SAE-C2003T320-车身结构耐撞性能优化设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车身结构耐撞性能优化设计

李佳洁

哈飞汽车制造有限公司

[摘要] 本文主要针对在我国全面实行汽车整车正面碰撞标准之后,结合某微型车整车碰撞试验模拟分析及耐撞性能优化改进设计实例,对强制性标准中车身结构的被动安全对策加以深入探讨、总结。针对实车碰撞结果存在的问题,将理论分析、计算机模拟计算的方法相结合进行设计优化,并利用等数值分析手段对微车车架及前部结构进行了结构优化改进设计,碰撞结果表明系统的改进可使汽车的被动安全性得到显著提高。

关键词:正面碰撞车身安全结构被动安全

1 概述 

汽车被动安全性能已是当今世界汽车技术发展的主流方向之一。汽车的被动安全性更是汽车产品竞争力的重要标志,也成为新车设计所应考虑的主要因素。汽车被动安全性设计是一个非常复杂的系统工程,其根本任务是通过合理设计控制汽车碰撞中结构部件的变形、受力和相互作用,使造成的成员伤害降到最低限度。汽车的被动安全性设计实际上就是寻找为保证碰撞安全所愿付出的代价与可能造成乘员伤害的一种平衡。现今的车身结构应具有良好的耐撞性,高强度化特性。在汽车碰撞中,车身是吸收能量的主体,车身的安全设计水平,主体上决定了车辆的被动安全性能。通过某些国产车型耐撞性改进成功设计实例,探索出汽车被动安全设计和改进的规律,积累汽车耐撞性改进和优化设计经验可以大幅度的降低研发成本,减少盲目探索。

2 碰撞法规与车身的碰撞特性 

国际上具有代表性的汽车碰撞安全法规及技术法规共有三大体系,即美国联邦机动车安全法规(FMV SS)、欧洲汽车法规(ECE)、日本保安基准(TRIAS)。在国际大背景下,我国积极参与国际汽车技术法规制定和协调工作,并参考欧洲技术法规制定了我国的汽车强制性正碰标准体系(CMVDR294),侧碰标准的实施也将是必然趋势。

汽车是一个具有复杂结构的高速运动物体,其碰撞形式归纳起来可大致分为三种形式:正面碰撞、侧面碰撞和后面碰撞,另外还有车碰行人与翻车等。根据资料(如图1)可知,汽车发生正面碰撞(包括斜碰)的概率在40%左右。因此以正面碰撞特性为主要依据进行设计,对降低乘员的伤害将非常重要。图1 包含所有伤害类型的撞击事故的概率分布,图 2 给出了汽车车头的理想变形特性曲线。

图1 所有伤害类型的撞击事故的概率分布图 2 汽车车头的理想变形特性曲线

所谓良好的吸收特性:一方面,汽车的前部结构要尽可能多地吸收撞击能量(如图2所示的头部理想变形特性曲线),使作用于乘员上的力和加速度控制在规定的范围内;另一方面,控制受压各部件的变形形式,防止车轮、发动机、变速箱等刚性部件侵入驾驶室。 

3 安全的车身结构设计 

3.1 基本思想 

从车辆的安全角度划分,可把整个车身分为三个部分:前撞部分、乘员乘坐部分和后撞部分。车身的三个部分的设计要求不尽相同。前、后撞部分结构设计要相对乘员乘坐部分“软”,当车辆发生碰撞时,“碰撞部分”应尽可能多变形以吸收撞击能量,剩余能量尽可能的传至大梁、立柱等处。换言之,通过良好的能量传递途径,尽可能少的将能量传至乘员乘坐部分。乘员乘坐部分的结构要设计得“硬”。从车辆的安全角度看,乘员区是车辆最重要部分,为保证乘员安全,这部分应尽可能减少变形,原因是车身变形可直接伤及乘员或直接影响乘员在发生事故后的逃逸性能。,考虑撞车安全性的车身结构设计的基本思想是利用车身的前、后部有效地吸收撞击能量。车室要坚固可靠,确保乘员的有效生存空间,即从安全角度看,车身总的设计原则是:两头“软”,中间“硬”。

与正面碰撞相比,侧面碰撞车身变形空间小,对乘员的危害较大,因此,增加车室刚度,保证乘员的有效生存空间显得尤为重要。为了加强乘员保护,车门、门槛和立柱都要设计成刚性结构,并且越来越多的采用防侧碰安全气囊,来减轻乘员因二次碰撞造成的伤害。实现侧面碰撞防护的指导思想是:将侧碰力有效地转移到车身具有保护作用的梁、柱、地板、车顶及其它部件,使撞击力被这些部件分散、吸收,从而极大限度的把可能造成的损害降低到最小程度。一般多采取增加车门强度、增加侧围物件的强度、增加门槛梁强度、合理设计门锁及门铰链等措施达到上述目的。

