SPSS案例分析

合集下载

SPSS上机实验案例分析

SPSS上机实验案例分析

SPSS上机实验案例分析练习一:下表为10个人对两个不同的问题作出的回答(回答为“Yes”或“No”)后得到的练习二: 某百货公司连续40天的商品销售额(单位:万元)如下:根据上面的数据进行适当分组,编制频数分布表。

(2)按规定,销售收入在125万元以上为先进企业,115万元-125万元为良好企业,105万元-115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。

练习四:某班的统计学成绩如下表所示:条件1:总评成绩的构成:总评成绩=0.2*平时成绩+0.8*期末成绩(即总评成绩中,平时成绩占20%,期末成绩占80%)条件2:总评成绩请保留为整数(2)请按100-90分,89-80分,79-70分,69-60分,59分及以下,将该班全体同学按照期末成绩进行分组得出各组人数。

练习五:如下表中所示的是20个股票经纪商对于两种不同交易收取佣金数据的一个样本。

这两种交易分别为: 买卖500股每股50美元和买卖1000股每股5美元的股票。

(1)计算两种交易佣金的全距和四分位数间距。

(2)计算两种交易佣金的方差和标准差。

(3)计算两种交易佣金的变异系数。

(4)比较两种交易的成本变异程度。

练习六:某生产部门利用一种抽样程序来检验新生产出来的产品的质量,该部门使用下面的法则来决定检验结果:如果一个样本中的14个数据项的方差大于0.005,则生产线必须关闭整修。

假设搜集的数据如下:问此时的生产线是否必须关闭?为什么?练习七:将50个数据输入到SPSS工作表中。

并使用SPSS计算这些数据描述统计量(如最大值、平均值、方差、标准差等)练习八:广告协会记录了在半点时段和最佳时段电视节目中广告所占时间。

在主要通信网中晚8:30分时段的20个最佳时段的电视节目中,广告所占时间的数据如下(单位:分钟)求晚8:30分时段电视节目中广告所占时间均值的点估计的95%置信区间。

练习九:某年度我国部分工业品产量如下表所示请据表中数据对如下六个问题进行统计图形描述(1)请选择一个适当图形描述各地区所含省市数目(2)请选择一个适当图形描述各地区水泥的平均产量(3)请选择一个适当图形描述每个地区水泥产量低于800万吨的省市数目(4)请选择一个适当图形描述该年度全国生铁、钢、水泥、塑料的平均产量(5)请选择一个适当图形描述该年度华北五省市工业品产量(6)请选择一个适当图形描述各地区塑料总产量占全国总量的比例练习十:以下数据记录了美国最大的旅馆业市场的客房使用率和平均房价的统计资料。

2024版SPSS判别分析方法案例分析

2024版SPSS判别分析方法案例分析

01 查看判别分析的结果输出,包括判别函数系数、 结构矩阵、分类结果等。
02 根据输出结果,解读判别分析的结果,如判别函 数的贡献、分类准确率等。
03 结合专业知识和实际背景,对结果进行合理解释 和讨论。
05
案例分析:某公司客户流失预测 模型构建
案例背景及问题描述
01
某大型电信公司面临客户流失问题,需要构建客户流失
04
SPSS判别分析操作过程
导入数据并建立数据集
1
打开SPSS软件,选择“文件”->“打开”>“数据”,导入需要分析的数据文件。
2
在数据视图中检查数据的完整性和准确性,确保 数据质量。
3
根据需要,对数据进行预处理,如缺失值处理、 异常值处理等。
选择合适的判别分析方法
根据研究目的和数据特点,选择合适 的判别分析方法,如线性判别分析、 二次判别分析等。
决策树与随机森林
基于贝叶斯定理和多元正态分 布假设,通过最大化类间差异 和最小化类内差异来建立线性 判别函数。适用于正态分布且 各类别协方差矩阵相等的情况。
放宽了LDA的假设条件,允许各 类别具有不同的协方差矩阵。 通过构建二次判别函数进行分 类。适用于更一般的数据分布 情况。
基于距离度量的方法,将新样 本分配给与其最近的K个已知样 本中最多的类别。适用于多类 别、非线性可分问题。
数据变换与标准化
数据变换
根据分析需求,对数据进行适当的变换,如对数变换、平 方根变换等,以改善数据的分布形态或满足分析要求。
数据标准化
对数据进行标准化处理,消除量纲和数量级的影响,使不 同变量具有可比性。常用的标准化方法包括Z分数标准化、 最小最大标准化等。
数据离散化

