 的方程为y =kx +3,l 与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由y =kx +3x 24+y 2=1⇒(1+4k 2)x 2+24kx +32=0.由Δ=242k 2-128(1+4k 2)>0⇒k 2>2.x 1+x 2=-24k 1+4k 2,x 1x 2=321+4k 2,∵S △OAB =12|OD ||x 1-x 2|=32|x 1-x 2|,∴S ▱OANB =2S △OAB =3|x 1-x 2|=3(x 1+x 2)2-4x 1x 2=3-24k 1+4k 2 2-4×321+4k 2=3242k 2-128(1+4k 2)(1+4k 2)2=24k 2-2(1+4k 2)2,令k 2-2=t ,则k 2=t +2(由上式知t >0),∴S ▱OANB =24t (4t +9)2=24172+16t +81t≤241144=2,当且仅当t =94,即k 2=174>2时取等号.∴当k =±172时,平行四边形OANB 的面积最大值为2.(五)把向量的数量积转化为代数式若圆锥曲线问题有用向量数量积给出的条件,通常是利用向量数量积的坐标运算进行转化.【例5】(2023届广东省荔湾区高三上学期10月调研)已知双曲线C :x 2a 2-y 2b2=1(a >b >0)的右焦点为F 2,0 ,O 为坐标原点,双曲线C 的两条渐近线的夹角为π3.(1)求双曲线C 的方程;(2)过点F 作直线l 交C 于P ,Q 两点,在x 轴上是否存在定点M ,使MP ⋅MQ为定值?若存在,求出定点M 的坐标及这个定值;若不存在,说明理由.【解析】(1)双曲线x 2a 2-y 2b2=1的渐近线为y =±ba x ,又a >b >0,0<b a <1,故其渐近线y =b a x 的倾斜角小于π4,而双曲线C 的两条渐近线的夹角为π3,则渐近线的y =b a x 的倾斜角为π6,则b a =33,即a =3b .又a 2+b 2=2,则a =3,b =1.所以双曲线C 的方程是x 23-y 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =ty +2,代入x 23-y 2=1,得(ty +2)2-3y 2=3,即t 2-3 y 2+4ty +1=0.设点P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4t t 2-3,y 1y 2=1t 2-3.设点M m ,0 ,则MP ⋅MQ=x 1-m x 2-m +y 1y 2=ty 1+2-m ty 2+2-m +y 1y 2=t 2+1 y 1y 2+t 2-m y 1+y 2 +(2-m )2=t 2+1t 2-3-4t 22-m t 2-3+(2-m )2=m 2-3 t 2-3m 2-12m +11 t 2-3令3m 2-12m +11=3m 2-3 ,得m =53,此时MP ⋅MQ =m 2-3=-29.当直线l 与x 轴重合时,则点P ,Q 为双曲线的两顶点,不妨设点P -3,0 ,Q 3,0 .对于点M 53,0 ,MP ⋅MQ =-3-53,0 ·3-53,0 =-29.所以存在定点M 53,0 ,使MP ⋅MQ =m 2-3=-29为定值.(六)把垂直问题转化为向量的数量积为零求解圆锥曲线中的垂直问题,通常可转化为向量的数量积为零,然后利用向量数量积的坐标运算进行转化,这种转化可避免讨论直线的斜率是否存在.【例6】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,椭圆C 上的点到F 的距离的最大值和最小值分别为2+3和2-3.(1)求椭圆C 的标准方程;(2)若圆O :x 2+y 2=r 2的切线l 与椭圆C 交于A ,B 两点,是否存在正数r ,使得OA ⊥OB ?若存在,求出r 的值;若不存在,请说明理由.【解析】(1)由题意可得,a +c =2+3a -c =2-3 ,解得a =2,c =3,则b 2=4-3=1,所以椭圆方程为x 24+y 2=1;(2)假设存在正数r ,使得OA ⊥OB ,即使得OA ⋅OB=0,当直线l 的斜率不存在时,设直线l 的方程为x=t ,可得A t ,4-t 22 ,B t ,-4-t 22,因为OA ⋅OB =0,则有t 2-4-t 24=0,解得t =±255,又直线l 为圆O :x 2+y 2=r 2的切线,所以r =255;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),A (x 1,y 1),B (x 2,y 2),联立y =kx +m x 24+y 2=1,可得(1+4k 2)x 2+8km x +4(m 2-1)=0,则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,所以4k 2-m 2+1>0,且x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=kx 1x 2+km (x 1+x 2)+m 2,因为OA ⋅OB =0,则y 1y 2x 1x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=-1,所以(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,整理可得4k 2+4=5m 2,则m 21+k 2=45,所以|m |1+k 2=255,因为直线l 为圆O :x 2+y 2=r 2的切线,故原点(0,0)到y =kx +m 的距离为r =|m |1+k2=255,所以存在正数r =255,使得OA ⊥OB .三、跟踪检测1.(2023届重庆市第八中学校高三上学期月考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)一个顶点为A -2,0 ,直线l 过点Q 3,0 交双曲线右支于M ,N 两点,记△AMN ,△AOM ,△AON 的面积分别为S ,S 1,S 2.当l 与x 轴垂直时,S 1的值为152.(1)求双曲线E 的标准方程;(2)若l 交y 轴于点P ,PM =λMQ ,PN=μNQ ,求证:λ+μ为定值;(3)在(2)的条件下,若1625S =μS 1+mS 2,当5<λ≤8时,求实数m 的取值范围.【解析】(1)由题意得a =2,OA =2,则当l 与x 轴垂直时,不妨设M 3,y 1 ,由S 1=12OA ⋅y 1 =152,得y 1 =152,将M 3,y 1 代入方程x 24-y 2b 2=1,得94-154b2=1,解得b 2=3,所以双曲线E 的方程为x 24-y 23=1.(2)设M x 1,y 1 ,N x 2,y 2 ,P 0,y 0 ,由PM=λMQ 与Q 3,0 ,得x 1,y 1-y 0 =λ3-x 1,-y 1 ,即x 1=3λ1+λ,y 1=y 01+λ,将M 3λ1+λ,y 01+λ代入E 的方程得:3λ1+λ 24-y 01+λ 23=1,整理得:15λ2-24λ-4y 20-12=0①,同理由PN =μNQ 可得15μ2-24μ-4y 20-12=0②.由①②知,λ,μ是方程15x 2-24x -4y 20-12=0的两个不等实根.由韦达定理知λ+μ=2415=85,所以λ+μ为定值.(3)又1625S =μS 1+mS 2,即1625⋅12⋅AQ ⋅y 1-y 2 =μ12⋅2⋅y 1 +m ⋅12⋅2⋅y 2 ,整理得:85y 1-y 2 =μy 1 +m y 2 ,又y 1y 2<0,不妨设y 2<0<y 1,则85y 1-y 2 =μy 1-my 2,整理得m =85-85-μ y 1y 2,又λ+μ=85,故m =85-λy 1y 2,而由(2)知y 1=y 01+λ,y 2=y 01+μ,故y 1y 2=1+μ1+λ,代入m =85-λ⋅1+μ1+λ=85-λ135-λ 1+λ,令1+λ=t t ∈6,9 ,得m =85-t -1 185-t t =-3+t +185t,由双勾函数y =t +185t 在6,9 上单调递增,得m =-3+t +185t ∈185,325 ,所以m 的取值范围为185,325.2.(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 2 2-4x 1x 2=1+k 2⋅-2k k 2+2 2+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y 2x 2+1(x +1)y =y 1x 1-1(x -1)可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-kt,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.3.(2023届四川省成都市郫都区高三上学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为4.(1)求椭圆C 的方程;(2)若过点P 0,1 的直线交椭圆C 于A ,B 两点,求OA ⋅OB的取值范围.【解析】(1)∵e =c a =32,2b =4,∴b =2,又a 2=b 2+c 2,即a 2=4+34a 2,解得:a =4,c =23,∴椭圆的标准方程为x 216+y 24=1;(2)当直线AB 的斜率不存在时,AB :x =0,不妨设A 0,2 ,B 0,-2 ,则OA ⋅OB=-4当直线AB 的斜率存在时,设AB :y =kx +1,A x 1,y 1 ,B x 2,y 2 ,由x 216+y 24=1y =kx +1得4k 2+1 x 2+8kx -12=0,Δ=64k 2+484k 2+1 >0恒成立,故x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1,∴OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+1 kx 2+1=k 2+1 x 1x 2+k x 1+x 2 +1=k 2+1 -124k 2+1 -8k 24k 2+1+1=-12k 2-12-8k 2+4k 2+14k 2+1=-16k 2-114k 2+1=-4-74k 2+1∈-11,-4 ,综上:OA ⋅OB ∈-11,-4 ,故OA ⋅OB的取值范围为-11,-4 .4.(2023届江苏省南通市如皋市高三上学期9月诊断测试)已知点B 、A 分别是椭圆Γ:x 24+y 23=1的左、右顶点,过Γ的右焦点F 作直线l 交Γ于M ,N 两点,(1)设直线AM ,AN ,BM 的斜率分别为k 1,k 2,k 3,求k 1k 2和k2k 3的值;(2)若直线AM ,AN 分别交椭圆Γ的右准线于P ,Q 两点,证明:以PQ 为直径的圆经过定点.【解析】(1)由已知F (1,0),A (2,0),B (-2,0),直线l 的斜率不存在时,方程为x =1,不妨设M 1,32 ,N 1,-32,k 1=321-2=-32,同理k 2=32,k 3=321-(-2)=12,k 1k 2=-94,k2k 3=3,直线l 斜率存在时,设直线方程为y =k (x -1),设M (x 1,y 1),N (x 2,y 2),由x 24+y 23=1y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,k 1=y 1x 1-2,k 2=y 2x 2-2,k 3=y 1x 1+2,k 1k 2=y 1y 2(x 1-2)(x 2-2)=k 2(x 1-1)(x 2-1)(x 1-2)(x 2-2)=k 2(x 1x 2-x 1-x 2+1)x 1x 2-2(x 1+x 2)+4=k 24k 2-123+4k 2-8k 23+4k 2+1 4k 2-123+4k 2-16k 23+4k 2+4=k 2(4k 2-12-8k 2+3+4k 2)4k 2-12-16k 2+12+16k 2=-94,k 2k 3=y 2(x 1+2)y 1(x 2-2)=k (x 2-1)(x 1+2)k (x 1-1)(x 2-2)=x 1x 2-x 1+2x 2-2x 1x 2-2x 1-x 2+2因为2x 1x 2-5(x 1+x 2)+8=2(4k 2-12)3+4k 2-40k 23+4k 2+8=0,所以x 1x 2-x 1+2x 2-2=3(x 1x 2-2x 1-x 2+2),所以k2k 3=3,综上,k 1k 2=-94,k2k 3=3;(2)由已知a =2,b =3,c =1,右准线方程为x =a 2c=4,由(1)知直线AM 方程为y =y 1x 1-2(x -2),令x =4得y P =2y 1x 1-2=2k 1,同理y Q =2y 2x 2-2=2k 2,由椭圆的对称性知,以PQ 为直径的圆有一个圆心x 轴上方的圆,则必定也有一个与之关于x 轴对称的圆,这两个圆的交点在x 轴上,以PQ 为直径的圆经过定点,这个定点必在x 轴上,设定点为G (t ,0),则GP ⋅GQ =0,由(1)得GP ⋅GQ=(4-t ,2k 1)⋅(4-t ,2k 2)=(4-t )2+4k 1k 2=(4-t )2-9=0,t =7或t =1,所以以PQ 为直径的圆经过定点(1,0),(7,0).5.