安全的车身结构设计的基本思想是利用车身的前后部最大可能的有效吸收撞击能量,使乘员在有足够的有效生存空间的前提下,让传递到乘员的碰撞能量最小。奔驰公司将这种思想称为安全室构造准则。图3是该准则的概念图,阴影线部分描述的是撞车时希望产生变形的区域。

图3 安全室构造

4 车身结构设计的安全对策

基本的车身结构设计不但决定了车身的整体变形方式和损害程度,还确定了汽车碰撞中的加速度变化。结构的耐碰撞性设计是汽车具有良好被动安全性的基础。该种设计的关键在于对结构碰撞非线性响应的准确预测。汽车结构碰撞响应是个极其复杂的过程,在不同时速、不同情况下,碰撞响应是不同的。为了满足不同情况下的碰撞安全要求,在车身结构设计时,需要从汽车的整体结构考虑,并将新材料、新工艺的研究成果应用到车身结构设计上来。

4.1 低速( 8km/h)碰撞行人对策

该种碰撞速度标准的目的是保护行人安全、降低行人的伤害程度,并使汽车重要部件免遭损坏,节约因撞车造成的维修费用。与此相对应,设计车身结构时应考虑如下措施:采用吸能式保险杠,减轻一次碰撞伤害;将风窗玻璃框架外部设计成软结构,减轻行人因二次碰撞造成的对行人头颅和胸部等部分的损害;将门把手等装置设计成内凹式;采用具有缓冲机构的后视镜等措施。防止车外凸出物对行人三次碰撞伤害。例如筒状能量吸收式装置、利用泡沫材料作为能量吸收体。

4.2 正面碰撞(48km/h)安全对策

正面碰撞在汽车事故中发生频率最高,主要保护措施是利用汽车前部的压溃变形吸收能量,缓解碰撞加速度;加固车身驾驶室结构,保证乘员有足够的生存空间,即采用“高吸能前部结构”和“高刚性车室结构”相结合的安全强化车体。并利用安全带、安全气囊等乘员保护装置,防止乘员因二次碰撞造成伤害。要想从根本上解决问题,我们需要从以下方面入手:

(1)保证基本的许可变形量。许可变形量,决定了碰撞过程中的平均减速度。汽车的纵向变形量与平均减速度是成反比的。平均减速度作为汽车结构耐碰撞性的主要设计指标,在设计开始阶段就必须综合考虑确定。

(2)保证基本的许可变形空间。保证许可变形空间是指汽车在发生正面碰撞后,前部变形区域不会对乘员形成威胁和伤害,而且包括前部许可变形区域内的塑性变形不会导致在碰撞过程中车门打开、碰撞后车门锁死等状况发生。

(3)调整截面形状(通过吸能筋与加强筋的布置)、厚度、尺寸和结构形式等使结构的变形阻力保持在适当水平,并重视局部弱化使整车刚度分配符合设计原则及能量吸收曲线图。

前门槛断面前纵梁断面

图4 增大撞击吸收能量的腔型结构

4.2.1 汽车前部构件的结构设计

汽车前部构件的碰撞能量主要依靠物件的弯曲变形和压溃变形来吸收。实际上这两种吸能方式往往同时存在。设计这类梁的指导思想就是使其尽可能的沿着轴向压溃变形,控制其弯曲变形量。对于纵梁的设计,可运用有限元分析方法,同时对几种方案进行比较、优化,确定截面参数,并由此计算出不同参数的能量吸收曲线,从而确定零件的最佳结构与板料的厚度。图5给出了不同截面形状的抗碰撞能力,图6示出了同一截面不同焊接形式的抗碰撞能力。

图5 不同截面形状的抗碰撞能力 图6 不同焊接形式的抗碰撞能力 

4.2.2 结构筋的布置

在纵梁上合理布置加强筋和吸能筋(凸凹台),可以有效地控制纵梁的变形,提高其能量吸收能力或增强其强度。图7示出了有凸台和无凸台两种情况下边梁变形过程的模拟计算载荷变化曲线。无凸台的纵梁在发生明显变形,吸收能量能力显著下降。图8给出了常用加强筋和吸能筋(凸凹台)形式。

筋的刚性主要取决于它的深度。设计加强筋应注意:

(1)加强筋的轴线必须直,否则在振动时会引起扭转。

相关文档
最新文档