spss案例分析报告(精选)

spss案例分析报告(精选)

spss案例分析报告(精选)本文通过分析一份 SPSS 数据,展示 SPSS 在统计分析中的应用。

数据概述本数据为一家咖啡馆的销售数据,共有 200 条记录,包括 7 个变量:日期、时间、收银员、商品名、销售价格、数量和总价。

SPSS 分析1. 描述性统计使用 SPSS 的描述性统计功能,可以获取数据的基本信息,如均值、标准偏差、最大值、最小值等。

其中,销售价格的均值为 44.71 元,标准偏差为 13.29 元,最小值为 23 元,最大值为 78 元。

数量的均值为 1.62 个,标准偏差为 0.51 个,最小值为 1 个,最大值为3 个。

总价的均值为 73.25 元,标准偏差为 21.89 元,最小值为 23 元,最大值为 156 元。

2. 单样本 t 检验假设一杯咖啡的平均售价为 50 元,我们可以使用单样本 t 检验对这个假设进行检验。

首先,我们需要用 SPSS 的数据透视表功能,计算出每杯咖啡的平均售价。

然后,使用单样本 t 检验功能,输入样本均值、假设的总体均值(50 元)、样本标准差、样本大小以及置信度水平。

在这个数据集中,单样本 t 检验得出的 t 值为 -2.36,P 值为 0.019,显著性水平为 0.05,因此我们可以拒绝原假设,认为该咖啡馆的咖啡售价不是 50 元。

4. 相关分析假设我们想要了解商品数量和销售额之间的关系,我们可以使用 SPSS 的相关分析功能来进行分析。

首先,我们需要使用数据透视表功能,计算出每个订单的总价和数量。

然后,使用相关分析功能,输入这两个变量的值,得出相关系数和显著性水平。

在这个数据集中,商品数量和销售额之间的相关系数为 0.749,P 值为 0,显著性水平非常显著。

因此,我们可以认为商品数量和销售额之间存在极强的正相关关系。

结论本文通过 SPSS 对一份咖啡馆销售数据进行分析,展示了 SPSS 在统计分析中的应用。

通过描述性统计、单样本 t 检验、双样本 t 检验和相关分析等功能,我们可以获得数据的基本信息,检验假设,分析变量之间的关系,从而帮助企业更好地决策和管理。

spss地大数据分析资料报告案例

spss地大数据分析资料报告案例

spss地大数据分析资料报告案例spss 的大数据分析资料报告案例在当今数字化时代,数据已成为企业和组织决策的重要依据。

SPSS (Statistical Product and Service Solutions)作为一款功能强大的统计分析软件,在处理和分析大数据方面发挥着重要作用。