(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.6.(2023届广东省茂名市高三上学期9月联考)如图,平面直角坐标系xOy 中,点Q 为x 轴上的一个动点,动点P 满足PO =PQ =32,又点E 满足PE =12EQ .(1)求动点E 的轨迹Γ的方程;(2)过曲线Γ上的点A x 0,y 0 (x 0y 0≠0)的直线l 与x ,y 轴的交点分别为M 和N ,且NA =2AM,过原点O 的直线与l 平行,且与曲线Γ交于B 、D 两点,求△ABD 面积的最大值.【解析】(1)由题意,设E x ,y ,P 12x ,y,由PO =PQ =32得Q x,0 ,且x 24+y 2=94,由PE =12EQ 得E 23x ,23y ,则x =23x y =23y ,得x =32x y =32y,代入x 24+y 2=94整理得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.(2)如图,设A x 0,y 0 (x 0y 0≠0),又直线l 的斜率存在且k ≠0,∴设直线l 为:y -y 0=k x -x 0 ,可得:M x 0-y 0k,0 ,N 0,y 0-kx 0 ,由NA =2AM ,则x 0,kx 0 =2-y 0k ,-y 0 ,故x 0=-2y 0k,kx 0=-2y 0,联立x 204+y 20=1x 0=-2y 0k,可得:y 20=k 21+k 2,即y 0 =k 1+k 2,又BD ⎳l ,故直线BD 的方程为y =kx ,联立x 24+y 2=1y =kx,得:x 2=41+4k 2,即B 、D 的横坐标为±21+4k 2,∴BD =1+k 2x B -x D =41+k 21+4k 2,∵点A 到直线BD 的距离d =kx 0-y 0 1+k 2=3y 01+k 2=3k 1+k 2,∴S △ABD =12BD ⋅d =6k 1+4k 21+k 2=61+k 2 1+4k 2k 2=64k 2+1k2+5≤624k 2×1k2+5=2,当且仅当4k 2=1k2,即k =±22时等号成立,∴△ABD 面积的最大值为2.7.(2023届福建师范大学附属中学高三上学期月考)在平面直角坐标系xOy 中, 设点P -13,0 ,Q 13,0 ,点G 与P ,Q 两点的距离之和为43,N 为一动点, 点N 满足向量关系式:GN +GP +GQ =0 .(1)求点N 的轨迹方程C ;(2)设C 与x 轴交于点A ,B (A 在B 的左侧), 点M 为C 上一动点(且不与A ,B 重合).设直线AM ,x 轴与直线x =4分别交于点R ,S ,取E (1,0),连接ER ,证明:ER 为∠MES 的角平分线.【解析】(1)设点N (x ,y ),G (x ,y ),则由点G 与P ,Q 两点的距离之和为43>|PQ |=23,可得点G 的轨迹是以P ,Q 为焦点且长轴长为43的椭圆,其轨迹方程为94x 2+3y 2=1,由GN +GP +GQ =0 ,可得x =x 3,y =y 3,代入点G 的轨迹方程,可得:94x 3 2+3y 32=1,所以点N 的轨迹方程C :x 24+y 23=1;(2)设点M (x 0,y 0),则ME :y =y 0x 0-1(x -1),即y 0x -(x 0-1)y -y 0=0,MA :y =y 0x 0+2(x +2),令x =4,得y =6y 0x 0+2,∴R 4,6y 0x 0+2,则点R 到直线ME 的距离为:d =4y 0-6y 0(x 0-1)x 0+2-y 0y 20+(x 0-1)2=|3y 0(4-x 0)|(x 0+2)y 20+(x 0-1)2=(12-3x 0)|y 0|(x 0+2)y 20+(x 0-1)2,要证ER 为∠MES 的角平分线,只需证d =|RS |,又|RS |=|y R |=6|y 0|x 0+2,∵y 0≠0,所以d =|RS |,当且仅当4-x 0y 20+(x 0-1)2=2,即(4-x 0)2=4[y 20+(x 0-1)2]时,又(x 0,y 0)在C 上,则x 204+y 203=1,即4y 20=12-3x 20,代入上式可得16-8x 0+x 20=12-3x 20+4x 20-8x 0+4恒成立,∴ER 为∠MES 的角平分线.8.(2023届山西省山西大学附属中学校高三上学期9月诊断)如图,椭圆C :x 2a 2+y 2b2=1((a >b >0),|A 1B 1|=7,F 1是椭圆C 的左焦点,A 1是椭圆C 的左顶点,B 1是椭圆C 的上顶点,且A 1F 1 =F 1O,点P (n ,0)(n ≠0)是长轴上的任一定点,过P 点的任一直线l 交椭圆C 于A ,B 两点.(1)求椭圆C 的方程;(2)是否存在定点Q (x 0,0),使得QA ⋅QB为定值,若存在,试求出定点Q 的坐标,并求出此定值;若不存在,请说明理由.【解析】(1)由已知知a 2+b 2=7a -c =c a 2=b 2+c 2 ,解得a =2b =3c =1,所以椭圆方程为x 24+y 23=1;(2)假设存在Q (x 0,0)满足题意,设A (x 1,y 1),B (x 2,y 2),QA =(x 1-x 0,y 1),QB=(x 2-x 0,y 2),①当直线l 与x 轴不垂直时,设l :y =k (x -n ),代入x 24+y 23=1并整理得(4k 2+3)x 2-8k 2nx +4k 2n 2-12=0∴x 1+x 2=8k 2n 4k 2+3,x 1x 2=4k 2n 2-124k 2+3QA ⋅QB=(x 1-x 0)(x 2-x 0)+y 1y 2=(x 1-x 0)(x 2-x 0)+k 2(x 1-n )(x 2-n )=(k 2+1)x 1x 2-(k 2n +x 5)(x 1+x 2)-x 20+k 2n 2=k 2+1 4k 2n 2-124k 2+3-k 2n +x 0 8k 2n 4k 2+3-x 20+k 2v 2=7n 2-8nx 0+4x 20-12 k 2+3x 20-124k 2+3 (*)(*)式是与k 无关的常数,则3(7n 2-8nx 0+4x 20-12)=4(3x 20-12)解得x 0=12n +7n 8,此时QA ⋅QB =x 20-4=12n +7n 82-4为定值;②当直线l 与x 垂直时,l :x =n ,A n ,31-n 24 ,B n ,-31-n 24,QA ⋅QB =(n -x 0)2-31-n 24 =x 20-4=12n +7n 82-4也成立,所以存在定点Q 12n +7n 8,0 ,使得QA ⋅QB =12n +7n 82-4为定值.9.(2023届北京市第四中学高三上学期开学测试)已知中心在原点,焦点在x 轴上的椭圆C 过点1,32,离心率为32,点A 为其右顶点.过点B 1,0 作直线l 与椭圆C 相交于E 、F 两点,直线AE 、AF 与直线x =3分别交于点M 、N .(1)求椭圆C 的方程;(2)求EM ⋅FN的取值范围.【解析】(1)由题意设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意,得1a 2+34b 2=1c a =32a 2=b 2+c 2,解得a 2=4,b 2=1,即椭圆C 的标准方程为x 24+y 2=1.(2)由(1)得A (2,0),设l :x =ty +1,E (x 1,y 1),F (x 2,y 2),联立x =ty +1x 2+4y 2-4=0,得(ty +1)2+4y 2-4=0,即(t 2+4)y 2+2ty -3=0,则y 1+y 2=-2t t 2+4,y 1y 2=-3t 2+4,直线AE ,AF 的方程分别为y =y 1x 1-2(x -2),y =y 2x 2-2(x -2),令x =3,则M 3,y 1x 1-2 ,N 3,y 2x 2-2,则EM =3-x 1,y 13-x 1 x 1-2 =2-ty 1,y 12-ty 1 ty 1-1,FN =3-x 2,y 23-x 2 x 2-2 =2-ty 2,y 22-ty 2 ty 2-1,所以EM ⋅FN =2-ty 1 2-ty 1 +y 1y 22-ty 1 2-ty 2 ty 1-1 ty 2-1 =t 2y 1y 2-2t y 1+y 2 +4 1+y 1y 2t 2y 1y 2-t y 1+y 2 +1=-3t 2t 2+4+4t 2t 2+4+4 1+-3t 2+4-3t 2t 2+4+2t 2t 2+4+1 =5t 2+164(t 2+4)=5(t 2+4)-44(t 2+4)=54-1t 2+4因为t 2+4≥4,所以0<1t 2+4≤14,1≤54-1t 2+4<54,即EM ⋅FN 的取值范围为1,54 .10.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0 .由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0,使GH 为定值23.11.(2023届四川省达州市开江县高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F 1、F 2为椭圆C 的左、右焦点,过点F 1的任意直线l 交椭圆C 于A 、B 两点,且△ABF 2的周长为8,椭圆C 的离心率为12.(1)椭圆C 的方程;(2)若P 为椭圆C 上的任一点,PM 、PN 为过焦点F 1、F 2的弦,且PF 1 =λ1F 1M ,PF 2 =λ2F 2N,求λ1+λ2的值.【解析】(1)由题意可知, △ABF 2的周长为AF 1+AF 2+BF 1+BF 2=4a =8.所以a =2,又c a =12,所以c =1,则b =3,所以椭圆C 的方程为x 24+y 23=1.(2)不妨令P x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 .所以x 204+y 203=1,即3x 20+4y 20=12.当y 0≠0时,不妨设直线PM 为x =m 1y -1,其中m 1=x 0+1y 0.直线PN 为x =m 2y +1,其中m 2=x 0-1y 0.联立方程3x 2+4y 2=12x =m 1y -1 ,得3m 21+4 y 2-6m 1y -9=0.所以y 0y 1=-93m 21+4,即1y 1=3m 21+4 y 0-9.同理可得:1y 2=3m 22+4 y 0-9.又PF 1 =λ1F 1M ,PF 2 =λ2F 2M .所以λ1y 1+y 0=0λ2y 2+y 0=0.则λ1+λ2=-y 01y 1+1y 2=y 2093m 21+m 22 +8 =y 203m 21+m 22 +8y 209=13m 1y 0 2+m 2y 0 2+8y 209=13x 0+1 2+x 0-1 2+8y 209=293x 20+4y 20 +23=103,综上所述,λ1+λ2=103.12.(2022届上海市普陀区高三一模)已知点M x ,y 与定点F 1,0 的距离是点M 到直线x -2=0距离的22倍,设点M 的轨迹为曲线Γ,直线l :x +my +1=0m ∈R 与Γ交于A 、B 两点,点C 是线段AB 的中点,P 、Q 是Γ上关于原点O 对称的两点,且PO =λOCλ>0 .(1)求曲线Γ的方程;(2)当λ=3时,求直线l 的方程;(3)当四边形PAQB 的面积S =6时,求λ的值.【解析】(1)由题意可得x -12+y 2x -2=22,化简可得x 22+y 2=1,因此,曲线Γ的方程为x 22+y 2=1.(2)设点A x 1,y 1 、B x 2,y 2 ,联立x +my +1=0x 22+y 2=1,可得m 2+2 y 2+2my -1=0,Δ=4m 2+4m 2+2 =8m 2+1 >0,由韦达定理可得y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,则y 1+y 22=-m m 2+2,x 1+x 22=-m ⋅y 1+y 22-1=-2m 2+2,所以点C 的坐标为-2m 2+2,-mm 2+2,因为PO =3OC =-23m 2+2,-3m m 2+2,可得点P 23m 2+2,3m m 2+2 ,将点P 的坐标代入曲线Γ的方程得6+3m 2m 2+22=3m 2+2=1,解得m =±1,因此,直线l 的方程为x ±y +1=0.(3)由(2)可得PO =λOC =-2λm 2+2,-λm m 2+2 ,则点P 2λm 2+2,λmm 2+2,则点Q -2λm 2+2,-λmm 2+2,因为点P 在曲线Γ上,则2λ2+λ2m 2m 2+22=1,可得λ2=m 2+2,因为λ>0,则λ=m 2+2≥2,点P 到直线l 的距离为d 1=2λ+λm 2m 2+2+1m 2+1=λ+1m 2+1,点Q 到直线l 的距离为d 2=-2λ+λm 2m 2+2+1m 2+1=λ-1m 2+1,AB =1+m 2⋅y 1+y 2 2-4y 1y 2=1+m 2⋅-2m m 2+2 2+4m 2+2=22m 2+1 m 2+2,所以,S =12AB ⋅d 1+d 2 =12×22m 2+1 m 2+2×2λm 2+1=22⋅λ2-1λ=6,因为λ>0,解得λ=2.13.