七年级下册数学期中综合复习题(三)

合集下载

北师大版初一数学七年级数学下册 全套练习题及期中期末题【精编】

北师大版初一数学七年级数学下册 全套练习题及期中期末题【精编】

七年级数学第一周周练习一.判断题 答案正确的在括号内打“√”号,不正确的打“×”号 (1)单项式的次数是各字母的指数中最大的那个数. ( ) (2)组成多项式123423-++y y y 的项是y y y 2,3,423和1.( ) (3)ba 33+是多项式. ( ) (4)多项式的次数是由组成多项式的各个单项式的次数相加得到的.( ) (5)单项式26xy -减去2xy 3-的差是.32x y -( )0.(6)一个关于A ,B 的三次单项式与另一个关于A ,B 的三次单项式的和一定是关于A ,B 的三次单项式.( ) (7)()().a 23a 6a 7a 3a 23a 6a 7a 3]a 23a 6a 7[a 3232322----=----=----( )二、选择题 1.在代数式bc a +21,2b ,1232--x x ,abc ,0,a b ,π,xyyx +中,下列结论正确的是 ( )A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式 2.单项式-5x ,210x -,5x ,27x 的和,合并后的结果是 ( ) A .二次二项式 B .四次单项式 C .二次单项式 D .三次多项式3.下列四个算式:(1)22=-a a ;(2)633x x x =+;(3)n m n m 22523=+;(4)22232t t t =+,其中错误的个数为 ( ) A .1 B .2 C .3 D .4 4.下列各式计算正确的是( )A .7232)(m m m =⋅B .10232)(m m m =⋅C .12232)(m m m =⋅D .25232)(m m m =⋅5.第二十届电视剧飞天奖今年有a 部作品参赛,比去年增加了40%还多2部.设去年参赛作品有b 部,则b 是( )A .%4012++a B .2%)401(++aC .%4012+-a D .2%)401(-+a6.小华计算其整式减去ac bc ab 32+-时,误把减法看成加法,所得答案是ab ac bc 232+-,那么正确结果应为( ) A .ac bc 96+- B .ac bc 96-C .ab ac bc +-64D .ab 3 7.下列结论中正确的是( )(A )没有加减运算的代数式叫单项式(B )单项式732xy 的系数是3,次数是2(C )单项式M 既没有系数,也没有次数 (D )单项式z xy 2-的系数是-1,次数是4 8.已知()()22205155,52x x x x --+--=则的值为( ) (A )2 (B )-2 (C )-10 (D )-6 9.下列各式中,值一定为负的是( )(A )b a - (B)22b a --(C )12--a(D )a -10.使()()2222229522cy xy x y bxy x y xy ax +-=++--+-成立的c b a ,,的值依次是( )(A )4,-7,-1 (B )-4,-7,-1 (C )4,7,-1 (D )4,7,1 三、填空题1.7323-+-x y x 的次数是_______. 2.单项式ab 4-,3ab ,2b -的和是______. 3.化简=-+--)x 2xy 2()x 2yx 4(3xy 3_______.4.若4353b a b a mn-所得的差是单项式,则这个单项式是_______. 5.200020014)212(⨯-=________.6.去掉下式的括号,再合并同类项.()()53466493434-+---++-x x xxx x=_____________________________=____________________________.7.已知多项式,234,2222222z y x B z y x A ++-=-+=且A+B+C=0,则多项式C 为__________.8.若代数式722++y y 的值为6,那么代数式5842-+y y 的值为= ________.9.. ();31329333⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-⨯- ________.10.若N 为正整数,且72=nx ,则()()nn x x 222343-的值为________.四、解答题 1.计算:(1)]3)[()3(2222ab b a ab b a ++---;()()222(2) 325;x y xy x y xy x y +---(3)16145.02⨯; (4) 35768x x x x x x ⋅⋅+⋅⋅;(5)()()().52222344321044x x x x x ⋅+-+-2.解答下列问题(1)先化简,再求值()[]{}21,其中x 4x x 2x x 5x 3x 4x 2222-=+------.(2).单项式my x 356-是六次单项式,求()m 2-的值.3.先化简,再求值:已知a C a a a A 4,32,16322=+-=+-=B . 计算()()[]C B A C B ---+.4.已知27,xy y x 22-==+.求22222711435y x xy y xy x +----的值.5.多项式()b x x x a b -+--34是关于x 的二次三项式,求,a b6.如图1-4,一块半圆形钢板,从中挖去直径分别为x 、y 的两个半圆: (1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)附加题:1.若243,25322+-=+-=m m B m m A ,试分析A 与B 的关系2.比较1002与753的大小.参考答案一、判断题(1)×(2)×(3)×(4)×(5)√(6)×(7)×二、选择题1-5 ACCBC 6-10 BDACC三、填空题 1.4 2.-b 2-ab 3. 4x-7xy 4. –2a 3b 4 5. –×1020006. –x+9+4x 4-6x 3-6x 4+4x 3-3x+5=-2x 4-2x 3-4x+147. 3x 2-5y 2-z 9. 8 10. 2891四、解答题 1.计算(1) 解:原式=a 2-b 2+3ab-a 2-b 2-3ab=-2b 2(2) 解:原式=3x 2y+3xy-2x 2y+2xy-5x 2y=-4x 2y+5xy(3) 解:原式=214×0.514×2= (2×0.5)14×2(4) 解:原式=x 3+5+7+x 1+6+8=x 15+x 15 =2x 15(5) 解:原式= (2x 4)4-2x 10(2x 2)3+2x 44×3=24. x 4×4-2x 10.23. x 2×3+2 x 4.5. x 4×3 =16x 16-16x 16+10x 16 =10x 162.解答下列问题(1) 解:原式=4x 2-[-3x 2-(5x-x 2-2x 2+x)+4x]=4x 2-(-3x 2-6x+3x 2+4x) =4x 2+2x把21-=x 代入其中,得: 0212414)21(2)21(42=⨯-⨯=-⨯+-⨯(2) 解:m+3=6m=3(-2)m =(-2)3=83. 解:原式=B+C-(A-B+C)=B+C-A+B-C =2B-A把A=3a 2-6a+1, B=-2a 2+3代入原式,得:2(-2a 2+3)-( 3a 2-6a+1)=-4a 2+6-3a 2+6a-1 =-7a 2+6a+54. 解:原式=-2x 2-2y 2-14xy=-2(x 2+y 2)-14xy把x 2+y 2=7, xy=-2, 带入原式,得: -2×7-14×(-2)=-14+28=14 5. 解:∵多项式为二次三项式∴ a-4=0, a=4 ∴ b=26. (1)xyxy xy xy y x xy y x y x y x y x y x 200157:2001574)42(21)42(21]444)([21)2(21)2(21]2)([21:2222222222剩下面积为答解==•=--++•=--+•=--+•πππππππ(2)28.6:28.620024157:,2,4:剩下面积为答得代入上式把解=⨯⨯==y x附加题 1.BA mB A m B A m m B A m m m m m m m m m B A <>==><-=--=-+-+-=+--+-=-,0,0,0243253)243(253:2222时当时当时当解2.10075252525253752525410023271627)3(316)2(2:>∴<==== 解七年级(下)数学周练习二一、填空题1、()()__________523=÷-⋅--x x x ,()()__________2552=-⋅--a a 2、55______a a =÷; ()()()3223________a a -=-÷3、________2121=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--b a b a ;()224994________3223x y y x +-=⎪⎭⎫ ⎝⎛+- 4、;________322132213232=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a ;( )(—2x+3y)=9y 2—4x 25、.计算:54322c c c c c +⋅+⋅= .;( )-(x 2+3xy )=-xy -31y 2。

人教版数学七年级下学期期中测试卷三(含答案及解析)

人教版数学七年级下学期期中测试卷三(含答案及解析)