本文将通过一个实际的案例,展示如何运用 SPSS 进行大数据分析,并从中得出有价值的结论。

一、案例背景假设我们是一家电商公司,拥有大量的用户交易数据。

我们希望通过对这些数据的分析,了解用户的购买行为、偏好以及市场趋势,以便优化产品推荐、营销策略和供应链管理。

二、数据收集与整理首先,我们从数据库中提取了相关的数据,包括用户的基本信息(如年龄、性别、地域等)、购买记录(产品类别、购买时间、购买金额等)以及浏览行为等。

这些数据量庞大,可能达到数百万甚至数千万条记录。

在将数据导入 SPSS 之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理和异常值检测。

例如,删除重复的记录、填充缺失的关键信息,并剔除明显不符合常理的异常值。

三、数据分析方法1、描述性统计分析通过计算均值、中位数、标准差等统计量,对用户的年龄、购买金额等变量进行概括性描述,了解数据的集中趋势和离散程度。

2、相关性分析分析不同变量之间的相关性,例如用户年龄与购买金额之间、购买频率与产品类别之间的关系。

3、分类分析使用聚类分析将用户分为不同的群体,以便针对不同群体制定个性化的营销策略。

4、时间序列分析对于购买时间等变量,运用时间序列分析方法预测未来的销售趋势。

四、SPSS 操作与结果解读1、描述性统计分析结果例如,我们发现用户的平均年龄为 30 岁,购买金额的中位数为 500 元,标准差为 200 元。

这表明大部分用户年龄较为年轻,购买金额分布相对较为集中。

2、相关性分析结果发现用户年龄与购买金额之间存在较弱的正相关关系,即年龄较大的用户可能购买金额相对较高。

用SPSS进行相关分析的典型案例

用SPSS进行相关分析的典型案例

数据预处理
缺失值处理
对于缺失值,可以采用删除缺失样本、均值插补、多重插补等方法进行处理。在本案例中,由于缺失值较少,采用删 除缺失样本的方法进行处理。
异常值处理
对于异常值,可以采用箱线图、散点图等方法进行识别和处理。在本案例中,通过箱线图发现存在少数极端异常值, 采用删除异常样本的方法进行处理。
数据标准化
06
典型案例三:经济学领域 应用
案例背景介绍
研究目的
探讨某国经济增长与失业率之间的关系 。
VS
数据来源
采用某国统计局发布的年度经济数据,包 括GDP增长率、失业率等指标。
SPSS操作步骤详解
1. 数据导入与整理 将原始数据导入SPSS软件。 对数据进行清洗和整理,确保数据质量和准确性。
SPSS操作步骤详解
显著性检验
观察相关系数旁边的显著性水平 (p值),判断相关关系是否具有 统计显著性。通常情况下,p值小 于0.05被认为具有统计显著性。
结果讨论
结合相关系数和显著性检验结果 ,讨论社会经济地位与心理健康 之间的关系。例如,可以探讨不 同教育水平或职业对心理健康的 影响,以及这种关系在不同人群 中的差异。
关注SPSS输出的显著性检验结果。如 果P值小于设定的显著性水平(如 0.05),则认为药物剂量与症状改善 程度之间的相关性是显著的,即两变 量之间存在统计学意义的关联。
结合专业背景和实际情境,对结果进 行解释和讨论。例如,如果药物剂量 与症状改善程度呈正相关且相关性显 著,可以认为增加药物剂量有助于改 善患者症状。同时,需要注意结果的 局限性和可能的影响因素,以便为医 学实践提供有价值的参考信息。
提出政策建议或未来研究方向,以促进经济增长和降 低失业率。

