2017年高考真题——文科数学(全国Ⅲ卷)解析
2017年河北省全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
全国卷1高考文科数学2017年试题及答案解析(图片版)

全国卷1高考文科数学2017年试题及答案
解析(图片版)
高考语文复习资料高考数学复习资料高考英语复习资料高考文综复习资料高考理综复习资料高考语文模拟试题高考数学模拟试题高考英语模拟试题高考文综模拟试题高考理综模拟试题高中学习方法高考复习方法高考状元学习方法高考饮食攻略高考励志名言忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
高考这个关出国留学网小编陪你一起过,以下是全国卷1高考文科数学2017年试题及答案解析,以供参考。
全国卷1高考文科数学2017年试题及答案解析2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)
猜你喜欢:
2017年高考热点2017年全国各省高考成绩查询入口汇总2017高考招生简章2017高考招生信息汇总2017年全国高考
加分政策汇总2017年全国各省高考答案汇总2017全国高考志愿填报时间及入口汇总2017年全国高考体检时间及通知汇总全国各省2017年高考改革方案汇总2017阳光高考网2017年高考作文题目及范文汇总2017年全国各省市高考状元名单2017年全国各省高考录取分数线出国留学网高考频道整理。
2017年普通高等学校全国卷Ⅲ文数 高考试题 (真题精编版)

3 2. 4a
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修 4―4:坐标系与参数方程](10 分)
x 2+t , 在直角坐标系 xOy 中,直线 l1 的参数方程为 (t 为参数),直线 l2 的参数方程为 y kt , x 2 m , .设 l1 与 l2 的交点为 P,当 k 变化时,P 的轨迹为曲线 C. (m为参数) m y , k
已知函数 f ( x) =│x+1│–│x–2│. (1)求不等式 f ( x) ≥1 的解集; (2)若不等式 f ( x) ≥x2–x +m 的解集非空,求 m 的取值范围.
文档来源:工大教育网络编辑部
更多学习资料尽在学校官网:
也可拨打名师热线:400-63663-138
1 6.函数 f(x)= sin(x+ )+cos(x− )的最大值为 5 3 6
A.
6 5
B. 1
C.
3 5
D.
1 5
7.函数 y=1+x+
sin x 的部分图像大致为 x2
A.
B.
C.
D.
8.执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数 N 的最小值为
-2-
学校网址:
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生 都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17. (12 分) 设数列 an 满足 a1 3a2 (2n 1)a n 2n . (1)求 an 的通项公式; (2)求数列 18. (12 分) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,未售出的酸奶 降价处理, 以每瓶 2 元的价格当天全部处理完.根据往年销售经验, 每天需求量与当天最高气温 (单位: ℃) 有关.如果最高气温不低于 25,需求量为 500 瓶;如果最高气温位于区间[20,25) ,需求量为 300 瓶;如 果最高气温低于 20,需求量为 200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温 数据,得下面的频数分布表: 最高气温 天数 [10,15) 2 [15,20) 16 [20,25) 36 [25,30) 25 [30,35) 7 [35,40) 4
2017年高考真题数学理(全国Ⅲ卷)【答案加解析】

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
高三-高考真题文科数学

登录我的首页账号设置退出职业资格类建筑类学历类财会类医药类全部考试教师招募社会工作师企业法律顾问教师资格证助理社会工作师一级建造师二级建造师考研高考会计从业资格中级会计师注册会计师CPA 中级经济师初级会计师计算机四级警察招考政法干警国考临床执业医师临床助理医师执业中药师执业西药师护士资格职业资格类社会工作师企业法律顾问教师资格证助理社会工作师建筑类一级建造师二级建造师学历类考研高考财会类会计从业资格中级会计师注册会计师CPA中级经济师初级会计师计算机类计算机四级公务员警察招考政法干警国考医药类临床执业医师临床助理医师执业中药师执业西药师护士资格2019年高考真题文科数学 (全国III卷)单选题填空题简答题前去估分立即下载百度APP,高考助攻神器,备考、估分、填志愿一个就够了!单选题填空题简答题立即下载前去估分文科数学热门试卷2017年高考真题文科数学 (全国I卷)2017年高考真题文科数学 (全国II卷)2016年高考真题文科数学 (全国I卷)2017年高考真题文科数学 (全国III卷)2017年高考真题文科数学 (北京卷)X 查看更多试卷单选题本大题共12小题,每小题5分,共60分。
在每小题给出的4个选项中,有且只有一项是符合题目要求。
11.已知集合,则分值: 5分查看题目解析 >12,则z=分值: 5分查看题目解析 >13.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是分值: 5分查看题目解析 >14.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A0.5B0.6C0.7D0.8分值: 5分查看题目解析 >15在[0,2π]的零点个数为A2B3C4D5分值: 5分查看题目解析 >16.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=A16B8C4D2分值: 5分查看题目解析 >17在点(1,ae)处的切线方程为y=2x+b,则Aa=e,b=-1Ba=e,b=1分值: 5分查看题目解析 >18.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则ABM=EN,且直线BM、EN 是相交直线BBM≠EN,且直线BM,EN 是相交直线CBM=EN,且直线BM、EN 是异面直线DBM≠EN,且直线BM,EN 是异面直线分值: 5分查看题目解析 >19.执行下边的程序框图,如果输入的为,则输出的值等于分值: 5分查看题目解析 >110.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若,则的面积为分值: 5分查看题目解析 >111.记不等式组表示的平面区域为D.命题;命题.下面给出了四个命题①②③这四个命题中,所有真命题的编号是A①③B①②C②③D③④分值: 5分查看题目解析 >112.设是定义域为R单调递减,则A(log3)>()>(B(log3)>()>(C()>()>(D()>()>(分值: 5分查看题目解析 >填空题本大题共4小题,每小题5分,共20分。