人教版数学七年级下学期期中测试卷三一、选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.个B.2 个C.3 个D.4 个4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a65.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)26.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.18.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()种B.3 种C.4 种D.5 种9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为.14.(3 分)分解因式:ax2﹣ax=.15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为平方米.三、解答题(共72 分)17.(8 分)(1)计算:﹣+ ;(2)计算:(+2)﹣18.(8 分)解方程组:(1);(2).19.(8 分)请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(),∴∠ADC=∠EGC=90°(),∴AD∥EG(),∴∠1=∠2(),=∠3(),又∵∠E=∠1(已知),∴∠2=∠3(),∴AD 平分∠BAC()20.(10 分)如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.21.(10 分)三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是.(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为.22.(10 分)疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?23.(12 分)用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1 块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?24.(14 分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.人教版数学七年级下学期期中测试卷三参考答案与试题解析一.选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.【分析】根据含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.逐一判断可得.【解答】解:A.x+2y=5 是二元一次方程;B.xy=3 中xy 的指数为2,不是二元一次方程;C.3x+y2=5 中y2 的指数为2,不是二元一次方程;D.中不是整式,不是二元一次方程;故选:A.3.(3 分)如图,直线AB 与直线CD 相交于点O,OE⊥3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.A.1个B.2 个C.3 个D.4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0. 是循环小数,属于有理数;0.202020 是有限小数,属于有理数;是分数,属于有理数.无理数有:、共2个.故选:B.4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a6【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a3×a4=a7,故此选项错误;B、a5÷a=a4,故此选项错误;C、(ab2)3=a3b6,故此选项错误;D、(a3)2=a6,正确.故选:D.5.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2【分析】直接利用因式分解的意义分析得出答案.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.6.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,,故选:B.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.1【分析】原式利用多项式乘多项式法则计算,根据结果不含x 的一次项,确定出m 的值即可.【解答】解:原式=x2+(m+8)x+8m,由结果不含x 的一次项,得到m+8=0,解得:m=﹣8,故选:A.8.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3 种C.4 种D.5 种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y 的方程,由x、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=,∵x、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4.所以购买资金恰好用尽的情况下,购买方案有3 种,故选:B.9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第 2 次跳动至点的坐标是(2,1),第4 次跳动至点的坐标是(3,2),第6 次跳动至点的坐标是(4,3),第8 次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n),∴第124 次跳动至点的坐标是(63,62).故选:A.10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【分析】根据平行线的性质即可求解.【解答】解:过E 作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF 内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是﹣2 .【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于 a 的方程,求得a 的值.【解答】解:解不等式5(x﹣2)+8<6(x﹣1)+7 得:x>﹣3.则最小整数解是:﹣2,把x=﹣2 代入方程得:﹣4+2a=3,解得:a=.故答案是:.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为55°.【分析】延长ED 与BC 相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF 和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,延长ED 与BC 相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∵∠CDE=160°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF 中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.14.(3 分)分解因式:ax2﹣ax=ax(x﹣1).【分析】提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为﹣5<m≤﹣1 .【分析】根据已知得出不等式m+1≤2 且m+7≤6,求出两不等式的公共解集,即可得出答案.【解答】解:∵不等式组的解集是2<x<m+7,∴m+1≤2 且m+7≤6 且m+7>2,解得:﹣5<m≤﹣1,故答案是:﹣5<m≤﹣1.16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为56 平方米.【分析】依据平移变换,长草部分可以组成一个长为8 米,宽为7 米的长方形,即可得到其面积.【解答】解:长草部分的面积为7×(10﹣2)=7×8=56(平方米),即长草部分的面积为56 平方米.故答案为:56.三、解答题(共72 分)17.(1)计算:﹣+ ;(2)计算:(+2)﹣.【分析】(1)利用二次根式的性质和立方根的性质进行计算,再算加减即可;(2)首先利用乘法分配律计算乘法,再算加减即可.【解答】解:(1)原式=2﹣2﹣=﹣;(2)原式=2+2 ﹣=2+ .18.解方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:10+6y+3y=1,解得:y=﹣1,把y=﹣1 代入②得:x=2,则方程组的解为;(2),①×2+②×3 得:13x=38,解得:x=,把x=代入①得:y=﹣,则方程组的解为.19.请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E =∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)【分析】根据垂直的定义得出∠ADC=∠EGC=90°,进而利用平行线的判定和性质解答即可.【解答】证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)故答案为:已知;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;等量代换;角平分线的定义.20.如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.【分析】(1)根据角平分线定义和∠ABE=∠BED,即可判断BC 与DE 的位置关系;(2)结合(1)的结论,根据∠ABE=25°,即可求∠ADE 的度数.【解答】解:(1)BC∥DE,理由如下:∵BE 平分∠ABC,∴∠ABE=∠EBC,∵∠ABE=∠BED,∴∠EBC=∠BED,∴BC∥DE;(2)∵BE 平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵BC∥DE,∴∠ADE=∠ABC=50°.21.三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为(5,0)或(﹣1,0).【分析】(1)根据A,B 两点坐标画出坐标系即可.(2)分别作出A,B,C 的对应点A1,B1,C1 即可.(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,求出m 即可.【解答】解:(1)平面直角坐标系如图所示,C(2,1).(2)如图△A1B1C1,即为所求,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).故答案为(a+3,b+2).(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,解得m=5 或﹣1,∴D(5,0)或(﹣1,0).22.疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?【分析】设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由“A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元”列出方程组可求解.【解答】解:设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由,解得:,答:A 品牌一次性医用口罩单价是 2.4 元/个,B 品牌免洗消毒液的单价是60 元/瓶.23.用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?【分析】(1)设恰好用A 型钢板x 块,B 型钢板y 块,根据要制成150 块C 型钢板、180 块D 型钢板,即可得出关于x,y 的二元一次方程组,解之即可得出结论;(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,根据“现需C 型钢板至多150 块,D 型钢板不超过204 块”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出方案的种数;(3)设需要a 块A 型钢板,则需要块B 型钢板,根据D 型钢板不多于45 块,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 和均为正整数,即可得出结论.【解答】解:(1)设恰好用A 型钢板x 块,B 型钢板y 块,依题意,得:,解得:.答:恰好用A 型钢板42 块,B 型钢板54 块.(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,依题意,得:,解得:50≤m≤52,又∵m 为正整数,∴m 可以取50,51,52,∴共有3 种方案.(3)设需要a 块A 型钢板,则需要块B 型钢板,依题意,得:3a+ ≤45,解得:a≤2,又∵a 和均为正整数,∴a=2,∴=39.答:需要2 块A 型钢板,39 块B 型钢板.24.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6| =0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.【分析】(1)根据非负数的性质得a+b=0,a﹣b+6=0,然后解方程组求出a 和 b 即可得到点A 和B 的坐标;(2)由AB∥DE 得∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,所以∠ODE+90°﹣∠FAO=180°,再根据角平分线定义得∠OAN=∠FAO,∠NDM=∠ODE,则∠NDM﹣∠OAN=45°,接着利用∠OAN=90°﹣∠ANO=90°﹣∠DNM,得到∠NDM﹣(90°﹣∠DNM)=45°,所以∠NDM+∠DNM=135°,然后根据三角形内角和定理得180°﹣∠NMD=135°,所以∠NMD=45°;(3)①连接OB,如图3,设F(0,t),根据△AOF 的面积+△BOF 的面积=△AOB 的面积得到•3•t+ •t•3=•3•3,解得t=,则可得到F 点坐标为(0,);②先计算△ABC 的面积=,分类讨论:当P 点在y 轴上时,设P(0,y),利用△ABP 的三角形=△APF 的面积+△BPF 的面积得到•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,所以此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),根据三角形面积公式得•|x+3|•3=,解得x=﹣10 或x=4,从而得到此时P 点坐标.【解答】解:(1)∵(a+b)2+|a﹣b+6|=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,∵AB∥DE,∴∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,∴∠ODE+90°﹣∠FAO=180°,∵AM,DM 分别平分∠CAB,∠ODE,∴∠OAN=∠FAO,∠NDM=∠ODE,∴∠NDM﹣∠OAN=45°,而∠OAN=90°﹣∠ANO=90°﹣∠DNM,∴∠NDM﹣(90°﹣∠DNM)=45°,∴∠NDM+∠DNM=135°,∴180°﹣∠NMD=135°,∴∠NMD=45°,即∠AMD=45°;(3)①连接OB,如图3,设F(0,t),∵△AOF 的面积+△BOF 的面积=△AOB 的面积,∴•3•t+ •t•3=•3•3,解得t=,∴F 点坐标为(0,);②存在.△ABC 的面积=•7•3=,当P 点在y 轴上时,设P(0,y),∵△ABP 的三角形=△APF 的面积+△BPF 的面积,∴•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,∴此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),则•|x+3|•3=,解得x=﹣10 或x=4,∴此时P 点坐标为(﹣10,0),(4,0)综上所述,满足条件的P 点坐标为(0,5);(0,﹣2);(﹣10,0),(4,0).。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