spss数据分析报告案例

spss数据分析报告案例

SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。

通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。

2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。

下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。

•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。

•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。

最小值为5小时,最大值为10小时。

•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。

最早就寝时间为22:00,最晚就寝时间为01:00。

•健康问题:共有45%的大学生存在健康问题。

3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。

利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。

T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。

3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。

使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。

F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。

3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。

利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。

spss案例大数据分析报告

spss案例大数据分析报告

spss案例大数据分析报告SPSS 案例大数据分析报告在当今数字化时代,数据已成为企业和组织决策的重要依据。

通过对大量数据的分析,可以揭示隐藏在其中的规律和趋势,为决策提供有力支持。

本报告将以一个具体的案例为例,展示如何使用 SPSS 进行大数据分析。

一、案例背景本次分析的对象是一家电商企业的销售数据。

该企业在过去一年中积累了大量的销售记录,包括商品信息、客户信息、订单金额、购买时间等。

企业希望通过对这些数据的分析,了解客户的购买行为和偏好,优化商品推荐和营销策略,提高销售业绩。

二、数据收集与整理首先,从企业的数据库中提取了相关数据,并进行了初步的清理和整理。

删除了重复记录和缺失值较多的字段,对数据进行了标准化处理,使其具有统一的格式和单位。

在整理数据的过程中,发现了一些问题。

例如,部分客户的地址信息不完整,部分商品的分类存在错误。

通过与相关部门沟通和核实,对这些问题进行了修正和补充。

三、数据分析方法本次分析主要采用了以下几种方法:1、描述性统计分析计算了数据的均值、中位数、标准差、最大值、最小值等统计指标,以了解数据的集中趋势和离散程度。

2、相关性分析分析了不同变量之间的相关性,例如商品价格与销量之间的关系,客户年龄与购买金额之间的关系。

3、聚类分析将客户按照购买行为和偏好进行聚类,以便更好地了解客户群体的特征。

4、因子分析提取了影响客户购买行为的主要因素,为进一步的分析和建模提供基础。

四、数据分析结果1、描述性统计分析结果商品的平均价格为_____元,中位数为_____元,标准差为_____元。

销量的最大值为_____件,最小值为_____件,均值为_____件。

客户的平均年龄为_____岁,中位数为_____岁,标准差为_____岁。

购买金额的最大值为_____元,最小值为_____元,均值为_____元。

2、相关性分析结果商品价格与销量之间呈现负相关关系,相关系数为_____。

这表明价格越高,销量越低。

spss数据分析案例

spss数据分析案例

spss数据分析案例SPSS数据分析案例。

在实际的数据分析工作中,SPSS(Statistical Product and Service Solutions)是一个非常常用的统计分析软件。

它提供了强大的数据处理和分析功能,可以帮助研究人员快速、准确地进行数据处理和分析。

本文将通过一个实际的案例,介绍如何使用SPSS进行数据分析,并展示分析结果。

案例背景:某公司想要了解员工满意度与工作绩效之间的关系,为了达到这个目的,他们进行了一项调查,收集了员工的满意度评分和绩效评分数据。

现在,他们希望通过这些数据,利用SPSS进行分析,找出员工满意度和工作绩效之间的关系。

数据收集:首先,我们收集了100名员工的满意度评分和绩效评分数据。

满意度评分采用了1-5的五级评分制,绩效评分采用了1-100的百分制评分。

数据导入:将收集到的数据导入SPSS软件中,创建一个新的数据集,并将员工的满意度评分和绩效评分数据分别录入到不同的变量中。

数据描述统计分析:首先,我们对数据进行描述性统计分析,包括计算满意度评分和绩效评分的均值、标准差、最大值、最小值等。

这些统计量可以帮助我们更好地了解数据的分布情况。

相关性分析:接下来,我们使用SPSS进行相关性分析,探索员工满意度评分和绩效评分之间的相关关系。

通过相关性分析,我们可以计算出两个变量之间的相关系数,进而判断它们之间是否存在显著的相关性。

回归分析:在确定了员工满意度评分和绩效评分之间存在相关性的基础上,我们可以进一步进行回归分析,建立员工满意度评分对绩效评分的预测模型。

通过回归分析,我们可以得到员工满意度评分对绩效评分的影响程度,以及其他可能影响绩效评分的因素。

结论:通过SPSS数据分析,我们发现员工满意度评分与绩效评分之间存在显著的正相关关系,即员工满意度评分越高,其绩效评分也越高。

这为公司提高员工绩效提供了重要的参考依据,可以通过提升员工满意度来提高整体绩效水平。

总结:在本案例中,我们利用SPSS软件进行了员工满意度和绩效之间的数据分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某道路弯道处53车辆减速前观测到的车辆运行速度,试检验车辆运行速度是否服从正态分布。

这道题目的解答可以先通过绘制样本数据的直方图、P-P图和Q-Q图坐车粗略判断,然后利用非参数检验的方法中的单样本K-S检验精确实现。

一、初步判断1.1绘制直方图(1)操作步骤在SPSS软件中的操作步骤如图所示。

(2)输出结果通过观察速度的直方图及其与正态曲线的对比,直观上可以看到速度的直方图与正太去线除了最大值外,整体趋势与正态曲线较吻合,说明弯道处车辆减速前的运行速度有可能符合正态分布。

1.2绘制P-P图(1)操作步骤在SPSS软件中的操作步骤如图所示。

(2)结果输出根据输出的速度的正态P-P图,发现速度均匀分布在正态直线的附近,较多部分与正态直线重合,与直方图的结果一致,说明弯道处车辆减速前的运行速度可能服从正态分布。

二、单样本K-S检验2.1单样本K-S检验的基本思想K-S检验能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优的检验方法,适用于探索连续型随机变量的分布。