2017年高考理数真题全国卷III(全国卷3,试题及答案解析)

12017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22(,)1=+=A x y x y ,{}(,)==B x y y x ,则 A B 中元素的个数为()A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=()A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.5()(2)+-x y x y 的展开式中33x y 的系数为()A.-80B.-40C.40D.805.已知双曲线C:22221x y a b -=(a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为()A.221810x y -= B.22145x y -= C.22154x y -= D.22143x y -=26.设函数f (x )=cos(x +3π),则下列结论错误的是()A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2 D.π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为()A.-24B.-3C.3D.810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A.63 B.33C.23D.1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =()A.12-B.13C.12D.112.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A.3B.22C.5D.2二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34=-z x y 的最小值为________.14.设等比数列{}n a 满足121+=-a a ,133-=-a a ,则4=a ________.15.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所称角的最小值为45°;④直线AB与a所称角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上一点,且AD AC,求△ABD的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABD;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.3420.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++<,求m 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.23.[选修4—5:不等式选讲](10分)已知函数f (x )=│x +1│–│x –2│.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.5参考答案1.【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.2.【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =①又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.7.【答案】D6【解析】程序运行过程如下表所示:SMt初始状态01001第1次循环结束10010-2第2次循环结束9013此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径2213122r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d .则2326a a a =⋅,即()()()211125a d a d a d +=++又∵11a =,代入上式可得220d d +=又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222ab d aa b==+又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴63c e a ==,故选A 11.【答案】C7【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则C 点坐标为(2,1).∵||1CD =,||2BC =.∴22125BD =+=.∵BD 切C 于点E .∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||2222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 的半径为255.∵P 在 C 上.∴P 点的轨迹方程为224(2)(1)5-+-=x y .设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:00225cos 5215sin 5x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0151cos 25x μθ==+,0215sin 5y λθ==+.8两式相加得:222515sin 1cos 552552()()sin()552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②,显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩ x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭9由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB为y 轴正方向,CA为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,||1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,||1=b .