鲁教版2020七年级数学下册第七章二元一次方程组期中复习题3(附答案)

鲁教版2020七年级数学下册第七章二元一次方程组期中复习题3(附答案)

鲁教版2020七年级数学下册第七章二元一次方程组期中复习题3(附答案) 1.下列不是..二元一次方程的解的是( ) A .B .C .D .2.若关于x,y 的二元一次方程组35x y k x y k +=⎧⎨-=⎩的解x,y 满足236x y -=,那么k 的值是( ) A .611B .116C .65D .563.如图,直线l :y =-x -3与直线y =a(a 为常数)的交点在第四象限,则a 可能在( )A .1<a<2B .-2<a<0C .-3≤a≤-2D .-10<a<-44.甲乙两人在一环形跑道上同时从A 点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的( )倍. A .2B .3C .4D .55.已知方程组53{54x y ax y +=+=和25{51x y x by -=+=有相同的解,则a ,b 的值为 ( )A .12a b =⎧⎨=⎩B .4{6a b =-=-C .6{2a b =-=D .14{2a b ==6.已知x ,y 满足方程组2123x y tx y t+=+⎧⎨-=-⎩,则x 与y 的关系是( )A .34x y +=B .32x y +=C .34x y -=D .32x y -=7.若方程3x-2y=1的解是正整数,则x 一定是( ) A .偶数 B .奇数C .整数D .正整数8.方程组224x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .02x y =⎧⎨=-⎩D .20x y =⎧⎨=⎩9.有甲、乙、丙三种货物,若购进甲3件,乙7件,丙1件,共需64元,若购进甲4件,乙10件,丙1件,共需79元。

现购甲、乙、丙各一件,共需( )元 A .32B .33C .34D .3510.如果直线y =3x +6与y =2x -4交点坐标为(a ,b ),则x ay b =⎧⎨=⎩是方程组__________的解. A .3624x y y x -=⎧⎨+=-⎩B .3624x y y x -=⎧⎨-=⎩C .3634x y x y -=⎧⎨-=⎩D .3624x y x y -=-⎧⎨-=⎩11.二元一次方程2=5x y +的正整数解为___________.12.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是_____.13.二元一次方程410x y +=的所有正整数解是_____________________14.七年级共有学生330,其中男生人数比女生人数的3倍少3人,列出符合题意的二元一次方程组为 。

人教版七年级数学下册期中测试卷及答案【全面】

人教版七年级数学下册期中测试卷及答案【全面】

人教版七年级数学下册期中测试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知m, n为常数, 代数式2x4y+mx|5-n|y+xy化简之后为单项式, 则mn 的值共有()A. 1个B. 2个C. 3个D. 4个2.如图, 函数和的图象相交于A(m, 3),则不等式的解集为()A. B. C. D.3.如图, 直线AD, BE被直线BF和AC所截, 则∠1的同位角和∠5的内错角分别是()A. ∠4, ∠2B. ∠2, ∠6C. ∠5, ∠4D. ∠2, ∠44.已知a=b, 下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤.A. 5B. 4C. 3D. 25.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7.点在y轴上, 则点M的坐标为()A. B. C. D.8.某旅店一共70个房间, 大房间每间住8个人, 小房间每间住6个人, 一共480个学生刚好住满, 设大房间有个, 小房间有个.下列方程正确的是()A. B. C. D.9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 下列判断正确的是()A. 任意掷一枚质地均匀的硬币10次, 一定有5次正面向上B. 天气预报说“明天的降水概率为40%”, 表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次, 投中”为随机事件D. “a是实数, |a|≥0”是不可能事件二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知, 则=________.2.如图, 将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF, 则四边形ABFD的周长为_____________.3. 如图为6个边长相等的正方形的组合图形, 则∠1+∠2+∠3=_________4. 如果关于的不等式组无解, 则的取值范围是_________.5. 的平方根为________.6. 关于x的分式方程有增根, 则m的值为__________.三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12. 解不等式组: , 并写出它的所有非负整数解.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 如图, 已知点B.E、C.F在一条直线上, AB=DF, AC=DE, ∠A=∠D(1)求证: AC∥DE;(2)若BF=13, EC=5, 求BC的长.5. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况, 在本校学生中随机抽取部分学生作调查, 把收集的数据分为以下4类情形: A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息, 解答下列问题:(1)在这次抽样调查中, 共调查了________名学生;(2)补全条形统计图, 并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果, 估计该校2000名学生中“家长和学生都未参与”的人数.6. 在十一黄金周期间, 小明、小华等同学随家长共15人一同到金丝峡游玩, 售票员告诉他们: 大人门票每张100元, 学生门票8折优惠. 结果小明他们共花了1400元, 那么小明他们一共去了几个家长、几个学生?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.B4.B5.C6.C7、D8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002.10.3.135°4、a≤2.5.±26.4.三、解答题(本大题共6小题, 共72分)1.(1) x=;(2) y=3;(3)x=﹣1;(4)a=4.4.2、不等式组的所有非负整数解为:0, 1, 2, 3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.(1)略;(2)4.5.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、10个家长, 5个学生。

2023-2024学年七年级数学下册 专题03 平行线与三角形综合特训(压轴30题)(解析版)

2023-2024学年七年级数学下册 专题03 平行线与三角形综合特训(压轴30题)(解析版)