单样本K-S检验的原假设是:样本来自的总体与指定的理论分布无显着差异,即样本来自的总体服从指定的理论分布。

SPSS的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。

单样本K-S检验的基本思路是:首先,在原假设成立的前提下,计算各样本观测值在理论分布中出现的累计概率值F(x),;其次,计算各样本观测值的实际累计概率值S(x);再次,计算实际累计概率值与理论累计概率值的差D(x);最后,计算差值序列中的最大绝对值差值,即通常,由于实际累计概率为离散值,因此D修正为:D统计量也称为K-S统计量。

在小样本下,原假设成立时,D统计量服从Kolmogorov分布。

在大样本下,原假设成立时,Dn近似服从K(x)分布:当D小于0时,K(x)为0;当D大于0时,容易理解,如果样本总体的分布与理论分粗的差异不明显,那么D不应较大。

如果D统计量的概率P值小于显着性水平α,则应拒绝原假设,认为样本来自的总体与指定的分布有显着差异如果D统计量的P值大于显着性水平α,则不能拒绝原假设,认为,样本来自的总体与指定的分布无显着差异。

在SPSS中,无论是大样本还是小样本,仅给出大样本下的和Dn对应的概率P值。

2.2软件操作步骤单样本K-S检验的操作步骤如图所示2.3输出结果并分析SPSS的输出结果如表所示.单样本Kolmogorov-Smirnov 检验速度N 98正态参数a,b均值47.988 标准差11.6310最极端差别绝对值.090 正.050 负-.090Kolmogorov-Smirnov Z .888渐近显着性(双侧) .409a. 检验分布为正态分布。

b. 根据数据计算得到。

该表表明,速度的均值为47.988,标准差为11.6310。

最大绝对差值为0.090,最大正差值为0.050,最大负差值为-0.090。

本例应采用大样本下D统计量的精确概率值,输出了根号nD值0.888和概率P值0.409,如果显着性水平为0.05,由于概率P值大于显着性水平,因此不能拒绝原假设,可以认为弯道处车辆减速前的运行速度服从正态分布。

第13题表中数据为某条公路上观测到的交通流速度与密度数据,试用一元线性回归模型分析两者的101关系。

一、一元线性回归的基本原理 1.1一元线性回归模型:上述模型可分为两部分:(1)01ββχ+是非随机部分;(2)ε是随机部分。

β0和β1为回归常熟和回归系数该式被称为估计的一元线性回归方程。

1.2模型参数估计用最小二乘法估计参数,是在关于随机误差的正态性、无偏性、同方差性、独立性这四个假设的基础上进行的。

为了求回归系数,0β,1β,令一阶导数为0 ,得: 从中解出: 二、一元线性回归分析的假设检验:其中:SST 称为总体离差平方和,代表原始数据所反映的总偏差的大小。

SSR 称为回归离差平方和,它是由变量x 引起的偏差,反应x 的重要程度SSE 称为剩余离差平方和,它是由实验误差以及其它未加控制因素引起的偏差,反映了试验误差及其它随机因素对试验结果的影响。

2.1回归方程优度检验的相关系数反映了由于使用Y 与X 之间的线性回归模型来估计y 的均值,而导致总离差平方和减少的程度。

它与SSR 成正比,R 2 的取值在0-1之间,其值越接近1,说明方程对样本数据点的拟合度越高;反之,其越接近0说明,明模型的拟合度越低。

2.2回归方程的显着性检验 假设01:0,H β= 11:0H β≠。

在0H 成立的条件下,有:上式中,n 1 =1,n 2=n-2,F 服从自由度为(1,n-2)的F 分布。

给定显着水平α,若12(,)F F n n α>,拒绝原假设,表明回归效果显着。

2.3回归系数的显着性检验在H成立的条件下,有:当2(2)t t nα>-时,拒绝原假设,回归显着。

注意:注意回归方程的显着性检验与回归系数的显着性检验的的区别:回归系数的显着性检验是用于检验回归方程各个参数是否显着为0的单一检验,回归方程的显着性检验是检验所有解释变量的系数是否同时为0的联合检验,分别为t检验FF检验。

对于一元线性回归模型,F检验与t检验是等价的,而对于二元以上的多元回归模型,解释变量的整体对被解释变量的影响是显着的,并不表明每一个解释变量对它的影响都显着,因此在做完F检验后还须进行t检验。