设B 点在运动过程中的坐标(cos ,sin ,0)B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=-- ,||2AB '=.设AB ' 与a 所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]22a AB θθαθ--⋅==∈'.故ππ[,]42α∈,所以③正确,④错误.设AB ' 与b 所成夹角为π[0,]2β∈,10cos (cos ,sin ,1)(1,0,0)2|cos |2'⋅='-⋅='=βθθθAB bb AB b AB .当AB ' 与b 夹角为60︒时,即π3α=,12sin 2cos 2cos2322πθα====.∵22cos sin 1θθ+=,∴2|cos |2θ=.∴21cos |cos |22βθ==.∵π[0,]2β∈.∴π=3β,此时AB ' 与b 夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.解:(1)由sin 3cos 0A A +=得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵127,2,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,27,4AC BC AB ===,由余弦定理22227cos 27a b c C ab +-==.∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得7CD =.11由勾股定理223AD CD AC =-=.又2π3A =,则2πππ326DAB ∠=-=,1πsin 326ABD S AD AB =⋅⋅=△.18.解:(1)易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.则分布列为:X200300500P 152525⑵①当200n ≤时:()642Y n n =-=,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=此时max 520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n-=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.解:(1)取AC 中点为O ,连接BO ,DO ;ABC ∆ 为等边三角形∴BO AC⊥∴AB BC=AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩∴∆≅∆ABD CBD .∴AD CD =,即ACD ∆为等腰直角三角形,ADC∠为直角又O 为底边AC 中点12∴DO AC⊥令AB a =,则AB AC BC BD a====易得:22OD a =,32OB a =∴222OD OB BD+=由勾股定理的逆定理可得2DOB π∠=即OD OB⊥OD AC OD OB AC OB O AC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面又∵OD ADC⊂平面由面面垂直的判定定理可得ADC ABC⊥平面平面(2)由题意可知--=D ACE B ACEV V 即B ,D 到平面ACE 的距离相等即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫ ⎪ ⎪⎝⎭易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为n 1,平面AEC 的法向量为n 2,则1100⎧⋅=⎪⎨⋅=⎪⎩ AE n AD n ,解得()13,1,3=n 2200⎧⋅=⎪⎨⋅=⎪⎩ AE n OA n ,解得()20,1,3=-n 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7⋅==⋅θn n n n 20.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y x x my ⎧=⎨=+⎩得2240y my --=,132416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OB x x y y ⋅=+uur uuu r 12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0=∴OA OB ⊥uur uuu r ,即O 在圆M 上.(2)若圆M 过点P ,则0AP BP ⋅=uuu r uur 1212(4)(4)(2)(2)0x x y y --+++=1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径22||31r OQ ==+则圆22:(3)(1)10M x y -+-=21.解:(1)()1ln f x x a x =--,0x >则()1a x a f x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意;当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减;当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾14③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.(2)当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1)...112222222n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.22.解:(1)将参数方程转化为一般方程()1:2l y k x =-……①()21:2l y x k =+……②①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=;(2)将参数方程转化为一般方程3:20l x y +-=……③联立曲线C 和3l 22204x y x y ⎧+-=⎪⎨-=⎪⎩解得32222x y ⎧=⎪⎪⎨⎪=-⎪⎩由cos sin x y ρθρθ=⎧⎨=⎩解得5ρ=即M 的极半径是5.23.解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:15①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.(2)不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max 3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析