专题03平行线与三角形综合特训(压轴30题)一.选择题(共7小题)1.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【答案】A【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选:A.2.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.3.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°【答案】A【解答】解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.4.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011【答案】C【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2008个这样的三角形镶嵌而成的四边形的周长是3+2007=2010.故选:C.5.如图,在△ABC中,BE,CE,CD分别平分∠ABC,∠ACB,∠ACF,AB∥CD,下列结论:①∠BDC=∠BAC;②∠BEC=90°+∠ABD;③∠CAB=∠CBA;④∠ADB+∠ABC=90°,其中正确的为()A.①②③B.①②④C.②③④D.①②③④【答案】C【解答】解:∵CD平分∠ACF,∠ACF=∠ABC+∠BAC,∴∠ACD=∠DCF=∠ACF=∠ABC+∠BAC.∵∠DCF=∠DBC+∠BDC=∠ABC+∠BDC,∴∠BAC=∠BDC,即∠BAC=2∠BDC,①错误;∵CE平分∠ACB,∴∠ACE=∠ACB,∵∠ACB+∠ACF=180°,∴∠ACE+∠ACD=90°,即∠ECD=90°,∴∠BEC=∠ECD+∠CDB=90°+∠CDB,∵CD∥AB,∴∠CDB=∠ABD,∴∠BEC=90°+∠ABD,故②正确;∵BD平分∠CBA,∴∠CBA=2∠ABD=2∠CDB,∵∠BAC=2∠BDC,∴∠CAB=∠CBA,故③正确;∵BD平分∠ABC,CD平分∠ACF,∴AD为△ABC外角∠MAC的平分线,∴∠MAC=2∠MAD,∵∠MAC=∠ABC+∠ACB,∠MAD=∠ABD+∠ADB,∠ABC=2∠ABD,∴∠ACB=2∠ADB,∴∠ADB=∠ACE,∵CD∥AB,∴∠ABC=∠DCF=∠ACD,∵∠ACE+∠ACD=90°,∴∠ADB+∠ABC=90°,故④正确.故选:C.6.如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,=36,则S△ABC为()延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEFA.2B.3C.4D.5【答案】A【解答】解:如图,连接AE,CD,设△ABC的面积为m.∵BD=2AB,∴△BCD的面积为2m,△ACD的面积为3m,∵AC=AF,∴△ADF的面积=△ACD的面积=3m,∵EC=3BC,∴△ECA的面积=3m,△EDC的面积=6m,∵AC=AF,∴△AEF的面积=△EAC的面积=3m,∴△DEF的面积=m+2m+6m+3m+3m+3m=18m=36,∴m=2,∴△ABC的面积为2,故选:A.7.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16【答案】C【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题(共8小题)8.如图所示,在三角形ABC中,AC=3AE,三角形ABD的面积是三角形ADC面积的2倍,则阴影部分的面积占三角形ABC面积的=.【答案】.【解答】解:连接OC,=S△EOC,则S△AOES△ODC=S△BOD,=S△ABD,又∵S△ADC+S△ODC=(S△AOB+S△BOD),∴S△AOC=S△AOB∴S△AOC=m,设S△AOE=2m,S△AOC=3m,S△AOB=6m,则S△OEC=S△BEC=S△ABC,∵S△ABD=S四边形EODC=6m,∴S△AOB=4m,S△BOD=8m,∴S△ODC=21m,∴S△ABC∴阴影部分的面积占三角形ABC面积de=.9.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC =36°,则∠CAP=54°.【答案】见试题解答内容【解答】解:过P点作PF⊥BA于F,PN⊥BD于N,PM⊥AC于M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,又∵PF⊥BA于F,PM⊥AC于M,∴∠FAP=∠PAC.∵∠BPC=36°,∴∠ABP=∠PBC=(x﹣36)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣36°)﹣(x°﹣36°)=72°,∴∠CAF=108°,∴∠FAP=∠PAC=54°.故答案为:54°.10.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【答案】见试题解答内容【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.11.已知△ABC中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+;在图(2)中,设∠B、∠C的两条三等分角线分别对应交于O1、O2,则∠BO2C=60°+α;请你猜想,当∠B、∠C同时n等分时,(n﹣1)条等分角线分别对应交于O1、O2,…,O n﹣1,如图(3),则∠BO n﹣1C=+(用含n和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O2B和O2C分别是∠B、∠C的三等分线,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=(180°﹣α)=120°﹣α;∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=180°﹣(120°﹣α)=60°+α;在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,B和O n﹣1C分别是∠B、∠C的n等分线,∵O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=(180°﹣α)=﹣∴∠O n﹣1.C=180°﹣(∠O n﹣1BC+∠O n﹣1CB)=180°﹣(﹣)∴∠BO n﹣1=+.故答案为:60°+α;+.12.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【答案】见试题解答内容【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.13.如图,在△ABC中,∠A=α、∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011,则∠A2011=.【答案】见试题解答内容【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1=180°﹣∠ACD﹣∠ACB﹣∠ABC=180°﹣(∠ABC+∠A)﹣(180°﹣∠A﹣∠ABC)﹣∠ABC=∠A=;同理可得,∠A2=∠A1=,…∴∠A2011=.故答案为:.14.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的底角的度数为.【答案】见试题解答内容【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为:17.5°,.15.如图a是长方形纸带,∠DEF=α°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是(180﹣3α)°(用含α的代数式表示).【答案】180﹣3α.【解答】解:∵AD∥BC,∠DEF=α°,∴∠BFE=∠DEF=α°,∴∠EFC=180°﹣α°(图a),∴∠BFC=∠BFC=180°﹣α°﹣α°=180°﹣2α°(图b),∴∠CFE=180°﹣2α°﹣α°=180°﹣3α°(图c).故答案为:180﹣3α.三.解答题(共15小题)16.已知ABCD为四边形,点E为边AB延长线上一点.【探究】:(1)如图1,∠ADC=110°,∠BCD=120°,∠DAB和∠CBE的平分线交于点F,则∠AFB=25°;(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=;(用α,β表示)(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG,BH平行时,α,β应该满足怎样的数量关系?请证明你的结论;【挑战】:如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,若两平分线所在的直线交于点F,则∠AFB与α,β有怎样的数量关系?请画出图形并直接写出结论.【答案】(1)25°;(2);(3)若AG∥BH,则α+β=180°;90°﹣.【解答】解:(1)如图1.∵BF平分∠CBE,AF平分∠DAB,∴∠FBE=∠CBE,∠FAB=∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°﹣∠D﹣∠DCB=360°﹣120°﹣110°=130°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE﹣∠FAB===(180°﹣130°)=25°;(2)如图2.由(1)得:∠AFB=,∠DAB+∠ABC=360°﹣∠D﹣∠DCB.∴∠AFB==.(3)若AG∥BH,则α+β=180°.证明:如图3.若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE.∴∠DAB=∠CBE.∴AD∥BC.∴∠DAB+∠DCB=α+β=180°.挑战:如图4.∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=,.∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°﹣∠D﹣BCD=360°﹣α﹣β.∴∠DAB+180°﹣∠CBE=360°﹣α﹣β.∴∠DAB﹣∠CBE=180°﹣α﹣β.∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE.又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB﹣∠ABF.∴∠F===90°﹣.17.已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A,B均不与点O重合.(1)如图1,AI平分∠BAO,BI平分∠ABO,则∠AIB=135°.(2)如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.①若∠BAO=30°,则∠ADB=45°.②在点A,B的运动过程中,∠ADB的大小是否会发生变化?若不变,求出∠ADB的度数;若变化,请说明理由.(3)如图3,已知点E在BA的延长线上,∠BAO的平分线AI,∠OAE的平分线AF与∠BOP的平分线所在的直线分别相交于点D,F.在△ADF中,如果有一个角的度数是另一个角的3倍,请直接写出∠ABO的度数.【答案】(1)135°;(2)①45°,②不变.∠ADB=45°(3)60°或45°.【解答】解:(1)∵AI平分∠BAO,BI平分∠ABO,∴,∴∠BIC=180°﹣∠IBA﹣∠IAB=====90°+α,∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∴,故答案为:135°.(2)①∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∵∠BAO=30°,∴∠ABM=120°,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠BAD==15°,∴∠ADB=∠CBA﹣∠BAD=60°﹣15°=45°,故答案为:45.②不变,∠ADB=45°.设∠BAO=α,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠MBA=90°+α,,∴∠ADB=∠CBA﹣∠BAD=45,∴不变,∠ADB=45°.