(2022届内蒙古赤峰市高三上学期11月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦点恰为椭圆D :x 24+y 23=1长轴的端点,且C 的短轴长为2(1)求椭圆C 的方程.(2)若直线l 与直线y =2x -1平行,且l 与C 交于A ,B 两点,M 1,0 ,求MA ⋅MB的最小值.【解析】(1)由椭圆D :x 24+y 23=1,可得其长轴的端点分别为(-2,0),(2,0),根据题意,可得a 2-b 2=42b =2 ,解得a 2=5,b 2=1,故C 的方程为x 25+y 2=1.(2)设直线l 的方程为y =2x +m m ≠-1 ,联立方程组x 25+y 2=1y =2x +m,整理得21x 2+20mx +5m 2-5=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-20m 21,x 1x 2=5m 2-521,且Δ=400m 2-845m 2-5 =2021-m 2 >0,解得m 2<21且m ≠-1所以MA ⋅MB=x 1-1 x 2-1 +y 1y 2=x 1x 2-x 1+x 2 +1+2x 1+m 2x 2+m=5x 1x 2+(2m -1)x 1+x 2 +m 2+1=25m 2-25-40m 2+20m +21m 2+2121=6m 2+20m -421因为6m 2+20m -4=6m +53 2-623,其中m 2<21且m ≠-1,所以当m =-53时,6m 2+20m -4取得最小值,且最小值为-623,故MA ⋅MB 的最小值为-6263.14.(2022届辽宁省大连市高三上学期期中)在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8km x +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1, 又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m 2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 15.(2022届河北省邢台市“五岳联盟”部分重点学校高三上学期12月联考)已知点F 1,F 2是已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆上,当∠PF 1F 2=π3时,△PF 1F 2面积达到最大,且最大值为3.(1)求椭圆C 的标准方程;(2)过F 2的直线与椭圆C 交于A ,B 两点,且两点与左右顶点不重合,若F 1M =F 1A +F 1B,求四边形AMBF 1面积的取值范围.【解析】(1)由题可知,当点P 在短轴端点时,△PF 1F 2的面积最大,且为正三角形,∴bc =3,b =3c ,又a 2=b 2+c 2,由bc =3b =3c a 2=b 2+c 2,解得a =2b =3c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A x 1,y 1 ,B x 2,y 2 ,AB :x =my +1,则由x =my +1x 24+y 23=1,可得3(my +1)2+4y 2=12,即3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,又因为F 1M =F 1A +F 1B,所以四边形AMBF 1是平行四边形,设平面四边形AMBF 1的面积为S ,则S =2S △ABF 1=2×12F 1F 2 ×y 1-y 2 =2×12F 1F 2 ×y 1+y 22-4y 1y 2=2×144m 2+13m 2+4=24×m 2+13m 2+4.设t =m 2+1,则m 2=t 2-1(t ≥1),所以S =24×t 3t 2+1=24×13t +1t 因为t ≥1,而对勾函数y =3t +1t 在[1,+∞)上单调递增,所以3t +1t≥4,所以S ∈(0,6].所以四边形AMBF 1面积的取值范围为(0,6].16.(2022届四川省成都市高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,右焦点为F ,过点A 作斜率为33的直线与C 相交于A ,B ,且以AO 为直径的圆过点B ,其中O 为坐标原点.(1)求椭圆的离心率e ;(2)若b =1,过点F 作与直线AB 平行的直线l ,l 与椭圆C 相交于P ,Q 两点.①求k OP ⋅k OQ 的值;②点M 满足2OM =OP ,直线MQ 与椭圆的另一个交点为N ,求NMNQ的值.【解析】(1)依题意,如图,△ABO ,∠ABO =π2,OA =a ,∠BAO =π6,OB =a 2,则B -a 4,3a4,而点B 在椭圆C 上,于是得:a 216a 2+3a 216b 2=1,整理得a 2=5b 2,即a =5b ,c =a 2-b 2=2b ,所以椭圆的离心率e =c a =255.(2)①由(1)及b =1得,a =5,椭圆C 的方程为x 25+y 2=1,而直线l 与直线AB 平行,则直线l 的方程为x =3y +2,P x 1,y 1 ,Q x 2,y 2 ,由x =3y +2x 2+5y 2=5消去x 得:8y 2+43y -1=0,显然�>0于是得y 1+y 2=-32,y 1y 2=-18,x 1x 2=(3y 1+2)(3y 2+2)=3y 1y 2+23(y 1+y 2)+4=58,所以k OP ⋅k OQ =y 1y 2x 1x 2=-15.②因2OM =OP ,由①得M x 12,y 12 ,设N x 3,y3 ,NM NQ=λ(0<λ<1),则NM =λNQ ,NM =x 12-x 3,y 12-y 3 ,NQ =x 2-x 3,y 2-y 3 ,x 12-x 3=λx 2-x 3 y 12-y 3=λy 2-y 3 ,即x 1-2λx 2=2(1-λ)x 3y 1-2λy 2=2(1-λ)y 3 ,解得x 3=12(1-λ)x 1-2λx 2 y 3=12(1-λ)y 1-2λy 2,而P ,Q ,N 都在椭圆上,即x 21+5y 21=5,x 22+5y 22=5,x 23+5y 23=5,x 1-2λx 2 24(1-λ)2+5⋅y 1-2λy 2 24(1-λ)2=5,整理得:x 21+5y 21+4λ2x 22+5y 22 -4λx 1x 2+5y 1y 2 =20(1-λ)2,由①可知x 1x 2+5y 1y 2=0,则有1+4λ2=4(1-λ)2,解得λ=38,所以NM NQ 的值是38.17.(2022届广东省江门市高三上学期10月月考)设i ,j分别是平面直角坐标系中x ,y 轴正方向上的单位向量,若向量a =(x +2)i +yj ,b =(x -2)i +yj ,且a+b =8,其中x ,y ∈R .(1)求动点M (x ,y )的轨迹E 的方程;(2)过点(3,0)作直线l 与轨迹E 交于A ,B 两点,设OP =OA+OB ,是否存在直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.【解析】(1)由题意得a=(x +2,y ),b =(x -2,y ),∴a+b =8,∴(x +2)2+y 2+(x -2)2+y 2=8,设F 1(-2,0),F 2(2,0),则动点M 满足MF 1 +MF 2 =8>F 1F 2 =4,由椭圆的定义可知动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点的椭圆,设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),则2a =8,2c =4,∴a =4,c =2,b 2=42-22=12,故轨迹E 的方程为x 216+y 212=1(2)存在满足条件的直线l .设直线l 的方程为x =ky +3,由方程组x =ky +3x 216+y 212=1,消去x ,整理得:(3k 2+4)y 2+18ky -21=0则Δ=(18k )2+84(3k 2+4)>0恒成立,即直线l 与椭圆E 恒有两个不同的交点,设交点为A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-18k 3k 2+4①,y 1⋅y 2=-213k 2+4②由OP =OA +OB 得OP -OA=OB ,即AP =OB ,∴四边形OAPB 为平行四边形若存在直线l 使四边形OAPB 为矩形,则OA ⊥OB ,OA⋅OB =x 1x 2+y 1y 2=0即(ky 1+3)(ky 2+3)+y 1y 2=(k 2+1)y 1y 2+3k (y 1+y 2)+9=0③将①、②代入③式得:-18k (k 2+1)3k 2+4-54k 23k 2+4+9=0,解得k =±54,所以直线l 的方程为x =±54y +3,此时四边形OAPB 为矩形.18.过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.【解析】(1)依题意,结合双曲线的对称性得AF 1 =2,AF 2 =4,F 1F 2 =23,所以2a =|AF 2|-|AF 1|=2,a =1,2c =F 1F 2 =23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1.(2)依题意知直线l 的斜率不为0,设l 的方程为x =my -c ,联立x =my -c x 2a 2-y 2b2=1,消去x ,得(b 2m 2-a 2)y 2-2b 2cm y +b 4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a 2, 由AF 2⊥BF 2得AF 2 ⋅BF 2=0,故(x 1-c )(x 2-c )+y 1y 2=0,即(my 1-2c )(my 2-2c )+y 1y 2=0,整理得m 2+1 y 1y 2-2cm y 1+y 2 +4c 2=0,即(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0,则(m 2+1)b 4=4a 2c 2,所以m 2+1=4a 2c 2b4≥1,故4a 2c 2≥(c 2-a 2)2,所以c 4+a 4-6a 2c 2≤0,两边除以a 4,得e 4-6e 2+1≤0,解得3-22≤e 2≤3+22,又因为e >1,所以1≤e 2≤1+2 2,故1≤e ≤1+2,又A ,B 在左支且l 过F 1,所以y 1y 2<0,即b 4b 2m 2-a 2<0,故m 2<a 2b2,所以m 2+1=4a 2c 2b 4<a2b2+1,所以4a 2c 2<a 2b 2+b 4=b 2a 2+b 2 =b 2c 2,即4a 2<b 2=c 2-a 2,则5a 2<c 2,故e 2>5,即e >5,综上:5<e ≤1+2,即e ∈5,1+2 .。
巧用向量,妙化长度-----浅谈圆锥曲线中的长度求解

巧用向量,妙化长度 ----- 浅谈圆锥曲线中的长度求解圆锥曲线是高三复习的重点内容之一,是拉开考生分数档次的关键题目。
解决该类问题的核心思想就是用代数的方法解决几何问题,主要方法是坐标法。
因此,将几何元素坐标化,是我们开始解题的关键。
而向量既能体现“形”的直观,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。
以下就向量在圆锥曲线长度问题中的一些应用,做一点讲解,一、利用向量的共线实现坐标化例1:椭圆的右焦点为,过点的直线与椭圆交于两点,求的最小值【思路分析】:在圆锥曲线中,对于直线上两点间的距离问题,我们常用的解题策略是采用化斜为直的思想,利用弦长公式,实现几何元素坐标化来加以求解,如下面的“方法一”。
对于直线上两点间的距离我们还可以从向量角度来实现坐标化,按照数量积的定义,我们有,当时,有,基于这点思考,我们可以将圆锥曲线中的长度问题进行向量化处理。
【解析一】:(化斜为直——弦长公式)设,直线联立方程:由韦达定理可得:时,【解析二】:(几何问题向量化)设,直线联立方程:由韦达定理可得:时,【点评】:本题利用三点共线,将长度问题转化为向量数量积问题,从而实现坐标化二、利用向量简化长度运算例2:(2017浙江高考改编)如图,已知抛物线,点A,,抛物线上的点 .过点B作直线AP的垂线,垂足为Q.求的最大值.【思路分析】:本题的变量应该是P点,问题的关键是如何表示的长度。
如果用弦长公式,则要通过设出直线方程,求出点坐标,运算量较大,我们可以引进向量这一工具来简化运算。
【解析】:设,则令:求导可得:【点评】:本题不仅利用共线将长度转化为向量,而且还利用向量的运算,将未知向量转化为已知向量,简化了运算过程。
三、利用向量的投影例3、(08浙江高考改编)已知直线过定点Q(-1,0),点M是抛物线(不在直线上),在上,轴,是否存在这样的直线,使是常数【思路分析】:本题的主变量应该是M点,点都是点的相关点,目可以将看做是在直线上标将用点表示。
专题52 几何关系巧解圆锥曲线问题-备战2019年高考数学之高三复习大一轮热点聚焦与扩展(原卷版)