2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1,2,3}A =,{2,3,4}B =,则(A B = )A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}2.(5分)(1)(2)(i i ++= ) A .1i -B .13i +C .3i +D .33i +3.(5分)函数()sin(2)3f x x π=+的最小正周期为( )A .4πB .2πC .πD .2π 4.(5分)设非零向量a ,b 满足||||a b a b +=-,则( ) A .a b ⊥B .||||a b =C .//a bD .||||a b >5.(5分)若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞B.C.D .(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π7.(5分)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .98.(5分)函数2()(28)f x ln x x =--的单调递增区间是( ) A .(,2)-∞-B .(,1)-∞-C .(1,)+∞D .(4,)+∞9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的1a =-,则输出的(S = )A .2B .3C .4D .511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2512.(5分)过抛物线2:4C y x =的焦点F ,3C 于点(M M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN l ⊥,则M 到直线NF 的距离为( ) A 5B .22C .23D .33二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数()2cos sin f x x x =+的最大值为 .14.(5分)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 16.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B = .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .18.(12分)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒.(1)证明:直线//BC平面PAD;(2)若PCD∆面积为27,求四棱锥P ABCD-的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg <箱产量50kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:2()P K K0.050 0.010 0.001 K3.8416.63510.8282()()()()K a b c d a c b d =++++.20.(12分)设O为坐标原点,动点M在椭圆22:12xC y+=上,过M作x轴的垂线,垂足为N,点P满足2NP NM=.(1)求点P的轨迹方程;(2)设点Q在直线3x=-上,且1OP PQ=.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x 时,()1f x ax +,求实数a 的取值范围.(二)选考题:共10分。
2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)
绝密★启用前【命题特点】2017年新课标III高考数学试卷,试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查。
在保持稳定的基础上,进行适度的改革和创新。
2017年的数学试卷“以稳为主”试卷结构平稳,同时题目平和、无偏怪题,难度控制理想。
“稳中求进”试卷考查的具体知识点有变化。
1、回归教材,注重基础 2017 年新课标III卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分考点,考查了复数、三角函数、折线图、概率、解析几何、向量、框图、线性规划等考点。
2、适当设置题目难度与区分度与往年课标III卷相对比,今年的难度设置在最后21题。
尤其以选择题第 12 题和填空题第 16道,只要能认真分析,解决此问题的是不成问题。
3、布局合理,考查全面,着重数学方法和数学思想的考察解答题部分,包括三角函数、立体几何、概率统计、解析几何、导数五大版块和二选一问题。
以知识为载体,立意于能力。
4、命题考察的沿续性 2017 年新课标III卷,在力求创新基础上,也有一些不变的东西。
例如 2017 年新课标 III 卷在集合、复数、算法、线性规划的命题方式基本完全一致。
【命题趋势】1.函数知识:以导数知识为背景的函数问题;分段函数与不等式结合的题目;三角函数的性质及其讨论;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.函数零点问题:函数零点的应用主要表现在利用零点求参数范围,这也体现了数形结合思想的应用.3.不等式知识:突出工具性,不等式的性质与分段函数,绝对值的性质综合起来进行考查,考查学生的等价转化能力和分类讨论能力;4.立体几何知识:2016年已经变得简单,2017年难度依然不大, 16题填空题将立体几何的知识与运动问题相联系,然后确定最值及取值范围;第8题考查圆柱的体积问题,要求学生的空间想象能力比加强.5.解析几何知识:解答题主要考查直线、抛物线和圆的知识,考试的难度与往年持平,选择题5题考查共焦点问题,属于常规题目,10题综合了抛物线、圆和直线的问题,需要对位置关系有透彻的理解。
2017年高考新课标III卷理数试题解析(正式版)(解析版)