(3)∵∠BAO的平分线AI,∠OAE的平分线AF,∴∠DAF=90°,∵一个角是另一角的3倍,∴分两种情况讨论:①当∠DAF=3∠ADF时,∠ADF=30°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=15°,∴∠OAB=30°,∴∠OBA=90°﹣30°=60°;②当∠AFD=3∠ADF时,∠ADF=22.5°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=22.5°,∴∠OAB=45°,∴∠OBA=90°﹣45°=45°.∴∠OBA等于60°或45°.18.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见试题解答内容【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.20.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】见试题解答内容【解答】解:(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1;证明:过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2;①当P在C点上方时,同(2)可证:∠3=∠DFP﹣∠CEP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠DFP﹣∠CEP+∠2﹣∠1=0,即∠3=∠1﹣∠2.②当P在D点下方时,∠3=∠2﹣∠1,解法同上.综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.21.如图1,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系(直接写出结论即可)【答案】见试题解答内容【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.22.如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O(a)若∠A=60°,求∠BOC的度数;(b)若∠A=n°,则∠BOC=90°+n°;(c)若∠BOC=3∠A,则∠A=36°;(2)如图(2),在△A′B′C′中的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1),(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?【答案】见试题解答内容【解答】解:(1)(a)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣60°)=60°,∴∠BOC =180°﹣60°=120°;(b ))∵∠ABC 、∠ACB 的平分线相交于点O ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣n °)=90°﹣n °,∴∠BOC =180°﹣(90°﹣n °)=90°+n °.故答案为:90°+n °;(c )∵∠ABC 、∠ACB 的平分线相交于点O ,∠BOC =3∠A ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A ,∴90°﹣∠A +3∠A =180°,解得∠A =36°故答案为:36°;(2)∵∠A ′=40°,∴∠A ′的外角等于180°﹣40°=140°,∵△A ′B ′C ′另外的两外角平分线相交于点O ′,三角形的外角和等于360°,∴∠1+∠2=×(360°﹣140°)=110°,∴∠B ′O ′C ′=180°﹣110°=70°;(3)∵由(1)知,∠BOC =,由(2)知,∠B ′O ′C ′=180°﹣,∴∠B ′O ′C ′=180°﹣∠BOC .23.已知,BC ∥OA ,∠B =∠A =100°,试回答下列问题:(1)如图1所示,求证:OB ∥AC ;(2)如图2,若点E 、F 在BC 上,且满足∠FOC =∠AOC ,并且OE 平分∠BOF .试求∠EOC 的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.【答案】见试题解答内容【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2=;24.有一款灯,内有两面镜子AB、BC,当光线经过镜子反射时,入射角等于反射角,即图1、图2中的∠1=∠2,∠3=∠4.(1)如图1,当AB⊥BC时,说明为什么进入灯内的光线EF与离开灯的光线GH互相平行.(2)如图2,若两面镜子的夹角为α°(0<α<90)时,进入灯内的光线与离开灯的光线的夹角为β°(0<β<90),试探索α与β的数量关系.(3)若两面镜子的夹角为α°(90<α<180),进入灯内的光线与离开灯的光线所在直线的夹角为β°(0<β<90).直接写出α与β的数量关系.【答案】见试题解答内容【解答】(1)证明:如图1所示:∵∠1=∠2,又∵∠5=180°﹣∠1﹣∠2=180°﹣2∠2,∴∠5=180°﹣2∠2,同理∠6=180°﹣2∠3,∵∠2+∠3=90°,∴∠5+∠6=180°,∴EF∥GH,即进入灯内的光线EF与离开灯的光线GH互相平行.(2)解:2α+β=180°,理由如下:如图2所示:由(1)所证,有∠5=180°﹣2∠2,∠6=180°﹣2∠3,∵∠2+∠3=180°﹣∠α,∴∠β=180°﹣∠5﹣∠6=2(∠2+∠3)﹣180°=2(180°﹣∠α)﹣180°=180°﹣2∴α与β的数量关系为:2α+β=180°,(3)解:2α﹣β=180°.25.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=105°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请直接写出α,β所满足的数量关系式;(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.【答案】(1)105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确);(3)BE∥DF,理由见答案.【解答】解:(1)∵四边形ABCD的内角和为360°,∴α+β=∠A+∠BCD=360°﹣(∠ABC+∠ADC),∵∠MBC和∠NDC是四边形ABCD的外角,∴∠MBC=180°﹣∠ABC,∠NDC=180°﹣∠ADC,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC),=105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确).理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°.(3)BE∥DF.理由:如图2,过点C作CP∥BE,则∠EBC=∠BCP,∴∠DCP=∠BCD﹣∠BCP=β﹣∠EBC,由(1)知∠MBC+∠NDC=α+β,∵α=β,∴∠MBC+∠NDC=2β,又∵BE、DF分别平分∠MBC和∠NDC,∴∠EBC+∠FDC=(∠MBC+∠NDC)=β,∴∠FDC=β﹣∠EBC,又∵∠DCP=β﹣∠EBC,∴∠FDC=∠DCP,∴CP∥DF,又CP∥BE,∴BE∥DF.26.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【答案】见试题解答内容【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.27.如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线.(1)当∠A=40°时,分别求∠D和∠P的度数.(2)当∠A的大小变化时,试探究∠D+∠P的度数是否变化.如果不变化,求出∠D+∠P的值;如果变化,请说明理由.【答案】见试题解答内容【解答】解:(1)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+20°=110°;∵BP、CP分别是∠ABC与∠ACB的外角平分线,∴∠CBP=∠CBE,∠BCP=∠BCF,∴∠CBP+∠BCP=∠CBE+∠BCF=(∠CBE+∠BCF)=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A),∴∠BPC=180°﹣(∠CBP+∠BCP)=180°﹣(180°+∠A)=90°﹣∠A=90°﹣×40°=70°.(2)∠D+∠P的值不变.∵由(1)知∠D=90°+∠A,∠P=90°﹣∠A,∴∠D+∠P=180°.28.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM 的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=50°;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=65°.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ 的角平分线及其延长线相交于E、F,则∠EAF=90°;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF 中,如果有一个角是另一个角的4倍,则∠ABO的度数=36°或45°.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=50°,∴∠AEB=130°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∴∠PAB+∠MBA=280°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=140°,∴∠F=50°,∴∠FDC+∠FCD=140°,∴∠CDA+∠DCB=220°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=115°,∴∠E=65°;故答案为:50°,65°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°;故答案为:90°;(4)在△AEF中,∵有一个角是另一个角的4倍,故有:①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);③∠F=4∠E,∠E=18°,∠ABO=36°;④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).∴∠ABO为36°或45°.故答案为:36°或45°.29.(1)如图1,AC平分∠DAB,∠1=∠2.求证:AB∥CD;(2)如图2,在(1)的条件下,AB的下方两点E、F,满足:BF平分∠ABE,CF平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度数;(3)如图3,在(1)、(2)的条件下,若P是射线BE上一点,G是CD上任一点,PQ 平分∠BPG,PQ∥GN,GM平分∠DGP,求∠MGN的度数.【答案】见试题解答内容【解答】(1)证明:∵AC平分∠DAB,∴∠1=∠CAB,∵∠1=∠2,∴∠2=∠CAB,∴AB∥CD;(2)解:如图2,∵BF平分∠ABE,CF平分∠DCE,∴∠DCF=∠DCE=35°,∠ABE=2∠ABF,∵CD∥AB,∴∠2=∠DCF=35°,∵∠2=∠CFB+∠ABF,∠CFB=20°,∴∠ABF=15°,∴∠ABE=2∠ABF=30°;(3)解:如图3,根据三角形的外角性质,∠1=∠BPG+∠B,∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=∠BPG,∠MGP=∠DGP,∵AB∥CD,∴∠1=∠DGP,∴∠MGP=(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=∠BPG,∴∠MGN=∠MGP﹣∠NGP=(∠BPG+∠B)﹣∠BPG=∠B,根据前面的条件,∠B=30°,∴∠MGN=×30°=15°.30.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】见试题解答内容【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=150°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=360°﹣150°﹣90°﹣90°=30°;(3)∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°.。