专题52 几何关系巧解圆锥曲线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等.高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强.命题以小题为主,多为选择题或填空题.高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多.解决圆锥曲线中的范围、最值问题一般有三种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解;三是通过建立不等式、解不等式求解.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用几何关系解答圆锥曲线的综合问题,特别是最值(范围)问题的常见解法.1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到.因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值.所以只有共线时才有可能达到最值.要注意动点与定点相对位置关系.一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上.(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值位置(4)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置.2、常见的线段转移:(1)利用对称轴转移线段(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移.(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化. (4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径(5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲线的哪一支上)3、与圆相关的最值问题:(1)已知圆C 及圆外一定点P ,设圆C 的半径为r 则圆上点到P 点距离的最小值为PM PC r =-,最大值为PN PC r =+(即连结PC 并延长,M 为PC 与圆的交点,N 为PC 延长线与圆的交点(2)已知圆C 及圆内一定点P ,则过P点的所有弦中最长的为直径,最短的为与该直径垂直的弦MN 解:,弦长的最大值为直径,而最小值考虑弦长公式为AB =AB 最小,则d 要取最大,在圆中CP 为定值,在弦绕P 旋转的过程中, d CP ≤,所以d CP =时,AB 最小N(3)已知圆C 和圆外的一条直线l ,则圆上点到直线距离的最小值为C l PM d r -=-,距离的最大值为C l PN d r -=+(过圆心C 作l 的垂线,垂足为P ,CP 与圆C 交于M ,其反向延长线交圆C 于N(4)已知圆C 和圆外的一条直线l ,则过直线l上的点作圆的切线,切线长的最小值为PM 解:PM =PM 最小,则只需CP 最小即可,所以P 点为过C 作l 垂线的垂足时,CP 最小∴过P 作圆的切线,则切线长PM 最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为()222210x y a b a b+=>>① 焦半径:焦半径的最大值为a c +,最小值为a c -② 焦点弦:焦点弦长的最小值称为通径,为22b a ,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为()222210,0x y a b a b-=>>① 焦半径:焦半径的最小值为a c -,无最大值② 焦点弦:焦点弦长的最小值称为通径,为22b a,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为22y px =① 焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即2p ② 焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为2p【经典例题】例1.已知点3,12P ⎛⎫- ⎪⎝⎭在抛物线()2:20E x py p =>的准线上,过点P 作抛物线的切线,若切点A 在第一象限,F 是抛物线的焦点,点M 在直线AF 上,点N 在圆()()22:221C x y +++=上,则MN 的最小值为( )A.15 B. 65C. 2D. 1- 例2.【2018届湖南省长沙市长郡中学模拟二】已知椭圆:的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点与直线的距离不小于,则椭圆的离心率的取值范围是( ) A.B.C.D.例3.【2018届四川省成都市第七中学三诊】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和距离之和的最小值为( )A. 1B. 2C. 3D. 4例4.【2018届安徽省芜湖市5月模拟】已知椭圆 的右焦点为.圆上所有点都在椭圆的内部,过椭圆上任一点作圆的两条切线,为切点,若,则椭圆C 的离心率为( )A.B.C.D.例5.【2018届天津市部分区质量调查(二)】设分别是双曲线的左、右焦点,为坐标原点,过左焦点作直线与圆切于点,与双曲线右支交于点,且满足, ,则双曲线的方程为( )A. B. C. D.例6.【2018届浙江省绍兴市5月调测】点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则与面所成角的正切值的最小值是A. B. C. D.例7.已知点()4,0A 和()2,2B ,M 是椭圆221259x y +=上一动点,则MA MB +的最大值为_________ 例8.【2018年理北京卷】已知椭圆,双曲线.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 例9.【2018届江西省重点中学协作体第二次联考】设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________例10.【2018届江西省景德镇市第一中学等盟校第二次联考】已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆于两点,以为直径的动圆内切于圆.(1)求椭圆的方程;(2)延长交椭圆于点,求面积的最大值.【精选精练】1.已知抛物线的焦点为,准线为,抛物线的对称轴与准线交于点,为抛物线上的动点,,当最小时,点恰好在以,为焦点的椭圆上,则椭圆的长轴长为()A. B. C. D.2.【河北省衡水中学2018年高考押题三】已知抛物线的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若,则()A. B. C. D.3.【2018届河北省衡水中学三轮复习七】已知双曲线,、是实轴顶点,是右焦点,是虚轴端点,若在线段上(不含端点)存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率的取值范围是()A. B. C. D.4.【2018届江西师大附中三模】已知椭圆的左焦点为,点为椭圆上一动点,过点向以为圆心,为半径的圆作切线,其中切点为,则四边形面积的最大值为()A. B. C. D.5.【2018届湖南省湘潭市四模】已知是椭圆:的左焦点,为上一点,,则的最小值为()A. B. C. D.6.【2018届山东省济南市二模】设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为()A. B. C. D.7.【2018届四川省冲刺演练(一)】已知圆:经过椭圆:的一个焦点,圆与椭圆的公共点为,,点为圆上一动点,则到直线的距离的最大值为()A. B. C. D.8.【2018届浙江省教育绿色评价联盟5月测试】已知是双曲线的左,右焦点,是双曲线上一点,且,若△的内切圆半径为,则该双曲线的离心率为A. B. C. D.9.【2018届四川省成都市模拟一】过点的直线交椭圆于两点,为椭圆的右焦点,当的周长最大时,的面积为__________.10.【2018届山东省潍坊市三模】设抛物线的焦点为,为抛物线上第一象限内一点,满足,已知为抛物线准线上任一点,当取得最小值时,的外接圆半径为______.11.【2018届山东省烟台市高三高考适应性练习(一)】已知抛物线的焦点为是抛物线上一点,若的延长线交轴的正半轴于点,交抛物线的准线于点,且,则=__________.12.【2018届山东省威海市二模】抛物线的焦点为,是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.。
专题(19)巧用向量法求解圆锥曲线问题

高三第二轮专题复习专题(19)——巧用向量法求解圆锥曲线问题一、 利用向量的数量积解决夹角(钝、锐、直)问题例1、过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A B 、两点,O 为坐标原点.求证:ABO ∆是钝角三角形.说明:(1)确定三角形的角时,若三边长易算用余弦定理;若三边长不易计算则考虑向量的数量积;(2)更为一般地,我们有如下重要结论:①过点(,0)(0)M t t >的直线交抛物线22(0)y px p =>于A B 、两点.当02t p <<时,AOB ∠为钝角;当2t p =时,AOB ∠为直角;当2t p >时,AOB ∠为锐角.②过点(0,)(0)M t t >的直线交抛物线22(0)x py p =>于A B 、两点.当02t p <<时,AOB ∠为钝角;当2t p =时,AOB ∠为直角;当2t p >时,AOB ∠为锐角.③抛物线22(0)y px p =>上异于原点O 的动点A B 、满足OA OB ⊥u u r u u u r ,则直线AB 必过定点(2,0)p ;反之,亦成立. ④抛物线22(0)x py p =>上异于原点O 的动点A B 、满足OA OB ⊥u u r u u u r ,则直线AB 必过定点(0,2)p ;反之,亦成立.变式:已知椭圆22:184x y E +=,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A B 、,且O A O B ⊥u u r u u u r ?若存在,写出该圆的方程;若不存在,请说明理由.答案:2283x y +=. 说明:已知椭圆2222:1(0)x y E a b a b+=>>,直线l 与椭圆E 交于A B 、两点,在AOB ∆中,AB 边上的高为OH .(1)若2221112||AOB OH a bπ∠=⇔=+; (2)若2221112||AOB OH a b π∠<⇔<+; (3)若2221112||AOB OH a b π∠>⇔>+. 本例中22221113883r r a b =+=⇒=,则圆的方程为2283x y +=.二、 利用向量知识解决共线问题例2、在平面直角坐标系xoy 中,经过点(0,且斜率为k 的直线l 与椭圆22:12x E y +=有两个不同的交点P Q 、.(1)求实数k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B 、,是否存在常数k ,使得向量OP OQ +u u u r u u u r 与AB uu u r 共线?如果存在,求k 值;如果不存在,请说明理由.答案:不存在.变式:设A B 、是椭圆22:12x E y +=上的两点,(2,0)N -满足NA NB λ=u u r u u u r .当11[,]53λ∈时,求直线AB 斜率的取值范围.答案:121[,[,]2662--.三、利用向量解决参数的取值范围问题例3、已知C 为圆22(1)8x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点(1,0)A 和AP 上的点M 满足0,2M Q A P A P A M ⋅==u u u r u u u r u u u r u u u r .(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,F H ,O 是坐标原点,且满足3445OF OH ≤⋅≤uu u r uuu r ,求k 的取值范围.答案:(1)2212x y +=;(2)[]22U .四、由向量形式给出的圆锥曲线的几何关系例4、在平面直角坐标系xoy 中,1的线段的两端点,C D 分别在,x y 轴上滑动,CP PD =uu r uu u r ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于,A B 两点,OM OA OB =+uuu r uu r uu u r ,当点M 在曲线E 上时,求四边形AOBM 的面积.答案:(1)2212y x +=;(2五、圆锥曲线中求向量数量积的取值范围例5、已知椭圆22122:1(0)y x C a b a b+=>>与抛物线22:2(0)C x py p =>有一个公共焦点,抛物线2C 的准线l与椭圆1C 有一个坐标是的交点.(1)求椭圆1C 与抛物线2C 的方程;(2)若点P 是直线l 上的动点,过点P 作抛物线的两条切线,切点分别为,A B ,直线AB 与椭圆1C 分别交于点,E F ,求OE OF ⋅u u u r u u u r 的取值范围.答案:(1)22212:1,:884y x C C x y +==;(2)(8,2]-.。