2.4残差均值为零的正态性分析,进行一元线性回归建模的前提是残差ε~N(0,δ2)。

而结实变量x去某个特定的值是,对应的残差必然有证有负,但总体上应服从已领为君值得正态分布。

可以通过绘制残插图对该问题进行分析。

残插图是一种散点图,途中横坐标是结实变量,纵坐标为残差。

如果残差的均值为零,则残插图中的点应在纵坐标为零的横线上、下随机散落。

三、软件操作一元线性回归的软件操作步骤如图所示。

四、输出结果SPSS的输出结果如表所示。

该表中格列数据的含义(从第二列开始)依次是:被解释变量和解释变量的负相关系数、判定系数R2 、调整的系数R2 、回归方程的估计标准误差。

依据该表可以进行拟合优度检验。

由于判定系数R2 较接近1,因此认为拟合优度较高,被解释变量可以被模型解释的部分较多,不能被模型解释的部分较少。

该表各项数据的含义(从第一列开始)依次为:被解释变量的表差来源,离差平方和。

自由度、方程、回归方程显着性检验中F 检验统计量的观测值和概率P 值。

由表可知,F 检验统计量的观测值为,369.56,对应的概率P 值为0.000。

如果显着性水平取0.05,由于概率P 值小于显着性水平,所以应该拒绝原假设,认为,被解释变量与及时变量的线形关系是显着的,可以建立线性模型。

该表中各列数据的含义(第二列开始)依次为:偏回归系数,偏回归系数的标准误差,标准化偏回归系数、回归系数显着性检验中t 检验统计量的观测值、对应的概率P 值。

从表中可以看出,产量和密度对应的概率P 值均为0.000。

若取显着性水平为0.05,则应拒绝原假设,认为密度与速度的线性关系显着。

该表中可以看出,残差和标准残差的均值均为0,符合残差均值为零的正态性分析。

综上,该公路上速度与密度的一元线性回归模型为: ,其中,V 表示速度,K 表示密度。

a. 预测变量: (常量), 密度。

b. 因变量: 速度第17题为了分析双车道公路上驾驶人超车行为及其影响因素,应用超车试验研究了超车过程中同向的车流间隙对驾驶人换车道的影响。

此次试验共采集到有效样本数据342条,表中给出了部分试验数据整理结果。

请用logistic回归模型标定出换道行为模型。

本题可采用二元logistic回归分析对换道行为进行标定。

一、二元Logistic回归基本原理当被解释变量为0/1二分类变量时,虽然无法直接采用一般线性回归模型建模,但可充分借鉴其理论模型和分析思路。

利用一般线性回归模型对被解释变量取值为1的概率进行建模,此时回归方程被解释变量的实际取值范围在0~1之间。

回归方程的一般形式为:现将P转换为对对两边取对数,并建立被解释变量与解释变量之间的多元分析模型,即于是有该式即被解释变量预测为1类的模型。

二、软件操作二元logistic回归模型的SPSS操作如图所示。

操作中,对换道行为进行了分类设置:超车成功=1,超车失败=2。

三、结果输出该表显示了logistic分析初级阶段(第0步,方程中只有常数项,其他回归系数约束为0),的混淆矩阵。

可以看待,有4人超车失败但模型预测错误,正确率为0%,有8人超车成功模型预测正确,正确率为100%。

模型总的预测正确率为66.7%。

该表为方层中只有常数项时回归系数方面的指标,由于此时模型中未包含任何解释变量,该表并没有实际意义。

该表显示了待进入方程的各解释变量的情况。

可以看到,下一波速度。

车头间距和车头时距进入方程,则Score检验统计量的鬼厕纸和概率P值分别依次是10.170、0.001,0.568、0.451,3.210,0.073。

如果显着性水平为0.05,则由于车头间距和车头时距的概率P值大于显着性水平,所以不能进入方程。

因此将车头间距和车头时距移除,再看该分类表,模型的预测率为100%。

从而车辆环岛行为模型的标定仅与行车速度有关。

从而得到换到行为的logistic回归模型标定结果V ..pp071145-7294)1(ln =-(1)))0711457294(-(11V ..exp P -+=(2)则式(2)为超车成功的标定模型,其中,V 为行车速度。

相关文档
最新文档