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

北师大版数学七年级下册期中试卷

2024-2025学年北师大新版七年级下册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,无理数是()A.πB.0C.D.3.142.(3分)在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,你必须进行以下哪项操作,才能使所有的方块自动消失()A.向右平移1格B.向右平移2格C.向左平移1格D.向左平移2格3.(3分)在直角坐标系中,下列点中在第四象限的是()A.(﹣1,2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)4.(3分)如图,点E在AC的延长线上,下列条件中,能判定AB∥CD的条件有()①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D+∠DBA=180°.A.1个B.2个C.3个D.4个5.(3分)如图,直线AB和CD交于点O,OE平分∠AOD,若∠1+∠2=80°,则∠AOE的度数为()A.60°B.70°C.75°D.80°6.(3分)设x=﹣1,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.无法确定7.(3分)如图,在平面直角坐标系中,点M的坐标是(1,2),直线l⊥x轴,N是直线l上一个动点,则线段MN的长度最小时点N的坐标是()A.(5,1)B.(1,5)C.(5,2)D.(2,5)8.(3分)下列语句不正确的是()A.没有意义B.没有意义C.﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数9.(3分)在平面直角坐标系中,点P(﹣3,2021)在第()象限.A.一B.二C.三D.四10.(3分)如图所示的运算程序中,如果开始输入的x值为﹣23,我们发现第1次输出的结果为﹣26,第2次输出的结果为﹣13,…,第2023次输出的结果为()A.﹣1B.﹣2C.﹣4D.﹣8二.填空题(共5小题,满分20分,每小题4分)11.(4分)如图,AB∥CD,∠1=30°,∠2=50°,∠3=60°,则∠4=.12.(4分)已知方程(a﹣2)x|a﹣1|﹣y=1是关于x,y的二元一次方程,则a=.13.(4分)已知:P(0,4),PQ=5,点Q在坐标轴上,则点Q的坐标为.14.(4分)已知方程组的解x与y的和为0,则k的值为.15.(4分)如图,每个小正方形的边长都为1,则以A,B,C,D,E,F中的三点为顶点且面积为1的三角形共有个.三.解答题(共9小题,满分70分)16.(6分)观察下列各式:①;②;③;……回答下列问题:(1)请写出第4个式子:.(2)试用含n(n为正整数)的代数式表示这一规律,并加以验证.17.(6分)(x+3)2=(1﹣2x)2.18.(6分)解方程组:(1);(2).19.(6分)解方程式组:.20.(8分)如图,在平面直角坐标系网格中,三角形ABC的顶点坐标分别是A(1,﹣2),B(2,1),C(﹣3,2).将三角形ABC平移,使顶点B平移到坐标原点O处,得到三角形A1OC1.(1)A1的坐标是,C1的坐标是;(2)画出平移后的三角形A1OC1;(3)P(x,y)为三角形ABC中任意一点,则平移后对应点P′的坐标为;(4)求△A1OC1的面积.21.(8分)若方程组和的解相同,试求(a﹣3b)3的值.22.(8分)已知:如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,CD与EF相交于点H,且∠BDC=∠DHE,∠DEF=∠B.求证:DE∥BC.23.(10分)已知:如图,AB∥CD,∠BFE=∠FEC.求证:∠ABF=∠DCE.24.(12分)如图,已知△ABC的顶点为A(2,﹣4),点B在x轴的负半轴上且到y轴的距离为5,点C与点A关于原点对称.(1)写出点B 、C 的坐标是:B ,C ;(2)在平面直角坐标系中画出△ABC ,可以求得△ABC 的面积是;(3)如果点D 在x 轴上,且S △ABD =S △ABC ,那么点D 的坐标是.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.π是无理数,故此选项符合题意;B.0是整数,属于有理数,故此选项不符合题意;C.﹣是分数,属于有理数,故此选项不符合题意.D.3.14是有限小数,属于有理数,故此选项不符合题意;故选:A.2.【解答】解:∵上面的图案中间凸起的部分到下方图案凹处需向左平移2格,∴应向左平移2格,故选:D.3.【解答】解:A.(﹣1,2)在第二象限,故本选项不合题意;B.(3,2)在第一象限,故本选项不合题意;C.(2,﹣3)在第四象限,故本选项符合题意;D.(﹣2,﹣3)在第三象限,故本选项不合题意.故选:C.4.【解答】解:①∵∠1=∠2,∴AB∥CD,故本选项符合题意;②∵∠3=∠4,∴AC∥BD,故本选项不符合题意;③∵∠A=∠DCE,∴AB∥CD,故本选项符合题意;④∵∠D+∠DBA=180°,∴AB∥CD,故本选项符合题意.综上所述,能判定AB∥CD的条件有①③④,有3个.故选:C.5.【解答】解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠AOD=180°﹣40°=140°,又∵OE平分∠AOD,∴∠DOE=∠AOE==70°,故选:B.6.【解答】解:∵32<15<42,∴,∴,即x的取值范围是2<x<3.故选:A.7.【解答】解:如图,当MN⊥l时,线段MN的长度最小,此时点N的坐标为(5,2),故选:C.8.【解答】解:A、∵﹣(a2+1)<0,故选项正确;B、有意义,故选项错误;C、﹣(a2+1)的立方根是,故选项正确;D、﹣(a2+1)的立方根是一个负数,故选项正确.故选:B.9.【解答】解:∵点P的坐标为(﹣3,2021),∴点P在第二象限.故选:B.10.【解答】解:第1次输出的结果是﹣26,第2次输出的结果是﹣13,第3次输出的结果是﹣16,第4次输出的结果是﹣8,第5次输出的结果是﹣4,第6次输出的结果是﹣2,第7次输出的结果是﹣1,第8次输出的结果是﹣4,第9次输出的结果是﹣2,第10次输出的结果是﹣1,第11次输出的结果是﹣4,⋯⋯,∴除去前四次的输出结果,后面每输出3次为一个循环,∵(2023﹣4)÷3=673,∴第2023次输出的结果为﹣1,故选:A.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:过E作EM∥AB,过F作FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD,∴∠1=∠AEM,∠MEF=∠EFN,∠4+∠NFC=180°,∵∠1=30°,∠AEF=50°,∠EFC=60°,∴∠AEM=30°,∴∠EFN=∠MEF=50°﹣30°=20°,∴∠NFC=60°﹣20°=40°,∴∠4=180°﹣40°=140°,故答案为:140°.12.【解答】解:由题意得:|a﹣1|=1且a﹣2≠0,解得:a=0.故答案为:0.13.【解答】解:如图,当点P在x轴上时,点Q的坐标为(﹣3,0)或(3,0);当点P在y轴上时,点Q的坐标为(0,9)或(0,﹣1);故答案为:(3,0),(﹣3,0),(0,9),(0,﹣1).14.【解答】解:①﹣②,得2y=2,即y=1,又x+y=0,∴,把x=﹣1,y=1代入②得2×(﹣1)+3×1=k,解得:k=1.故答案为:115.【解答】解:面积为1的三角形有两种情况:(1)底为1,高为2;(2)底为2,高为1;以A,B,C,D,E,F中的三点为顶点且面积为1的三角形共有10个:△ABC,△ABD,△ABE,△ABF,△ACD,△BCD,△ADE,△BDE,△AEF,△BEF.故答案为:10.三.解答题(共9小题,满分70分)16.【解答】解:(1)第4个式子为:;(2)用含n(n为正整数)的代数式表示为:,证明:∵左边===,右边=,∴左边=右边,∴规律正确.故答案为:5.17.【解答】解:∵(x+3)2=(1﹣2x)2∴原式可变为x+3=±(1﹣2x)解得x=﹣或4.18.【解答】解:(1)由①+②得:4x=8,解得x=2,把x=2代入①中得:y=1,所以方程组的解为:;(2),①×3﹣②得:8x=24,解得:x=3,把x=3代入①得:y=5,∴方程组的解为.19.【解答】解:①×2+②得5x=13,解得:x=,把x=代入①得:+2y=3,解得:y=,∴原方程组的解为:.20.【解答】解:(1)A1的坐标为(﹣1,﹣3),C1的坐标是(﹣5,1);故答案为:(﹣1,﹣3),(﹣5,1);(2)如图,△A1OC1即为所求;(3)由平移可知:图形向左平移2个单位,向下平移1个单位,∴平移后对应点P′的坐标为(x﹣2,y﹣1);(4)△A1OC1的面积=.21.【解答】解:,①+②得:10x=10,即x=1,把x=1代入①得:y=﹣2,把x=1,y=﹣2代入第二个方程组得:,解得:,则(a﹣3b)3=(5﹣3×3)3=﹣64.22.【解答】解:∵∠BDC=∠DHE,∴BD∥EF,∴∠B=∠EFC,∵∠DEF=∠B,∴∠EFC=∠DEF,∴DE∥BC.23.【解答】证明:连接BC.∵∠BFE=∠FEC,∴BF∥CE,∴∠FBC=∠ECB,∵AB∥CD,∴∠ABC=∠DCB,∴∠ABC﹣∠FBC=∠DCB﹣∠ECB,即∠ABF=∠DCE.24.【解答】解:(1)∵点B在x轴的负半轴上且到y轴的距离为5,∴B(﹣5,0),∵A(2,﹣4),C与点A关于原点对称,∴C(﹣2,4);故答案为:(﹣5,0),(﹣2,4);(2)如图所示,S△ABC=+=14;故答案为:14;(3)设D(a,0),∵S△ABD =S△ABC,∴|a+5|×4=14,解得a=﹣23或a=﹣33,∴D(23,0)或(﹣33,0),故答案为(23,0)或(﹣33,0).。