向量在圆锥曲线中的应用

向量在圆锥曲线中的应用赵春祥由于平面向量融数、形于一体,具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点和联系多项内容的媒介。
因此,向量的引入大大拓宽了解题的思路,使它在研究许多问题时获得广泛的应用。
利用平面向量这一工具解题,可以简捷、规范地处理数学中的许多问题。
下面介绍向量在圆锥曲线中的应用。
一、在椭圆中的应用例1. 椭圆的焦点为F1,F2,点P为椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是___________。
解:由题意,设三点坐标分别为:P(x0,y)、F1()、F2(),则。
由∠F1PF2为钝角,得,即。
①又点P(x0,y)在椭圆上,所以。
②联合①、②不难求得。
二、在双曲线中的应用例2. 双曲线的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为_________。
解:由已知可得双曲线的两焦点坐标F1(-5,0)、F2(5,0)。
设P(x,y),则。
因为,即,所以。
又因为P(x,y)在双曲线上,所以从而y=±。
因此,点P到x轴的距离为。
三、在抛物线中的应用例3. 设抛物线的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点。
证明:如图,抛物线,焦点是,准线为。
设,A、F、B共线,则设,所以有,由BC∥x轴,可得。
又由点A在抛物线上,得。
化简后,得。
则,从而。
而,即共线,也就是直线AC经过原点。
巧用平面向量的数量积,妙解圆锥曲线问题雷文阁两个非零向量的数量积的定义式含有“角”和“长度”;而该式又可变形为,此式与三角形正弦面积有关;数量积还有坐标形式。
因此,通过数量积可沟通长度、角、坐标及三角形面积之间的关系。
利用数量积解题,可以避繁就简。
以下列举其在圆锥曲线中的应用。
一、证明问题例1. (二册上P82)已知一个圆的直径的端点是,求证圆的方程是证明:设是圆上不同于A、B的任意一点,由圆的性质知又所以当M与A或B重合时,仍满足上式,故得证。
圆锥曲线与向量的综合性问题

圆锥曲线与向量的综合性问题一、常见基本题型:在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐标之间的数量关系,往往要和根与系数的关系结合运用。
(1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质,例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥.当点P 在y 轴上运动时,求点N 的轨迹C 的方程;解:(解法一)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> 又(1,0)F ,(,),(1,)22y y PM x PF ∴=--=- 又PM PF ⊥,204y PM PF x ∴⋅=-+= 所以,点N 的轨迹C 的方程为24(0)y x x =>(解法二)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM =由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x =>所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b+=>>,它的一个焦点与抛物线28y x =的焦点重合,离心率5e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点.(1)求椭圆的标准方程;(2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程;解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为28y x =的焦点坐标为(2,0),所以2c =因为c e a ==25a =,21b = 故椭圆方程为:2215x y += (Ⅱ)由(I )得(2,0)F ,设l 的方程为(2)y k x =-(0k ≠) 代入2215x y +=,得, 设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++, 12121212(4),()y y k x x y y k x x ∴+=+--=-112212122121(1,)(1,)(2,),(,)MA MB x y x y x x y y AB x x y y ∴+=-+-=+-+=--12212112()0,(2)()()()0MA MB AB x x x x y y y y +⋅=∴+--+-+=2222220420,310,5151k k k k k k ∴--=∴-==++ 所以直线l的方程为2020x x -=-=或(2)所求问题以向量的形式呈现例3、已知椭圆E的长轴的一个端点是抛物线2y =(1)求椭圆E 的方程;(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上 是否存在点M ,使⋅为常数若存在,求出点M 的坐标;若不存在,请 说明理由。
向量法解圆锥曲线中的最值
向量法解圆锥曲线中的最值、定值问题的假设干范例江西省高安市石脑二中 王典辉 (330818)圆锥曲线中的最值、定值问题是高考中的热点题型,而以向量为载体的圆锥曲线中的最值、定值问题又是最近几年来高考中显现的新题型。
由于这种题型在解题之前不明白最值、定值的结果,因此对解题增加了必然难度。
但利用向量集数与形于一身,既有代数的抽象性,又有几何的直观性这一特点,能有效地探讨到结果。
本文通过具体的例子来讲明用向量方式对这种问题的求解。
一、最值问题例1.已知点A (0,1),B (0,-1),P 为一个动点,且直线PA 、PB 的斜率之积为-21。
⑴求动点P 的轨迹C 的方程;(⑵设Q (2,0),过点(-1,0)的直线l 交C 于M 、N 两点,△QMN 的面积记为S ,对知足条件的任意直线l ,不等式S ≤λtan ∠MQN 成立,求λ最小值。
解:⑴如图1,设P (x ,y ),k PA =x y -1,k PB =x y 1+,由k PA ·k PB =-21=>221x y -=-21=>22x +y 2=1。
⑵要由不等式S ≤λtan ∠MQN ,求λ最小值一时难以分析清几个量之间的内在联系,于是先从特殊情形进行分析。
当MN ⊥轴时,由上述椭圆方程知,点(-1,0)即为左核心F 1。
现在|F 1Q |=3,又因为x =-1时,y=±22,因此|NM |=2,S △QMN =223。
又因为tan ∠NQF 1=62,tan ∠NQN =tan2∠NQF 1=121tan 1tan 2NQF NQF ∠-∠=1816212-⨯=1726。
由S≤λtan ∠MQN 得λ≥417。
现在易猜想,当NM 不垂直于x 轴时,该结论或许还成立。
可考虑在一样情形下转化的方式,先对关系式S ≤λtan ∠MQN 利用向量进行分析。
由三角形面积公式,得2|||?|QN OM •sin ∠MQN ≤λMQ N MQ N ∠∠cos sin , λ≥21|QM|·|Q N |cos ∠MQN =21Q M ·Q N 。
高考数学压轴难题归纳总结提高培优专题315 探究向量关系式几何意义先分析
【题型综述】探究向量关系问题解题策略:(1)“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素向量关系存在,用向量的坐标运算,转化直线与圆锥曲线交点坐标的函数式,利用设而不求思想,列出关于待定系数的方程组,若方程组有实数解,则向量关系存在存在;否则,向量关系不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【典例指引】类型一 探究向量式是否为定值例1 【2015高考四川,文20】如图,椭圆E a >b >0)P (0,1)在短轴CD上,且PC PD ⋅=-1 (Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由. 类型二 探究向量式是否成立例2. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.是()22221212122333k my y k x x km x x m k -=+++=-,联立直线l 与椭圆22132y kx m y x =+⎧⎪⎨+=⎪⎩可得 ()222234260kx kmx m +++-=,因为直线l 与椭圆只有一个交点,所以()()222201682330k m k m ∆=⇒-+-=,化简可得2223k m =-,因此12OA OB x x =于是222222OA OB OA OB OA OB OA OB ++≠+-,22OA OB OA OB +≠-,OA OB AB +≠, 综上不存在符合题目条件的直线l . 类型三 探究向量式成立的条件例3【2013F, 过点F且与x轴(Ⅰ) 求椭圆的方程;(Ⅱ) 设A, B分别为椭圆的左右顶点, 是否存在过点F且斜率为k的直线与椭圆交于C, D两点,且··8AC DB AD CB+=, 若存在,求k的值,不存在,说明理由..=6+22 212 23kk++,类型四利用向量探究曲线过定点例4. (2012福建理19)如图,椭圆的左焦点为,右焦点为,离心率。
圆锥曲线中的向量与共线问题(五大题型)(原卷版)—2025年新高考数学一轮复习
圆锥曲线中的向量与共线问题(五大题型)首先,明确向量的定义和性质,理解共线向量的概念,即方向相同或相反的向量。
其次,利用向量的坐标表示法,通过比较两向量的对应坐标分量是否成比例,来判断它们是否共线。
若成比例,则两向量共线。
另外,也可以利用向量的几何意义,结合圆锥曲线的特性,通过观察或计算向量的方向来判断其共线性。
综上所述,结合向量的代数和几何性质,可以有效解决圆锥曲线中的向量与共线问题。
题型一:向量的单共线【典例1-1】已知椭圆222:14x yCb+=的右焦点为F,点A,B在C上,且()0AF FBl l=>uuu r uuu r.当1l=时,3AB=.(1)求C的方程;(2)已知异于F的动点P l.(i)若A,B,P三点共线,证明:点P在定直线上:(ii)若A,B,P三点不共线,且35l=,求ABPV面积的最大值.【典例1-2】(2024·安徽淮北·二模)如图,已知椭圆()2222Γ:1,0x y a b a b+=>>的左右焦点为12,F F ,短轴长为6,A 为G 上一点,11,2G æöç÷èø为12AF F △的重心.(1)求椭圆G 的方程;(2)椭圆G 上不同三点,,B C D ,满足22CF OF ^,且222,,BF CF DF 成等差数列,线段BD 中垂线交y 轴于E 点,求点E 纵坐标的取值范围;(3)直线:2l y kx =-与G 交于,M N 点,交y 轴于P 点,若PM PN l =uuuu r uuu r,求实数l 的取值范围.【变式1-1】(2024·高三·浙江宁波·期末)已知点(F 和直线l :y =,动点P 与定点F 的距离和P 到定直线l .(1)求动点P 的轨迹C 的方程;(2)已知()1,1M ,过点M 作直线l ¢交C 于A ,B 两点,若2AM MB =uuuu r uuur,求l ¢的斜率k 的值.【变式1-2】设直线l :1y x =+与椭圆()222210+=>>x ya b a b相交于A 、B 两个不同的点,与x 轴相交于点F .(1)证明:221a b +>;(2)若F 是椭圆的一个焦点,且2AF FB =uuu r uuu r,求椭圆的方程.【变式1-3】已知点(0,1)P ,椭圆22:(1)4xC y m m +=>上的两点,A B .满足2AP PB =uuu r uuu r ,则当m 为何值时,点B 横坐标的绝对值最大?【变式1-4】在直角坐标系xOy 中,已知21212(1,0),(1,0),(,),43C C P x y C P C P x -×=uuur uuuu r.(1)求点P 的轨迹C 的方程;(2)设直线l 不过坐标原点且不垂直于坐标轴,l 与C 交于A 、B 两点,点()()0000,,0M x y x y ¹为弦AB 的中点.过点M 作l 的垂线交C 于D 、E ,N 为弦DE 的中点.①证明:l 与ON 相交;②已知l 与直线ON 交于T ,若(0)ON NT l l =>uuu r uuu r,求l 的最大值.