{ }{ }) ) 【解析】由题意可得:圆 x + y = 1与直线 y = x 相交于两点 ⎪ , 22 ⎪⎭ 2 ⎪⎭2 2B . 2z z 2i z z绝密★启用前2017 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = ( x , y │x 2 + y 2 = 1 ,B = ( x , y │y = x ,则A IB 中元素的个数为A .3B .2C .1D .0【答案】B⎛ 2 2 ⎫ ⎛ 2 2 ⎫2 2 , - , - ,则 A I B 中有⎝⎝2 个元素.故选 B.2.设复数 z 满足(1+i)z=2i ,则∣z ∣=A .12 C . 2D .2【答案】C【解析】由题意可得 z =2i 2,由复数求模的法则可得 1 = 1 ,则 z = = = 2 .故选 C.1 + i 1 + i 22 13.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.第 1 页 共 15 页5 x ,且与椭圆 +根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月D .各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化比较平稳【答案】A【解析】由折线图,每年 7 月到 8 月折线图呈下降趋势,月接待游客量减少,选项 A 说法错误.本题选择 A选项.4. (x + y )(2 x - y )5 的展开式中 x 3 y 3 的系数为A . -80【答案】CB . -40C .40D .805.已知双曲线 C : x 2 y 2 x 2 y 2- = 1 (a >0,b >0)的一条渐近线方程为 y == 1 有公共焦 a 2 b 2 2 12 3点,则 C 的方程为第 2 页 共 15 页6.设函数f(x)=cos(x+),则下列结论错误的是D.f(x)在(,π)单调递减【解析】当x∈ ,π⎪时,x+∈,⎪,函数f(x)在该区间内不单调.x2y2A.-=1810x2y2B.-=145x2y2C.-=154x2y2D.-=143【答案】Bπ3A.f(x)的一个周期为-2πC.f(x+π)的一个零点为x=π6B.y=f(x)的图像关于直线x=8π对称3π2【答案】D⎛π⎫π⎛5π4π⎫⎝2⎭3⎝63⎭本题选择D选项.7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5B.4C.3D.2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:t=1,M=100,S=0,然后进入循环体:第3页共15页此时应满足t≤N,执行循环语句:S=S+M=90,M=-=1,t=t+1=3;B.3π结合勾股定理,底面半径r=12- ⎪=,由圆柱的体积公式,可得圆柱的体积是V=πr2h=π⨯ 2⎪⎭⨯1=π,故选B.2此时应满足t≤N,执行循环语句:S=S+M=100,M=-M10=-10,t=t+1=2;M10此时满足S<91,可以跳出循环,则输入的正整数N的最小值为2.故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.π4C.π2D.π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:AC=1,AB=⎛1⎫23⎝2⎭212,⎛3⎫2⎝349.等差数列{anA.-24【答案】A}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为B.-3C.3D.8【解析】设等差数列{a}的公差为d,且d≠0,a2=an32⋅a⇒(1+2d)2=(1+d)(1+5d),d2=-2d,6又d≠0,所以d=-2,S=6⨯1+6⨯5⨯(-2)=-24,故选A.6210.已知椭圆C:x2y2+a b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线第4页共15页3D . 13B .33C .22B . 1bx - ay + 2ab = 0 相切,则 C 的离心率为A .63【答案】A【解析】以线段 A A 为直径的圆是 x 2 + y 2 = a 2 ,直线 bx - ay + 2ab = 0 与圆相切,所以圆心到直线的距1 2离 d =2aba 2 +b 2= a ,整理为 a 2 = 3b 2 ,即 a 2 = 3 (a 2 - c 2 )⇒ 2a 2 = 3c 2 ,即 c2 2 c 6 = , e = =a 2 3 a 3 ,故选 A.11.已知函数 f ( x ) = x 2 - 2 x + a(e x -1 + e - x +1 ) 有唯一零点,则 a =A . -13C .12 D .1【答案】Cuuur uuur uuur12.在矩形 ABCD 中,AB =1,AD =2,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若 AP = λ AB + μ AD ,则 λ + μ 的最大值为第 5 页 共 15 页(x, y -1), AB = (0, -1), AD = (2,0 ),若满足 uuur = λ uuur + μ uuur ,⎧ - y + 1,即 - y + 1 - z = 0 ,点 P (x, y )在圆 (x - 2 )2+ y 2 =上, 13.若 x , y 满足约束条件 ⎨ x + y - 2 ≤ 0 ,则 z =3x - 4 y 的学+科网最小值为__________. ⎪ y ≥ 0A .3B .2 2C . 5D .2【答案】A【解析】如图,建立平面直角坐标系.设 A (0,1), B (0,0 ), C (2,0 ), D (2,1), P (x, y ),易得圆的半径 r =25,即圆 C 的方程是 (x - 2 )2+ y 2= 4,5uuur uuur uuurAP = AP AB AD则 ⎨ x = 2μ ⎩ y -1 = -λ x x , μ = , λ = 1 - y ,所以 λ + μ = - y + 1 ,2 2设 z =xx4225x 2 - z 2所以圆心 (2 ,0) 到直线 - y + 1 - z = 0 的距离 d ≤ r ,即 ≤2 1 5+ 1 4,解得1 ≤ z ≤ 3 ,所以 z 的最大值是 3,即 λ + μ 的最大值是 3,故选 A.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
【数学】2017年高考真题——山东卷(文)(解析版)
(9)设 f x A.2 B. 4
x ,0<x< 1
,若 f(a)=f(a+1),则 f = () a 2 x -1 , x 1 C.6 D.8
1
(10)若函数 ex f x e 2.71828……是自然对数的底数 在 f(x)的定义域上单调递增,则称函数 f(x)具有 M 性质,下列函数中具有 M 性质的是() A. f(x)=2-x B. f(x)=2x
(19) (本小题满分 12 分) 已知{an}是各项均为正数的等比数列,且 a1+ a2=6,a1a2= a3 (Ⅰ)求数列{an}通项公式; (Ⅱ) {bn}为各项非零的等差数列, 其前 n 项和为 Sn 知 S2n+1=bnbn+1,求数列{ Tn
bn }的前 n 项和 an
(20) (本小题满分 13 分) 已知函数 f ( x)
(6)执行程序框图,当输入的 x 值时,输入的 y 的值为 2,则空白判断框中的条件可能为()
A.x>3
B.x>4C.xFra bibliotek4D.x≤5
(7)函数 y 3sin2x+cos2x 最小正周期为() A.
2
B.
2 3
C.