浙教版数学七年级下册期中复习综合素养评估练习卷(第1-3章)含答案解析


方程组的一个解;②当 a=-2 时,x,y 的值互为相反数;③当 a=1 时,
方程组的解也是方程 x+y=4-a 的解;④x,y 间的数量关系是 x-2y=
3.其中正确的是( C )
A. ②③
B. ①④
C. ①②③
D. ②③④
【解析】

xy==-5,1代入方程组,得
5-3=4-a, 5-(-1)=3a,
浙教版七年级下册数学期中复习
第1~3章期中评估
一、选择题 1. 下列图案中,可以看作是由图案自身的一部分经平移后得到的是( A )
2. 下列运算中,正确的是( C )
A. m+2m=3m2
B. 2m3·3m2=6m6
C. (2m)3=8m3
D. m6÷m2=m3
3. 数据0.000 000 35用科学记数法表示应为( B )
l1=53l2,则
7n m=_____3____(用含
n
的代数
式表示).
【解析】 由图1,得l1=2m+2n, 设小长方形的长为a,宽为b,则由图2,得a+3b=m,
∴l2=2m+2(n-a)+2(n-3b)=2m+4n-2(a+3b)=4n.
∵l1=53l2,∴2m+2n
=5·4n 3
,∴m
=7n 3
∴当a=1时,方程组的解也是方程x+y=4-a的解,故③正确. x+3y=4-a,① x-y=3a,②
由①,得a=4-x-3y, 代入②,得x-y=3(4-x-3y), 整理,得x+2y=3,而x-2y=3不一定成立,故④错误. 故选C.
二、填空题 11. 计算:( 3)0=____1_____;12-2=_____4____. 12. 如图,直线l1∥l2,∠1=20°,则∠2+∠3=____2_0_0___°.