题型二:向量的双共线【典例2-1】如图,已知圆22:210T x y ++-=,圆心是点T ,点G 是圆T 上的动点,点H 的坐标为),线段CH 的垂直平分线交线段TC 于点R ,记动点R 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点H 作一条直线与曲线E 相交于A ,B 两点,与y 轴相交于点C ,若CA AH l =uuu r uuur ,CB BH m =uuur uuur ,试探究l m +是否为定值?若是,求出该定值;若不是,请说明理由;(3)过点()2,1M 作两条直线MP ,MQ ,分别交曲线E 于P ,Q 两点,使得1MP MQ k k ×=.且MD PQ ^,点D 为垂足,证明:存在定点F ,使得DF 为定值.【典例2-2】已知椭圆Γ的方程为2214x y +=,12,F F 分别是Γ的左、右焦点,A 是Γ的上顶点.(1)设直线1AF 与椭圆Γ的另一个交点为B ,求2ABF △的周长;(2)给定点12E ö÷ø,直线12,EF EF 分别与椭圆Γ交于另一点,F G ,求EFG V 的面积;(3)设P 是椭圆Γ上的一点,(),0M m 是x 轴上一点,若点,Q C 满足3PQ PM =u uuu r uuu r ,2AQ AC =uuu r uuu r,且点C 在椭圆Γ上,求m 的最大值,并求出此时点P 的坐标.【变式2-1】已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,点,,A B P 是椭圆C 上三个不同的动点(点P 不在x 轴上),满足1122,(0,0)F P AF F P BF l m l m ==>>uuu r uuur uuur uuur ,且2PAF △与12PF F V 的周长的比值为87.(1)求椭圆C 的离心率;(2)判断l m +是否为定值?若是,请求出定值;若不是,请说明理由.【变式2-2】(2024·高三·上海杨浦·期中)已知椭圆2222:1(0)x y C a b a b +=>>经过(1,0)A ,()0,B b 两点.O 为坐标原点,且AOB V ,过点()0,1P 且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M ,N .且直线AM ,AN 分别与y 轴交于点S ,T .(1)求椭圆C 的方程;(2)若以MN 为直径的圆经过坐标原点,求直线l 的方程;(3)设PS PO l =uuu r uuu r ,PT PO m =uuur uuu r ,求l m +的取值范围.【变式2-3】(2024·辽宁·三模)已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 的短轴长为点()0,P x y 为椭圆C 上的一个动点,直线1PF 与椭圆C 的另一个交点为A ,直线2PF 与椭圆C 的另一个交点为B ,设111PF F A l =uuu r uuu r ,222PF F B l =uuu u r uuu u r.(1)求椭圆C 的方程;(2)证明:12l l +为定值;题型三:三点共线问题【典例3-1】(2024·高三·山东威海·期末)已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别为1A ,2A ,右焦点F 的坐标为()1,0,过点F 作直线交C 于P ,Q 两点(异于1A ,2A ),当PQ 垂直于x 轴时,3PQ =.(1)求C 的标准方程;(2)直线2QA 交直线4x =于点M ,证明:1A ,P ,M 三点共线.【典例3-2】(2024·高三·江苏连云港·期中)在平面直角坐标系xOy 中,点000(,)(0)P y y x ¹在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x x y y +=.(1)求椭圆C 的离心率;(2)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F 三点共线.【变式3-1】(2024·山西太原·三模)已知双曲线 ()2222:10,0x y C a b a b -=>>的左、右顶点分别为A 与 B ,点(D 在 C 上,且直线 AD 与 BD .(1)求双曲线 C 的方程;(2)过点()3,0P 的直线与 C 交于 ,M N 两点(均异于点,A B ),直线 MA 与直线 1x = 交于点Q ,求证:,,B N Q 三点共线.【变式3-2】已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,一条渐近线方程为0x =.(1)求双曲线C 的方程;(2)记C 的左、右顶点分别为A B 、,过F 的直线l 交C 的右支于,M N 两点,连结MB 交直线32x =于点Q ,求证:A Q N 、、三点共线.【变式3-3】(2024·陕西西安·一模)已知椭圆C :()222210+=>>x y a b a b ,右焦点()2,0F c 与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设椭圆C 的左焦点为1F ,过点()3,0D -的直线l 与椭圆C 交于,A B 两点,A 关于x 轴对称的点为M ,证明:1,,M F B 三点共线.【变式3-4】(2024·上海松江·一模)已知椭圆Γ:()222210+=>>x y a b a b 的长轴长为,斜率为k 的直线l 与椭圆Γ有两个不同的交点A ,B (1)求椭圆Γ的方程;(2)若直线l 的方程为:y x t =+,椭圆上点31,22M æö-ç÷èø关于直线l 的对称点N (与M 不重合)在椭圆Γ上,求t 的值;(3)设()2,0P -,直线PA 与椭圆Γ的另一个交点为C ,直线PB 与椭圆Γ的另一个交点为D ,若点C ,D 和点71,42Q æö-ç÷èø三点共线,求k 的值;题型四:向量中的数量积问题【典例4-1】已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,左顶点为()2,0A -,离心率为.(1)求C 的方程;(2)若直线()():10l y k x k =+¹与C 交于,D E 两点,线段,AD AE 的中点分别为P ,Q .设过点1F 且垂直于x轴的直线为l ¢,若直线OP 与直线l ¢交于点S ,直线OQ 与直线l ¢交于点T ,求22F S F T ×uuur uuur.【典例4-2】(2024·高三·浙江·开学考试)已知椭圆()2222:10x y E a b a b+=>>的离心率为12e =,左、右顶点分别为,,A B O 为坐标原点,M 为线段OA 的中点,P 为椭圆上动点,且MPB △(1)求椭圆E 的方程;(2)延长PM 交椭圆于Q ,若6BP BQ ×=uuu r uuu r,求直线PQ 的方程.【变式4-1】(2024·上海长宁·二模)已知椭圆22Γ:1,63x y O +=为坐标原点;(1)求Γ的离心率e ;(2)设点()1,0N ,点M 在Γ上,求MN 的最大值和最小值;(3)点()2,1T ,点P 在直线3x y +=上,过点P 且与OT 平行的直线l 与Γ交于,A B 两点;试探究:是否存在常数l ,使得2PA PB PT l ×=uuu r uuu r uuu r 恒成立;若存在,求出该常数的值;若不存在,说明理由;【变式4-2】(2024·福建厦门·二模)已知()2,0A -,()2,0B ,P 为平面上的一个动点.设直线,AP BP 的斜率分别为1k ,2k ,且满足1234k k ×=-.记P 的轨迹为曲线Γ.(1)求Γ的轨迹方程;(2)直线PA ,PB 分别交动直线x t =于点,C D ,过点C 作PB 的垂线交x 轴于点H .HC HD ×uuur uuur是否存在最大值?若存在,求出最大值;若不存在,说明理由.【变式4-3】(2024·高三·天津河北·期末)设椭圆2222:1(0)x y E a b a b +=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ^,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ×uuuu r uuu r为定值.【变式4-4】已知椭圆22:143x y C +=的左、右顶点分别为,A B ,右焦点为F ,过点A 且斜率为(0)k k ¹的直线l 交椭圆C 于点P .(1)若||AP =k 的值;(2)若圆F 是以F 为圆心,1为半径的圆,连接PF ,线段PF 交圆F 于点T ,射线AP 上存在一点Q ,使得QT BT ×uuu r uuu r为定值,证明:点Q 在定直线上.【变式4-5】(2024·高三·山东·开学考试)已知椭圆221:143x y C +=,且其右焦点为F ,过F 点且与坐标轴不垂直的直线与椭圆交于P 、Q 两点.(1)设O 为坐标原点,线段OF 上是否存在点(),0N n ,使得QP NP PQ NQ ×=×uuu r uuu r uuu r uuu r?若存在,求出n 的取值范围;若不存在,说明理由;(2)过点()04,0P 且不垂直于x 轴的直线与椭圆交于A 、B 两点,点B 关于x 轴的对称点为E ,试证明:直线AE 过定点.题型五:将几何关系中的线段长度乘积转换为向量【典例5-1】如图,已知椭圆22:44C x y +=,过椭圆C 上第一象限的点M 作椭圆的切线与y 轴相交于P 点,O 是坐标原点,作PN OM ^于N ,证明:||||OM ON ×为定值.【典例5-2】如图,已知抛物线2x y =,过点3(0,)4M 且斜率为1的直线l 交抛物线于A ,B 两点,抛物线上的点13(,)(22P x y x -<<,设直线AP ,BP 的斜率分别为1k ,2k .(1)求12k k ×的取值范围;(2)过点B 作直线AP 的垂线,垂足为Q .求||||PA PQ ×的最大值.【变式5-1】(2024·高三·北京·开学考试)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4(1)求椭圆C 的方程;(2)设P 为椭圆的左顶点,过点(1,0)G -不与x 轴重合的直线l 交椭圆C 于两点,M N ,直线1x =-分别交直线,PM PN 于点A 和点B .求证:以AB 为直径的圆经过x 轴上的两个定点.【变式5-2】(2024·全国·模拟预测)已知椭圆E 的中心在坐标原点,焦点12,F F 在y 轴上,点3,12P æö-ç÷èø在E 上,长轴长与短轴长之比为2.(1)求椭圆E 的方程.(2)设A 为E 的下顶点,过点(0,4)B 且斜率为k 的直线与E 相交于,C D 两点,且点C 在线段BD 上.若点M 在线段CD 上,2AMD BAM Ð=Ð,证明:||||||||BC MD BD CM ×=×.(1)求椭圆E 的标准方程;(2)证明:线段AB 的中点C 在直线2:3l y x =-¢上;(3)过点B 作x 轴的平行线,与直线2:3l y x =-¢的交点为N ,证明:点N 在以线段AB 为直径的圆上.2.(2024·全国·模拟预测)已知椭圆22122:1(0)x y C a b a b +=>>的长轴长为4,左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,四边形1122A B A B 的内切圆2C 1C 上一点T 引圆2C 的两条切线(切线斜率存在且不为0),分别交椭圆1C 于点P ,Q .(1)求椭圆1C 的方程;(2)试探究直线TP 与TQ 的斜率之积是否为定值,并说明理由;(3)记点O 为坐标原点,求证:P ,O ,Q 三点共线.3.已知椭圆22221(0)x y a b a b +=>>的上、下顶点分别为,A B ,已知点B 在直线l :1y =-上,且椭圆的离心率e =(1)求椭圆的标准方程;(2)设P 是椭圆上异于,A B 的任意一点,PQ y ^轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l 于点C ,N 为线段BC 的中点,求OM NM ×uuuu r uuuu r的值.4.(2024·陕西咸阳·模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu r uuu r,求l 的取值范围.5.已知椭圆22:12x C y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q 的轨迹方程.6.(2024·吉林长春·一模)椭圆221(0)y C a b b =>>长度为1.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相交于A ,B 两点,与y 轴相交于(0,)M m 点,若存在实数m ,使得34OA OB OM uuu r uuu r uuuu r +=,求m 的取值范围.7.(2024·广东广州·模拟预测)在平面直角坐标系xOy 中,点T 到点(2,0)F 的距离与到直线1x =的距离之T 的轨迹为曲线E ,直线1l 交E 右支于A ,B 两点,直线2l 交E 右支于C ,D 两点,12l l //.