D. 2
(8)如图所示的茎叶图记录了甲乙两组各 5 名工人某日的产量数据(单位:件).若这两组 数据的中位数相等,且平均值也相等,则 x 和 y 的值分别为() A 3,5 B 5,5 C 3,7 D 5,7
(17) (本小题满分 12 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 b=3, ABAC 6 ,S△ABC=3,求 A 和 a.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绝密★启用前 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为( ) A.1 B.2 C.3 D.4 【答案】B 【解析】由题意可得:2,4AB ,AB中元素的个数为2,所以选B. 【考点】集合运算 【名师点睛】集合的基本运算的关注点 (1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图. 2.复平面内表示复数i(2i)z的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】C 【解析】由题意:12zi,在第三象限. 所以选C. 【考点】复数运算 【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)abicdiacbdadbciabcdR. 其次要熟悉复数相关基本概念,如复
数(,)abiabR的实部为a、虚部为b、模为22ab、对应点为(,)ab、共轭为.abi 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 2
根据该折线图,下列结论错误的是( ) A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A
【考点】折线图 【名师点睛】用样本估计总体时统计图表主要有 1.频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.
4.已知4sincos3,则sin2=( )
A.79 B.29 C. 29 D.79 【答案】A 【解析】2sincos17sin22sincos19 . 所以选A. 【考点】二倍角正弦公式 【名师点睛】应用三角公式解决问题的三个变换角度 3
(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”
等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常
有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.
5.设x,y满足约束条件326000xyxy,则zxy的取值范围是( ) A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 【答案】B
【考点】线性规划 【名师点睛】点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 6.函数1ππ()sin()cos()536fxxx的最大值为( ) A.65 B.1 C.35 D.15 【答案】A 4
所以选A. 【考点】三角函数性质 【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为sin()yAxB的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征. 7.函数2sin1xyxx的部分图像大致为( )
A B D. C D 【答案】D
【考点】函数图像 【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f“”,即将函数值的大小转化自变量大小关系 8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( ) 5
A.5 B.4 C.3 D.2 【答案】D 【解析】若2N,第一次进入循环,12成立,100100,1010SM,2i2成立,第二次进入循环,此时101001090,110SM,3i2不成立,所以输出9091S成立,所以输入的正整数N的最小值是2,故选D.
【考点】循环结构流程图 【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )
A.π B.3π4 C.π2 D.π4 【答案】B 【解析】如果,画出圆柱的轴截面, 6
11,2ACAB,所以32rBC,那么圆柱的体积是2233124Vrh,
故选B. 【考点】圆柱体积 【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 10.在正方体1111ABCDABCD中,E为棱CD的中点,则( ) A.11AEDC⊥ B.1AEBD⊥ C.11AEBC⊥ D.1AEAC⊥ 【答案】C
【考点】线线位置关系 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.
11.已知椭圆C:22221xyab,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线20bxayab相切,则C的离心率为( ) A.63 B.33 C.23 D.13 【答案】A
【考点】椭圆离心率 7
【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,abc的方程或不等式,再根据,,abc的关系消掉b得到,ac的关系式,而建立关于,,abc的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 12.已知函数211()2()xxfxxxaee有唯一零点,则a=( )
A.12 B.13 C.12 D.1 【答案】C 【解析】2112xxxxaee,设11xxgxee,
211111111xxxxxxegxeeeee
,当0gx时,1x,当1x时,
0gx
函数单调递减,当1x时,0gx,函数单调递增,当1x时,函数取得最小值12g,设22hxxx ,当1x时,函数取得最小值-1,若0a,函数hx,和agx没有交点,当0a时,11agh时,此时函数hx和agx有一个交点,即1212aa,故选C.
【考点】函数零点 【名师点睛】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量(2,3),(3,)abm,且ab,则m= . 【答案】2 【解析】由题意可得:2330,2mm. 【考点】向量数量积 【名师点睛】(1)向量平行:1221//abxyxy,//,0,abbabR,111BAACOAOBOC
(2)向量垂直:121200ababxxyy, 8
(3)向量加减乘: 221212(,),||,||||cos,abxxyyaaababab 14.双曲线22219xya(a>0)的一条渐近线方程为35yx,则a= . 【答案】5 【解析】由双曲线的标准方程可得渐近线方程为:3yxa ,结合题意可得:5a. 【考点】双曲线渐近线
【名师点睛】1.已知双曲线方程22221xyab求渐近线:22220xybyxaba 2.已知渐近线ymx 设双曲线标准方程222mxy 3.双曲线焦点到渐近线距离为b,垂足为对应准线与渐近线的交点. 15.△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=_________. 【答案】75°
【考点】正弦定理 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.
16.设函数10()20xxxfxx,,,,则满足1()()12fxfx的x的取值范围是__________. 【答案】1(,)4
【考点】分段函数解不等式 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式