2022-2023学年人教版七年级下册数学期中复习试题

2022-2023学年人教版七年级下学期数学期中复习试题一、选择题(每小题3分,共30分)1.(3分)下列各数中,是无理数的是( )A .0B .12C .√2D .﹣22.(3分)如图,下列条件中,能推出AB ∥DC 的条件( )A .∠1=∠2B .∠3=∠4C .∠D =∠DCE D .∠BAD+∠ABC =180°3.(3分)在平面直角坐标系中,点(2,﹣3)所在的象限是( )象限.A .第一B .第二C .第三D .第四4.(3分)下列图案是由图中所示的图案通过平移后得到的是( )A .B .C .D .5.(3分)如图,工人师傅移动角尺在工件上画出直线CD ∥EF ,其中的道理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .以上结论都不正确6.(3分)如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标是(3,1),表示“天安门”的点的坐标是(0,0),则表示“人民大会堂”的点的坐标是( )A .(0,0)B .(﹣1,0)C .(﹣1,﹣1)D .(1,1)7.(3分)实数a 、b 在数轴上对应的点的位置如图所示,则化简√a 2−|a ﹣b|+√a 2得( )A .0B .2aC .2bD .﹣2b8.(3分)如图,将一张长方形纸条ABCD 沿EF 折叠,点A ,B 分别折叠至点A ′,B ′,若∠AEF =130°,则∠B ′FC 的度数为( )A .80°B .70°C .65°D .50°9.(3分)如图,一块长为am ,宽为bm 的长方形草地上,有一条弯曲的小路,小路左边线向右平移tm 就是它的边线.若a :b =5:3,b :t =6:1,则小路面积与绿地面积的比为( )A .19B .110C .211D .21310.(3分)如图,E 在线段BA 的延长线上,∠EAD =∠D ,∠B =∠D ,EF ∥HC ,连FH 交AD 于G ,∠FGA 的余角比∠DGH 大16°,K 为线段BC 上一点,连CG ,使∠CKG =∠CGK ,在∠AGK 内部有射线GM ,GM 平分∠FGC ,则下列结论:①AD ∥BC ;②GK 平分∠AGC ;③∠E+∠EAG+∠HCK =180°;④∠MGK 的角度为定值且定值为16°,其中正确结论的个数有( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.(3分)比较下列各组数的大小(填“>”、“=”、“<”).(1)3.14 π; (2)√73 2; (3)√5−3 √5−42. 12.(3分)如图,AB ∥CD ,∠ABE =148°,FE ⊥CD 于E ,则∠FEB 的度数是 度.13.(3分)点A 向右平移3个单位长度,再向下平移2个单位长度后,得到点B (0,2),则点A 坐标为 .14.(3分)已知点O (0,0),B (1,2),点A 在x 轴的正半轴上,且S 三角形OAB =2,则A 点的坐标为 .15.(3分)如图,直线AB ,CD 相交于点O ,若OE ⊥AB ,且∠COE :∠BOD =7:2,则∠DOE 的度数是 .16.(3分)若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B = 度.17.(3分)如图,雷达探测器测得A ,B ,C 三个目标.如果A ,B 的位置分别表示为(4,60°),(2,210°).则目标C 的位置表示为 .18.(3分)将一组数√3,√6,3,√12,√15,……,√90按下面的方式进行排列:√3,√6,3,√12,√15;√18,√21,√24,√27,√30;若√12的位置记为(1,4),√24的位置记为(2,3),则这组数中最大的有理数的位置记为 .三、解答题(共66分)17.(6分)计算:(1)√9+√−13−√0+√14; (2)3√6+√2−(2√6−√2).18.(6分)求下列各式中的x的值.(1)(x﹣2)2=16;(2)(x+1)3﹣27=0.19.(6分)在下面解答中填空.如图,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠=90°(垂直的定义).∴AB∥CD().∵∠1=∠2(已知),∴AB∥EF().∴CD∥EF(平行于同一条直线的两条直线互相平行).∴∠3=∠E().20.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.21.(6分)如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线交MN于G,作射线GF∥AB.(1)求证:AB∥CD;(2)若∠CAB=66°,求∠CGF的度数.22.(8分)如图,AB∥CD,E是直线FD上的一点,∠ABC=140°,∠CDF=40°.(1)求证:BC∥EF;(2)连接BD,若BD∥AE,∠BAE=110°,则BD是否平分∠ABC?请说明理由.23.(8分)如图,在平面直角坐标系中,三角形各顶点都在网格线的交点上,叫做格点三角形,格点三角形ABC经过某种变换后得到格点三角形A′B′C′(A、B、C的对应点分别是A′,B′,C′).(1)写出点C、C′的坐标:C(),C′();(2)若第一象限内有一点D,且以A、B、C、D为顶点的四边形为平行四边形,则点D的坐标是;(3)三角形ABC内任意一点M(x,y)经过此变换得到的对应点M′的坐标是(用含有x、y 的代数式表示).24.(10分)已知AD和BE相交于点C,∠BAC=∠ACB,∠EDC=∠DCE.(1)如图(1),求证:AB∥DE;(2)如图(2),点P是线段BC上一点,连结AP.①求证:∠APE=∠BAP+∠CED;②若∠APE=∠BAD=2∠CED,请直接写出∠CED的度数;(3)如图(3),若点M是射线BA上一点,作MH⊥直线AD于点H,∠ADE与∠AMH的角平分线相交于点N,请直接写出∠DNM的度数.25.(10分)在平面直角坐标系中,点A(0,a),B(b,b)的坐标满足:|a﹣3|+(b+1)2=0,将线段AB 向右平移到DC的位置(点A与D对应,点B与C对应).(1)求点A、B的坐标:(2)①若原点O恰好在线段CD上,则四边形ABCD的面积=;②S△AOB、S△COD分别表示三角形AOB、三角形COD的面积,若S△AOB+S△COD=10,则AD长为.(3)点P(m,n)是四边形ABCD所在平面内一点,且三角形ABP的面积为4,求m,n之间的数量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学期中综合复习题(三)
A 卷(共100分)
一.选择题:(每小题3分,共30分)
1.三角形的一个内角等于其余两个内角的和,这个三角形是( ) (A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )等腰三角形
2.小彬有两根长度分别为5cm 和9cm 的木棒,他想钉一个三角形木框,下列木棒长可为第三边的是( )
(A )3.5cm (B )4cm (C )10cm (D )15cm
3.李明用6个球设计了一个摸球游戏,共有四种方案,其中肯定不能成功的方案是( ) (A )摸到红球、黄球的概率都是
2
1
(B )摸到红球、黄球、白球的概率都是3
1
(C )摸到黄球、红球、白球的概率分别是2
1、
3
1、
6
1
(D )摸到黄球的概率是
3
2,摸到红球和白球的概率都是3
1
4.下列计算错误的是( )
(A )65x x x =⋅ (B )6332)(b a b a =⋅ (C )326a a a =÷ (D )20102)(a a =- 5.若3,9=-=+y x y x ,则2222y x -的值为( )
(A )54 (B )24 (C )12 (D )8 6.下列几种说法正确的是( )
(A )锐角大于它的余角 (B )AO +OB =AB (C )平角是一条直线 (D )反向延长射线OA 7.已知如图∠1=∠2,则有( )
(A )AB ∥BC (B )AB ∥CD (C )∠ABC =∠ADC (D )AB =DC 8.轮船航行到C 处观测小岛A 的方向是北偏 西32°,那么小岛A 观测到轮船C 的方向是( ) (A )南偏西32° (B )南偏东32° (C )南偏西58° (D )南偏东58° 9.下列语句正确的是( )
(A )0)1415.3(-π没有意义 (B )任何数的0次幂都等于1
(C )把3102-⨯写成小数是0.0002 (D )若0≠a ,则p p a a =-)1
((p 为正整数)
10.如图,若AB ∥EF , ∠C =90°则α、β与γ的关系是( ) (A )α+γ=β
(B )α+β+γ=180° (C )α+β-γ=90° (D )β+γ-α=90°
二.填空题:(每小题3分,共30分)
1.一个骰子的6个面上分别标有数字1、2、3、4、5、6,随意掷出这个骰子.把下列事件发生的概率在图中表示出来: (1)掷出的数字小于8; (2)掷出的数字是两位数; (3)掷出的数字是质数
2.已知如图△ABC 中,∠B 和∠C 的平分线交于O ,且∠A =50°,则∠BOC =_____. 3.A y x y x ++=-22)2()2(,则A =_______.
4.右表为杨辉三角系数表,它的作用是指导读者按规律写出例如n b a )(+(其中n 为正整数)展开式的系数,请仔细观察下表中的规律
b a b a +=+)(
2
2
2
2)
(b ab a
b a ++=+
32
23333)(b ab
b a a b a +++=+
填出4)(b a +展开式中所缺的系数4322344____6___)(b ab b a b a a b a ++++=+ 5.已知,如图∠1=∠2,要使∠3=∠4,则只需满足条件________.
5题 6题
6.如图,三条直线AB 、CD 、EF 交于一点,若∠1=30°,∠2=70°,则∠3= . 7.若21=+
a
a ,则2
21a
a +
的值是_______.
8.已知2
237
2288b b a b a n m =
÷,那么m =_______,n =_______.
9.若1622++mx x 是完全平方式,则m 的值是________ 10. 已知如图CD ⊥AB 于D ,EF ⊥AB 于F ,
11. ∠DGC =105°,∠BCG =75°,则∠1+∠2=_______.
三.计算题:(每小题4分,共16分)
1.2004200512)2
1
(2)2
1
()2(-⨯+---- 2.)6
11)(5
11)(4
11)(3
11)(2
11(2
2
2
2
2
-
-
-
-
-
3.2222)3()6(b ab ab ⨯÷- 4.()()[]
)2(22xy y x y x ÷--+
四.解答题
1.(4分)已知22,12,7b a ab b a +==+求的值
2.(4分)某地引用优质树,扦插5000株,成活为4500株,第二年又扦插7500株,成活为7125株,试比较两次扦插的效果(提示:应用成活概率比较)
3.(5分)已知△ABC三边长是a、b、c,试化简代数式c
+
-
-
-
-
+
-
-
a-
-
+
a
b
b
a
c
b
c
a
b
c
4.(5分)如图,在⊿ABC中,D是BC上的一点,F是CA延长线上一点,FD交AB于E,∠F=30°,∠C=70°,∠FEA=40°,求∠B的度数
5.(6分)按下面方法折纸,然后回答问题?
(1)∠2是多少度的角?为什么?请写出详细的推理过程
(2)∠1与∠3有何关系?
(3)∠1与∠AEC,∠3与∠BEF分别有什么关系?
B 卷(50分)
一.填空题(每题4分共24分)
1.a 、b 、c 是△ABC 的三边,且a =7,b =11,第三边c 能被5整除,则c 的长为_____. 2.当a =_______,b =_______时,代数式104222+-++b a b a 有最小值,这个最小值是_________. 3.________8____________)
2(2
++=+x x
4.如图线段AB =a ,P 是AB 上一点,分别以AP 、PB 为边作正方形,它们的面积分别为21,S S ,设AP =x ,
(1)用含a 和x 的代数式表示21S S +=________. (2)当a x 2
1=
时,21S S +=___________;当a x 3
1=
时,21S S +=________.
5.如图,某人从A 点出发,每前进10米就向右转18°,再前进10米,又向右转18°,这样下去,他第一次回到出发地A 点时,一共走了____________米.
6.如图1,光线射在平面镜上,入射线和反射线与镜面的夹角都相等,按照这样的规律,如图2,现有一光线照射在平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ之间来回反射, 已知∠α=60°,∠β=50°,则∠γ= 度
二.应用题 1.(8分)符号d
c
b a 称为二阶行列式,规定它的运算法则为:
bc ad d
c
b a -=, 例如
52434
2
53⨯-⨯=,请根据以上方法,化简下面的二阶行列式:
b
a b
a b a b a +--+
2.(8分)如图D为△ABC的边BC上一点,试判断AB+BC+AC与2AD的大小关系,并说明理由.
3.(10分)如图,甲乙两人做转盘游戏,甲说:“我要顺时针转动转盘,
当转盘停止时指针指向几就顺时针走几格,如果得到偶数得1分,
否则不得分!”乙说:“我要逆时针转动转盘,当转盘停止时指针
指向几就逆时针走几格,如果得到偶数得1分,否则不得分!”
甲说:“好吧!我们开始吧!”
上面这个游戏公平吗?请说明理由。

相关文档
最新文档