(1)求E 的标准方程;(2)证明:OA OB OC OD ×=×uuu r uuu r uuu r uuu r ;(3)若直线1l 过点(2,0),直线2l 过点(8,0),记AB ,CD 的中点分别为P ,Q ,过点Q 作E 两条渐近线的垂线,垂足分别为M ,N ,求四边形PMQN 面积的取值范围.8.(2024·河南驻马店·二模)已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C 交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+¹与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ×=×=×uuu r uuu r uuu r uuu r uuu r uuu r 的点()00,E x y 若存在,求2200x y -的值;若不存在,请说明理由.9.如图:双曲线22:13G -=x y 的左、右焦点分别为1F ,2F ,过2F 作直线l 交y 轴于点Q .(1)当直线l 平行于G 的斜率大于0的渐近线1l 时,求直线l 与1l 的距离;(2)当直线l 的斜率为1时,在G 的右支上是否存在点P ,满足110F P FQ ×=uuu r uuur ?若存在,求出P 点的坐标;若不存在,说明理由;10.(2024·湖北襄阳·模拟预测)设双曲线()2222:10,0x y E a b a b-=>>的左、右顶点分别为A ,B ,左、右焦点分别为1F ,2F ,12F F =E 的渐近线方程为12y x =±,直线l 交双曲线E 于P ,Q 两点.(1)求双曲线E 的方程;(2)当直线l 过点()4,0时,求AP AQ ×uuu r uuu r 的取值范围.11.已知双曲线222Γ:1,(0),y x b b -=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ×=uuur uuu u r ,求b 的取值范围.12.(2024·河北衡水·模拟预测)已知圆()22:(2)12,2,0F x y E -+=-,过E 的直线与圆F 交于,A B 两点,过E 作AF 的平行线交直线BF 于H 点.(1)求点H 的轨迹C 的方程;(2)过F 作两条互相垂直的直线121,,l l l 交曲线C 于112,,P Q l 交曲线C 于22,PQ ,连接弦11PQ 的中点和22P Q 的中点交曲线C 于,M N ,若1913FM FN ×=uuuu r uuu r ,求1l 的斜率.13.(2024·山东泰安·模拟预测)已知直线l :kx y k --=0分别与x 轴,直线=1x -交于点A ,B ,点P 是线段AB 的垂直平分线上的一点(P 不在x 轴负半轴上)且tan ABP k Ð=.(1)求点P 的轨迹C 的方程;(2)设l 与C 交于E ,F 两点,点M 在C 上且满足0AE AM ×=uuu r uuuu r ,延长MA 交C 于点N ,求EM NF ×uuuu r uuu r 的最小值.14.(2024·全国·模拟预测)在平面直角坐标系xOy 中,双曲线()2222:10,0x y C a b a b-=>>,1F ,2F 分别为曲线C 的左焦点和右焦点,P 在双曲线的右支上运动,2PF 的最小值为1,且双曲线C 的离心率为2.(1)求双曲线C 的方程;(2)当过()2,1Q 的动直线l 与双曲线C 相交于不同的点A ,B 时,在线段AB 上取一点M ,满足QB AM QA MB ×=×uuu r uuuu r uuu r uuu r .证明:点M 总在某定直线上.15.(2024·高三·山东临沂·期末)已知圆M :(229x y +=的圆心为M ,圆N :(221x y +=的圆心为N ,一动圆与圆N 内切,与圆M 外切,动圆的圆心E 的轨迹为曲线C .(1)求曲线C 的方程:(2)已知点()2,0P ,直线l 不过P 点并与曲线C 交于,A B 两点,且0PA PB ×=uuu r uuu r ,直线l 是否过定点?若过定点,求出定点坐标:若不过定点,请说明理由,16.在直角坐标平面中,ABC V 的两个顶点A ,B 的坐标分别为A æöç÷ç÷èø,B ö÷÷ø,两动点M ,N满足0MA MB MC ++=uuu r uuu r uuu r r MN uuuu r 与AB uuu r 共线.(1)求ABC V 的顶点C 的轨迹方程;(2)若过点(0,1)P 的直线与(1)轨迹相交于E ,F 两点,求PE PF ×uuu r uuu r 的取值范围.17.(2024·贵州贵阳·三模)已知A 为双曲线22:13y C x -=的右顶点,过点(0,2)B 的直线l 交C 于D 、E 两点.(1)若AD AE ^,试求直线l 的斜率;(2)记双曲线C 的两条渐近线分别为12,l l ,过曲线C 的右支上一点P 作直线与1l ,2l 分别交于M 、N 两点,且M 、N 位于y 轴右侧,若满足1,,42MP PN l l éù=Îêúëûuuur uuu r ,求MON S V 的取值范围(O 为坐标原点).18.(2024·湖南衡阳·模拟预测)已知双曲线2222:1(0,0)x y C a b a b -=>>的右顶点为2A ,双曲线C 的左、右焦点分别为12F F 、,且124F F =,双曲线C的一条渐近线方程为y =.(1)求双曲线C 的标准方程;(2)已知过点()1,4P 的直线与双曲线C 右支交于A B 、两点,点Q 在线段AB 上,若存在实数(0l l >且1)l ¹,使得,AP PB AQ QB =-=uuu r uur uuu r uuu r l l ,证明:直线2A Q 的斜率为定值.。
圆锥曲线分类讲义之——向量问题
圆锥曲线的向量问题【例1】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为,21以原点O 为圆心,椭圆的短半轴长为半径的圆与直线06=+-y x 相切。
(I )求椭圆C 的方程;(II )设P (4,0),A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴交于定点Q ;(III )在(II )条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求ON OM ⋅的取值范围。
【例2】在直角坐标系xOy 中,椭圆C 1:22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2.其中F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且25||3MF =.(1)求C 1的方程;(2)平面上的点N 满足12MN MF MF =+,直线l ∥MN ,且与C 1交于A 、B 两点,若OA ·OB =0,求直线l 的方程.【例3】已知椭圆)0(12222>>=+b a by a x 的离心率为.36 (I )若原点到直线0=-+b y x 的距离为,2求椭圆的方程;(II )设过椭圆的右焦点且倾斜角为︒45的直线l 和椭圆交于A ,B 两点. (i )当3||=AB ,求b 的值;(ii )对于椭圆上任一点M ,若OB OA OM μλ+=,求实数μλ,满足的关系式.练习:已知椭圆22221(0)x ya ba b+=>>的长轴长为4,且点3(1,)2在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点的直线l交椭圆于,A B两点,若以AB为直径的圆过原点,求直线l方程.【例4】已知椭圆22221x y a b +=(a>b>0)的离心率32e =,椭圆上任意一点到椭圆的两个焦点的距离之和为4.设直线l 与椭圆相交于不同的两点A 、B ,点A 的坐标为(a -,0).(Ⅰ)求椭圆的标准方程; (Ⅱ)若42||5AB =,求直线l 的倾斜角; (Ⅲ)若点Q 0(0,)y 在线段AB 的垂直平分线上,且4=∙QB QA ,求0y 的值.【例5】已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ⋅=.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275NA NB -⋅-≤≤,求直线l 的斜率的取值范围.练习:已知中心在原点,焦点在x 轴上的椭圆C 的离心率为21,且经过点)23,1(M ,过点P (2,1)的直线l 与椭圆C 相交于不同的两点A 、B.(1)求椭圆C 的方程;(2)是否存直线l ,满足2PM PB PA =⋅?若存在,求出直线l 的方程;若不存在,请说明理由.【与平行四边形有关的向量问题】1、已知点M (-1,0),N (1,0),动点P (x ,y )满足:|PM|•|PN|=(1)求P 的轨迹C 的方程; (2)是否存在过点N (1,0)的直线l 与曲线C 相交于A 、B 两点,并且曲线C 存在点Q ,使四边形OAQB 为平行四边形?若存在,求出直线l 的方程;若不存在,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学解答题难题突破—圆锥曲线中探究向量关系式几何意义【题型综述】探究向量关系问题解题策略:(1)“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素向量关系存在,用向量的坐标运算,转化直线与圆锥曲线交点坐标的函数式,利用设而不求思想,列出关于待定系数的方程组,若方程组有实数解,则向量关系存在存在;否则,向量关系不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【典例指引】类型一 探究向量式是否为定值例1 【2015高考四川,文20】如图,椭圆E :22221x y a b +=(a >b >0)的离心率是2,点P (0,1)在短轴CD 上,且PC PD ⋅=-1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.类型二 探究向量式是否成立例2. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.是()22221212122333k my y k x x km x x m k -=+++=-,联立直线l 与椭圆22132y kx m y x =+⎧⎪⎨+=⎪⎩可得 ()222234260kx kmx m +++-=,因为直线l 与椭圆只有一个交点,所以()()222201682330k m k m ∆=⇒-+-=,化简可得2223k m =-,因此2222121222233330333m k m k OA OB x x y y k k k +---=+=+=≠--- ,于是222222OA OB OA OB OA OB OA OB ++≠+-,即22OA OB OA OB +≠- ,所以OA OB AB +≠ ,综上不存在符合题目条件的直线l . 类型三 探究向量式成立的条件例3【2013年高考,天津卷理】设椭圆22221(0)x y a b a b+=>>的左焦点为F , 过点F 且与x . (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 是否存在过点F 且斜率为k 的直线与椭圆交于C , D 两点,且··8AC DB AD CB += , 若存在,求k 的值,不存在,说明理由..=6+2221223k k++,由已知得6+2221223k k ++=8,解得k =类型四 利用向量探究曲线过定点例4. (2012福建理19)如图,椭圆的左焦点为,右焦点为,离心率。
过的直线交椭圆于两点,且的周长为8。
(Ⅰ)求椭圆的方程。
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点。
试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。
)0(1:2222>>=+b a by a x E 1F 2F 21=e 1F B A ,2ABF ∆E m kx y l +=:E P 4=x Q M PQ M M(法3) 由22143y kx m x y =+⎧⎪⎨+=⎪⎩得222(43)84120k x kmx m +++-=,∵动直线l 与椭圆E 有且只要一个交点00(,)P x y ,∴0m ≠且△=0,即2222644(43)(412)0k m k m -+-=,化简得22430,k m -+= ① 此时0x =2443km k -+=4k m -,0y =0kx m +=3m ,∴P (4k m -,3m), 由4x y kx m =⎧⎨=+⎩得Q (4,4k m +).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上,【扩展链接】1. 设圆锥曲线C 的焦点F 在x 轴上,过焦点F 且斜率为k 的直线l 交曲线C 于B A ,两点,若)0(>=λλ,则|11|12+-+=λλk e . 2. 在圆锥曲线中,过焦点F 不垂直于坐标轴的弦为AB ,其垂直平分线和焦点所在的坐标轴交于R ,则2||||eAB FR =. 3.已知椭圆)0(12222>>=+b a b y a x 的两个焦点分别为)0,(1c F -和)0,(2c F (0>c ),过点)0,(2ca E 的直线与椭圆相交于B A ,两点,若)1(21±≠=λλF F ,则直线一定过),0(b 或),0(b -.4.如果平面内有B A O ,,三点不共线,设S AOB =∆. 【同步训练】1.已知椭圆C :+=1(a >b >0)的上下两个焦点分别为F 1,F 2,过点F 1与y 轴垂直的直线交椭圆C 于M ,N 两点,△MNF 2的面积为,椭圆C 的离心率为(1)求椭圆C的标准方程;(2)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ=4,求m的取值范围.【思路点拨】(1)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1﹣x2|=,由题意得,△MNF2的面积为|MN|×|F1F2|=c|MN|=,又∵,解得a、b即可.(2)设A(x1,y1),B(x2,y2),P(0,y0),分类讨论:当m=0时,利用椭圆的对称性即可得出;m≠0时,直线AB的方程与椭圆的方程联立得到△>0及根与系数的关系,再利用向量相等,代入计算即可得出.(2)当m=0时,则P(0,0),由椭圆的对称性得,∴m=0时,存在实数λ,使得+λ=4,当m≠0时,由+λ=4,得,∵A、B、p三点共线,∴1+λ=4,⇒λ=3⇒设A(x1,y1),B(x2,y2)由,得(k2+4)x2+2mkx+m2﹣4=0,由已知得△=4m2k2﹣4(k2+4)(m2﹣4)>0,即k2﹣m2+4>0且x1+x2=,x1x2=.由得x1=﹣3x23(x1+x2)2+4x1x2=0,∴,⇒m2k2+m2﹣k2﹣4=0显然m2=1不成立,∴∵k2﹣m2+4>0,∴,即.解得﹣2<m<﹣1或1<m<2.综上所述,m的取值范围为(﹣2,﹣1)∪(1,2)∪{0}2.已知F1,F2分别是椭圆C:+=1(a>b>0)的两个焦点,P(1,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列.(1)求椭圆C的标准方程;(2)已知动直线l过点F2,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得•=﹣恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.【思路点拨】(1)根据椭圆的性质及等差数列性质得出a=c,把P点坐标代入椭圆方程列方程组解出a,b得出椭圆方程;(2)设Q(m,0),讨论直线l的斜率,求出A,B坐标,列方程解出m.3.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的一个焦点为F1(﹣,0),M(1,y)(y>0)为椭圆上的一点,△MOF1的面积为.(1)求椭圆C的标准方程;(2)若点T在圆x2+y2=1上,是否存在过点 A(2,0)的直线l交椭圆C于点 B,使=(+)?若存在,求出直线l的方程;若不存在,请说明理由.【思路点拨】(1)由已知列式c=,,∴,得a2,b2即可;(2)设直线l的方程为:y=k(x﹣2),A(x1,y1),B(x2,y2).由得(1+4k2)x2﹣16k2x+16k2﹣4=0,x1+x2=,y1+y2=k(x1+x2)﹣4k=,=(+)=,得T()代入圆C1,可得化为176k4﹣24k2﹣5=0可求得k.4.已知椭圆的两个焦点为,是椭圆上一点,若,.(1)求椭圆的方程;(2)直线l过右焦点(不与x轴重合)且与椭圆相交于不同的两点A,B,在x轴上是否存在一个定点P(x0,0),使得的值为定值?若存在,写出P点的坐标(不必求出定值);若不存在,说明理由.【思路点拨】(1)根据椭圆的定义及勾股定理即可求得a=3,c=,b 2=a2﹣c2=4,即可求得椭圆方程;(2)方法一:设直线l:x=my+,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,•=t 则(4x02﹣36)m2+9x02﹣18x0+29=t(4m2+9),比较系数,即可求得x0=,在x轴上存在一个定点P(,0),使得•的值为定值(﹣);方法二:分类讨论,当直线l的斜率存在时,设直线l:y=k(x﹣),代入椭圆方程,利用韦达定理及向量数量积的坐标运算,令•=t 则(9x 02﹣18x0+29)k2+4x02﹣36=t(4+9k2),9x02﹣18x0+29=9 t且4x02﹣36=4t,即可求得x0=,此时t的值为﹣.解法二:当直线与x轴不垂直时,设直线l方程为:y=k(x﹣),代入椭圆方程并消元整理得:(9k2+4)x2﹣18k2x+45k2﹣36=0…①设A(x1,y1),B(x2,y2),则是方程①的两个解,由韦达定理得:x1+x2=,x1x2=,y1y2=k2(x1﹣)(x2﹣)=k2( x1x2﹣(x1+x2)+5)=﹣,•=(x1﹣x0,y1)•(x2﹣x0,y2)=( x1﹣x0)( x2﹣x0)+y1y2=x1x2﹣x0(x1+x2)+x02+y1y2,=,令•=t 则(9x02﹣18x0+29)k2+4x02﹣36=t(4+9k2),9x02﹣18x0+29=9 t且 4x02﹣36=4t,解得:x0=,此时t的值为﹣,当直线l与x轴垂直时,l的方程为:x=,代入椭圆方程解得:A(,﹣),B(,),•=(﹣,﹣)•(﹣,)=﹣=﹣,∴当直线l与x轴垂直时,•也为定值﹣,综上,在x轴上存在一个定点P(,0),使得•的值为定值(﹣).5.如图已知椭圆C:+=1(a>b>0)的离心率为,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M,N.(1)求椭圆C的方程;(2)求•的最小值,并求此时圆T的方程.【思路点拨】(1)运用椭圆的离心率公式和顶点坐标,结合a,b,c的关系,可得椭圆方程;(2)设M(m,n),由对称性可得N(m,﹣n),代入椭圆方程,再由向量数量积的坐标表示,转化为关于m的二次函数,配方,结合椭圆的范围,可得最小值,进而得到M的坐标,可得圆的方程.6.已知椭圆的离心率,以上顶点和右焦点为直径端点的圆与直线x+y﹣2=0相切.(1)求椭圆的标准方程;(2)对于直线l:y=x+m和点Q(0,3),椭圆C上是否存在不同的两点A与B关于直线l对称,且3•=32,若存在实数m的值,若不存在,说明理由.【思路点拨】(1)由椭圆的离心率,得b=c,写出以上顶点和右焦点为直径端点的圆的方程,再由点到直线的距离列式求得b,c的值,结合隐含条件求得a,则椭圆方程可求;(2)由题意设A(x1,y1),B(x2,y2),直线AB方程为:y=﹣x+n.联立消y整理可得:3x2﹣4nx+2n2﹣2=0,由△>0解得n的范围.再由根与系数的关系结合中点坐标公式求得直线AB之中点坐标,代入直线AB,再由点P在直线l上求得m的范围,最后由3•=32求得m的值.(2)由题意设A(x1,y1),B(x2,y2),直线AB方程为:y=﹣x+n.联立消y整理可得:3x2﹣4nx+2n2﹣2=0,由△=(﹣4n)2﹣12(2n2﹣2)=24﹣8n2>0,解得.,,设直线AB之中点为P(x0,y0),则,由点P在直线AB上得:,又点P在直线l上,∴,则…①.又,,∴=,解得:或m=﹣1…②综合①②,知m的值为.7.已知椭圆C:+=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为﹣.(1)求椭圆C的方程;(2)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求•+•的取值范围.【思路点拨】(1)求得直线TA,TB的斜率,由•=﹣,即可求得椭圆C的方程;(2)设直线PQ方程,代入椭圆方程,利用韦达定理及向量数量积的坐标,求函数的单调性,即可求得•+•的取值范围.==﹣20+.…(8分)﹣20<•+•≤﹣,…(10分)当直线PQ斜率不存在时•+•的值为﹣20,综上所述•+•的取值范围为[﹣20,﹣].…(12分)8.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.(1)若点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值;(2)过A,B分别作抛物线E的切线l1,l2,若l1与l2交于点P,求的值.【思路点拨】(1)由题意设直线AB的方程,代入抛物线方程,利用韦达定理及弦长公式,根据函数的单调性即可求得四边形OACB面积的最小值;(2)求导,利用点斜式方程,求得求得切线l1,l2的方程,联立求得P点坐标,根据向量的坐标运算,即可求得的值.9.已知点P(4,4),圆C:(x﹣m)2+y2=5(m<3)与椭圆E:+=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.(1)求m的值与椭圆E的方程;(2)设Q为椭圆E上的一个动点,求•的取值范围.【思路点拨】(1)先利用点A在圆上求出m,再利用直线PF1与圆C相切求出直线PF1与的方程以及c,再利用点A在椭圆上求出2a,即可求出椭圆E的方程;(2)先把用点Q的坐标表示出来,再利用Q为椭圆E上的一个动点以及基本不等式即可求出的取值范围.(2),设Q(x,y),,.∵,即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|,∴﹣18≤6xy≤18.则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].∴x+3y的取值范围是[﹣6,6]∴x+3y﹣6的范围只:[﹣12,0].即的取值范围是[﹣12,0].10.若椭圆E1:与椭圆E2:满足,则称这两个椭圆相似,m 叫相似比.若椭圆M1与椭圆相似且过点.(1)求椭圆M1的标准方程;(2)过点P(﹣2,0)作斜率不为零的直线l与椭圆M1交于不同两点A、B,F为椭圆M1的右焦点,直线AF、BF分别交椭圆M 1于点G、H,设,,求λ1+λ2的取值范围.【思路点拨】(1)根据题意,设椭圆M1的标准方程为,由“椭圆相似”的性质分析可得,,解可得a2、b2的值,代入椭圆的方程即可得答案;(2)设直线l的斜率为k,以及A、B、G、H的坐标,可以表示、的坐标,分“AG与x轴不垂直”和“AG与x轴垂直”两种情况,求出直线AG的方程,联立直线与椭圆的方程,由根与系数的关系的分析可得λ1+λ2范围,即可得答案.得,∴λ1=3﹣2x1,当AG与x轴垂直时,点A的横坐标为1,λ1=1,λ2=3﹣2x1成立,同理可得λ2=3﹣2x2,设直线l的方程为y=k(x+2),代入椭圆方程,得(2k2+1)x2+8k2x+8k2﹣2=0,则,得,,,,由得,即λ1+λ2范围为(6,10).11.已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为圆F1、F2,M是C上一点,|MF1|=2,且||||=2.(1)求椭圆C的方程;(2)当过点P(4,1)的动直线l与椭圆C相交于不同两点A、B时,线段AB上取点Q,且Q满足| |||=||||,证明点Q总在某定直线上,并求出该定直线的方程.【思路点拨】(1)由已知得a=2c,且∠F1MF2=60°,由余弦定理求出c=1,即可求得a,结合隐含条件求得b,则椭圆C的方程可求;(2)设直线l的方程为y=kx+(1﹣4k),代入椭圆方程,得(3+4k2)x2+(8k﹣32k2)x+64k2﹣32k﹣8=0,利用根与系数的关系结合已知向量等式即可证明点Q总在某定直线上,并求出该定直线方程.证明:(2)由题意可得直线l的斜率存在.设直线l的方程为y﹣1=k(x﹣4),即y=kx+(1﹣4k),代入椭圆方程,整理得(3+4k2)x2+(8k﹣32k2)x+64k2﹣32k﹣8=0,设A(x1,y1),B(x2,y2),则,.设Q(x0,y0),由||||=||||,得:(4﹣x1)(x0﹣x2)=(x1﹣x0)(4﹣x2)(考虑线段在x轴上的射影即可),∴8x0=(4+x0)(x1+x2)﹣2x1x2,于是,整理得3x0﹣2=(4﹣x0)k,①又k=,代入①式得3x0+y0﹣3=0,∴点Q总在直线3x+y﹣3=0上.12.如图,椭圆E:,点P(0,1)在短轴CD上,且(1)求椭圆E的方程及离心率;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.【思路点拨】(1)由已知可得点C,D的坐标分别为(0,﹣b),(0,b).结合•=﹣2列式求得b,则椭圆方程可求,进一步求出c可得椭圆的离心率;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立直线方程和椭圆方程,利用根与系数的关系可得A,B横坐标的和与积•+λ•,可知当λ=2时,•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,仍有•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.。